Skip to main content

Advertisement

Log in

A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Artificial intelligence is the fastest growing data-driven technology and is currently used in all major fields and reduces the work of humans. Artificial intelligence can analyse extensive data from Electronic Health Records, clinical trials, patient’s medical history, X-rays, CT scans and contribute to the healthcare field by explicitly detecting and predicting lifestyle diseases such as Alzheimer, Arthritis, Asthma, Atherosclerosis, COPD, Depression, Obesity, Osteoporosis, Metabolic Syndrome and PCOS. Lifestyle diseases are diseases related to the daily habits or routines of individuals such as smoking, excessive consumption of alcohol, physical inactivity, overeating etc. Common techniques used by AI to diagnose these diseases are Decision Tree, Random Forest, ANN, SVM, Regression, Naïve Bayes and deep learning models such as Convolutional Neural Network, Recurrent Neural Network, and Natural Language Processing. A common framework is presented in this paper to carry forward the research to add significant value. This paper presents an extensive overview of the diseases, their symptoms and associated illnesses, risk factors, datasets suitable for developing predictive models, challenges encountered by researchers, and significant contributions made in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abdulkader RS, Abdulle AM, Abebo TA, Abera SF, Aboyans V, Abu-Raddad LJ, Ackerman IN, Adamu AA, Adetokunboh O, Afarideh M, Afshin A, Agarwal SK, Aggarwal R, Murray CJL et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259. https://doi.org/10.1016/s0140-6736(17)32154-2

    Article  Google Scholar 

  2. Koul A, Bawa RK, Kumar Y (2023) Artificial intelligence techniques to predict the airway disorders illness: a systematic review. Arch Computat Methods Eng 30:831–864. https://doi.org/10.1007/s11831-022-09818-4

    Article  Google Scholar 

  3. Kumar A, Kumar N, Kuriakose J et al (2023) A review of deep learning-based approaches for detection and diagnosis of diverse classes of drugs. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-023-09936-7

    Article  Google Scholar 

  4. Kanna GP, Kumar SJKJ, Parthasarathi P et al (2023) A review on prediction and prognosis of the prostate cancer and Gleason grading of prostatic carcinoma using deep transfer learning based approaches. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09896-y

    Article  Google Scholar 

  5. Kaur S, Kumar Y, Koul A et al (2023) A systematic review on metaheuristic optimization techniques for feature selections in disease diagnosis: open issues and challenges. Arch Comput Methods Eng 30:1863–1895. https://doi.org/10.1007/s11831-022-09853-1

    Article  Google Scholar 

  6. Kaur K, Singh C, Kumar Y (2023) Diagnosis and detection of congenital diseases in new-borns or fetuses using artificial intelligence techniques: a systematic review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09892-2

    Article  Google Scholar 

  7. Chaplot N, Pandey D, Kumar Y et al (2023) A comprehensive analysis of artificial intelligence techniques for the prediction and prognosis of genetic disorders using various gene disorders. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-09904-1

    Article  Google Scholar 

  8. Kumar Y, Gupta S (2023) Deep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular edema, DRUSEN and healthy eyes: an experimental review. Arch Comput Methods Eng 30:521–541. https://doi.org/10.1007/s11831-022-09807-7

    Article  Google Scholar 

  9. Thamrin SA, Arsyad DS, Kuswanto H, Lawi A, Nasir S (2021) Predicting obesity in adults using machine learning techniques: an analysis of indonesian basic health research 2018. Front Nutr. https://doi.org/10.3389/fnut.2021.669155

    Article  Google Scholar 

  10. Tian J, Smith G, Guo H, Liu B, Pan Z, Wang Z, Xiong S, Fang R (2021) Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci Rep. https://doi.org/10.1038/s41598-020-80312-2

    Article  Google Scholar 

  11. Tomita K, Nagao R, Touge H, Ikeuchi T, Sano H, Yamasaki A, Tohda Y (2019) Deep learning facilitates the diagnosis of adult asthma. Allergol Int 68(4):456–461. https://doi.org/10.1016/j.alit.2019.04.010

    Article  Google Scholar 

  12. Uddin MZ, Dysthe KK, Følstad A, Brandtzaeg PB (2021) Deep learning for prediction of depressive symptoms in a large textual dataset. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06426-4

    Article  Google Scholar 

  13. Wi C-I, Sohn S, Rolfes MC, Seabright A, Ryu E, Voge G, Bachman KA, Park MA, Kita H, Croghan IT, Liu H, Juhn YJ (2017) Application of a natural language processing algorithm to asthma ascertainment. An automated chart review. Am J Respir Crit Care Med 196(4):430–437. https://doi.org/10.1164/rccm.201610-2006oc

    Article  Google Scholar 

  14. Alroobaea R, Mechti S, Haoues M, Rubaiee S, Ahmed A, Andejany M, Bragazzi NL, Sharma DK, Kolla BP, Sengan S (2021) Alzheimer’s disease early detection using machine learning techniques. Res Square. https://doi.org/10.21203/rs.3.rs-624520/v1

    Article  Google Scholar 

  15. Castellazzi G, Cuzzoni MG, Cotta Ramusino M, Martinelli D, Denaro F, Ricciardi A, Vitali P, Anzalone N, Bernini S, Palesi F, Sinforiani E, Costa A, Micieli G, D’Angelo E, Magenes G, Gandini Wheeler-Kingshott CAM (2020) A machine learning approach for the differential diagnosis of Alzheimer and vascular dementia fed by MRI selected features. Front Neuroinformatic 1:4. https://doi.org/10.3389/fninf.2020.00025

    Article  Google Scholar 

  16. Jo T, Nho K, Saykin AJ (2019) Deep learning in Alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00220

    Article  Google Scholar 

  17. Fernandez-Granero MA, Sanchez-Morillo D, Lopez-Gordo MA, Leon A (2015) A machine learning approach to prediction of exacerbations of chronic obstructive pulmonary disease. Artif Comput Biol Med. https://doi.org/10.1007/978-3-319-18914-7_32

    Article  Google Scholar 

  18. Hussain A, Choi H-E, Kim H-J, Aich S, Saqlain M, Kim H-C (2021) Forecast the exacerbation in patients of chronic obstructive pulmonary disease with clinical indicators using machine learning techniques. Diagnostics. https://doi.org/10.3390/diagnostics11050829

    Article  Google Scholar 

  19. Sathiya S, Priyanka G, Jeyanthi S (2018) Detection of chronic obstructive pulmonary disease in computer aided diagnosis system with CNN classification. Int J Pure Appl Math 119:13815–13821

    Google Scholar 

  20. Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K (2021) Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. PeerJ Comput Sci 7:e369. https://doi.org/10.7717/peerj-cs.369

    Article  Google Scholar 

  21. Hussain A (2021) Detection of different stages of COPD patients using machine learning techniques. In: International conference on advanced communications technology (ICACT), pp 368–372. https://doi.org/10.23919/ICACT51234.2021.9370958

  22. Ferdowsy F, Rahi KSA, Jabiullah MI, Habib MdT (2021) A machine learning approach for obesity risk prediction. Current Res Behav Sci 2:100053. https://doi.org/10.1016/j.crbeha.2021.100053

    Article  Google Scholar 

  23. Singh B, Tawfik H (2020) Machine learning approach for the early prediction of the risk of overweight and obesity in young people. Lecture Notes Comput Sci. https://doi.org/10.1007/978-3-030-50423-6_39

    Article  Google Scholar 

  24. Gupta M, Phan T-LT, Bunnell HT, Beheshti R (2022) Obesity prediction with EHR data: a deep learning approach with interpretable elements. ACM Trans Comput Healthcare 3(3):1–19. https://doi.org/10.1145/3506719

    Article  Google Scholar 

  25. Hammond R, Athanasiadou R, Curado S, Aphinyanaphongs Y, Abrams C, Messito MJ, Gross R, Katzow M, Jay M, Razavian N, Elbel B (2019) Predicting childhood obesity using electronic health records and publicly available data. PLoS ONE 14(4):e0215571. https://doi.org/10.1371/journal.pone.0215571

    Article  Google Scholar 

  26. Jindal K (2018). Obesity prediction using ensemble machine learning approaches. In recent findings in intelligent computing techniques. ICACNI

  27. Ashraf A, Gunawan TS, Rahman FDA, Kartiwi M, Ismail N, Ulfiah (2020). A summarization of the visual depression databases for depression detection. In: 2020 6th international conference on wireless and telematics (ICWT). https://doi.org/10.1109/icwt50448.2020.9243625

  28. Priya A, Garg S, Tigga NP (2020) Predicting anxiety, depression and stress in modern life using machine learning algorithms. Int Conf Comput Intell Data Sci 167(6):1258–1267. https://doi.org/10.1016/j.procs.2020.03.442

    Article  Google Scholar 

  29. Sudha K, Sreemathi S, Nathiya B, RahiniPriya D (2020) Depression detection using machine learning

  30. Cacheda F, Fernandez D, Novoa FJ, Carneiro V (2019) Early detection of depression: social network analysis and random forest techniques. J Med Internet Res 21(6):e12554. https://doi.org/10.2196/12554

    Article  Google Scholar 

  31. Govindasamy K, Palanichamy NV (2021) Depression detection using machine learning techniques on Twitter data. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 960–966. https://doi.org/10.1109/ICICCS51141.2021.9432203

  32. Islam MdR, Kabir MA, Ahmed A, Kamal ARM, Wang H, Ulhaq A (2018) Depression detection from social network data using machine learning techniques. Health Inf Sci Syst. https://doi.org/10.1007/s13755-018-0046-0

    Article  Google Scholar 

  33. Sun G, Zhao S, Zou B, An Y (2022). Speech-based depression detection using unsupervised autoencoder. In: 2022 7th international conference on signal and image processing (ICSIP). https://doi.org/10.1109/icsip55141.2022.9886372

  34. Morita K, Tashita A, Nii M, Kobashi S (2017) Computer-aided diagnosis system for rheumatoid arthritis using machine learning. In: International conference on machine learning and cybernetics. Ningbo, China, pp 357–360. https://doi.org/10.1109/ICMLC.2017.8108947

  35. Orange DE, Agius P, DiCarlo EF, Robine N, Geiger H, Szymonifka J, McNamara M, Cummings R, Andersen KM, Mirza S, Figgie M, Ivashkiv LB, Pernis AB, Jiang CS, Frank MO, Darnell RB, Lingampali N, Robinson WH, Gravallese E, Bykerk VP (2018) Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data. Arthritis Rheumatol 70(5):690–701. https://doi.org/10.1002/art.40428

    Article  Google Scholar 

  36. Guan Y, Zhang H, Quang D, Wang Z, Parker SCJ, Pappas DA, Kremer JM, Zhu F (2019) Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers. Arthritis Rheumatol 71(12):1987–1996. https://doi.org/10.1002/art.41056

    Article  Google Scholar 

  37. Kalweit M, Walker UA, Finckh A, Müller R, Kalweit G, Scherer A, Boedecker J, Hügle T (2021) Personalized prediction of disease activity in patients with rheumatoid arthritis using an adaptive deep neural network. PLoS ONE 16(6):e0252289. https://doi.org/10.1371/journal.pone.0252289

    Article  Google Scholar 

  38. Brisson NM, Gatti AA, Damm P, Duda GN, Maly MR (2021) Association of machine learning-based predictions of medial knee contact force with cartilage loss over 2.5 years in knee osteoarthritis. Arthritis Rheumatol 73(9):1638–1645. https://doi.org/10.1002/art.41735

    Article  Google Scholar 

  39. Chatzimichail E, Paraskakis E, Sitzimi M, Rigas A (2013) An intelligent system approach for asthma prediction in symptomatic preschool children. Comput Math Methods Med 2013:1–6. https://doi.org/10.1155/2013/240182

    Article  MATH  Google Scholar 

  40. Kaur HS (2018) Automated chart review utilizing natural language processing algorithm for asthma predictive index. BMC Pulm Med. https://doi.org/10.1186/s12890-018-0593-9

    Article  Google Scholar 

  41. Alizadeh B, Safdari R, Zolnoori M, Bashiri A (2015) Developing an intelligent system for diagnosis of asthma based on artificial neural network. Acta Informatica Medica 23(4):220. https://doi.org/10.5455/aim.2015.23.220-223

    Article  Google Scholar 

  42. Amaral JLM, Lopes AJ, Veiga J, Faria ACD, Melo PL (2017) High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements. Comput Methods Programs Biomed 144:113–125. https://doi.org/10.1016/j.cmpb.2017.03.023

    Article  Google Scholar 

  43. Tahasamadsoltaniheris M, Mahmoodvand Z, Zolnoori M (2013) Intelligent diagnosis of asthma using machine learning algorithms. Int Res J Appl Basic Sci 5(1):140–145

    Google Scholar 

  44. Bose S, Kenyon CC, Masino AJ (2021) Personalized prediction of early childhood asthma persistence: a machine learning approach. PLoS ONE 16(3):e0247784. https://doi.org/10.1371/journal.pone.0247784

    Article  Google Scholar 

  45. Sisodia PS, Ameta GK, Kumar Y, Chaplot N (2023) A review of deep transfer learning approaches for class-wise prediction of Alzheimer’s disease using MRI images. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-022-09870-0

    Article  Google Scholar 

  46. Parameswari C, Siva Ranjani S (2020) Prediction of atherosclerosis pathology in retinal fundal images with machine learning approaches. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-020-02294-3

    Article  Google Scholar 

  47. Candemir S (2020) Automated coronary artery atherosclerosis detection and weakly supervised localization on coronary CT angiography with a deep 3-dimensional convolutional neural network. Comput Med Imaging Graph. https://doi.org/10.1016/j.compmedimag.2020.101721

    Article  Google Scholar 

  48. Terrada O, Cherradi B, Raihani A, Bouattane O (2020) Atherosclerosis disease prediction using Supervised Machine Learning Techniques. In: 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET). https://doi.org/10.1109/iraset48871.2020.9092082

  49. Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, Gomes AS, Folsom AR, Shea S, Guallar E, Bluemke DA, Lima JAC (2017) Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. https://doi.org/10.1161/CIRCRESAHA.117.311312

    Article  Google Scholar 

  50. Menchón-Lara R-M, Sancho-Gómez J-L, Bueno-Crespo A (2016) Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Appl Soft Comput 49:616–628. https://doi.org/10.1016/j.asoc.2016.08.055

    Article  Google Scholar 

  51. Iliou T, Anagnostopoulos CN, Anastassopoulos G (2014) Osteoporosis detection using machine learning techniques and feature selection. Int J Artif Intell Tools. https://doi.org/10.1142/S0218213014500146

    Article  Google Scholar 

  52. Devikanniga D (2020) Diagnosis of osteoporosis using intelligence of optimized extreme learning machine with improved artificial algae algorithm. Int J Intell Netw 1:43–51. https://doi.org/10.1016/j.ijin.2020.05.004

    Article  Google Scholar 

  53. Kean Kim S, Keun Yoo T, Oh E, Won Kim D (2013) Osteoporosis risk prediction using machine learning and conventional methods

  54. Yamamoto N, Sukegawa S, Kitamura A, Goto R, Noda T, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Kawasaki K, Furuki Y, Ozaki T (2020) Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates. Biomolecules 10(11):1–13. https://doi.org/10.3390/biom10111534

    Article  Google Scholar 

  55. Anam M, Ponnusamy V, Hussain M, Nadeem MW, Javed M, Goh HG, Qadeer S (2021) Osteoporosis prediction for trabecular bone using machine learning: a review. Comput Mater Continua 67:89–105. https://doi.org/10.32604/cmc.2021.013159

    Article  Google Scholar 

  56. Lim HK, Ha H, Park SY, Han J (2021) Prediction of femoral osteoporosis using machine-learning analysis with radiomics features and abdomen-pelvic CT: a retrospective single center preliminary study. PLoS ONE. https://doi.org/10.1371/journal.pone.0247330

    Article  Google Scholar 

  57. Chatterjee A, Gerdes MW, Martinez SG (2020) Identification of risk factors associated with obesity and overweight—a machine learning overview. Sensors 20(9):2734. https://doi.org/10.3390/s20092734

    Article  Google Scholar 

  58. ERSEVER, Y. (n.d.), 500 Person Gender-Height-Weight-Body Mass Index, Kaggle https://www.kaggle.com/datasets/yersever/500-person-gender-height-weight-bodymassindex

  59. Health, Institute of Health Research and Development of the Indonesian Ministry of. Layanan Permintaan Data Riset. https://www.litbang.kemkes.go.id/layanan-permintaan-data-riset/

  60. Harvey JL, Kumar SAP (2019) Machine learning for predicting development of asthma in children. IEEE Xplore. https://doi.org/10.1109/SSCI44817.2019.9002692

    Article  Google Scholar 

  61. Amaral JLM, Sancho AG, Faria ACD, Lopes AJ, Melo PL (2020) Differential diagnosis of asthma and restrictive respiratory diseases by combining forced oscillation measurements, machine learning and neuro-fuzzy classifiers. Med Biol Eng Comput 58(10):2455–2473. https://doi.org/10.1007/s11517-020-02240-7

    Article  Google Scholar 

  62. Cilluffo G, Fasola S, Ferrante G, Licari A, Marseglia GR, Albarelli A, Marseglia GL, La Grutta S (2022) Machine learning: a modern approach to pediatric asthma. Pediatr Allergy Immunol 33(S27):34–37. https://doi.org/10.1111/pai.13624

    Article  Google Scholar 

  63. Park J (2020) Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data. npj Digit Med. https://doi.org/10.1038/s41746-020-0256-0

    Article  Google Scholar 

  64. The Multi-Ethnic Study of Atherosclerosis (MESA) (n. d.), https://www.mesa-nhlbi.org/MESA_508TextOnly.htm

  65. Park JE, Mun S, Lee S (2021) Metabolic syndrome prediction models using machine learning and Sasang constitution type. Evid-Based Complement Altern Med. https://doi.org/10.1155/2021/8315047

    Article  Google Scholar 

  66. Choe EK, Rhee H, Lee S, Shin E, Oh S-W, Lee J-E, Choi SH (2018) Metabolic syndrome prediction using machine learning models with genetic and clinical information from a nonobese healthy population. Genomics Informatics 16(4):e31. https://doi.org/10.5808/gi.2018.16.4.e31

    Article  Google Scholar 

  67. Hosseini-Esfahani F, Alafchi B, Cheraghi Z, Doosti-Irani A, Mirmiran P, Khalili D, Azizi F (2021) Using machine learning techniques to predict factors contributing to the incidence of metabolic syndrome in Tehran: cohort study. JMIR Public Health Surveill 7:9. https://doi.org/10.2196/27304

    Article  Google Scholar 

  68. Yang H, Yu B, Ouyang P, Li X, Lai X, Zhang G, Zhang H (2022) Machine learning-aided risk prediction for metabolic syndrome based on 3 years study. Sci Rep. https://doi.org/10.1038/s41598-022-06235-2

    Article  Google Scholar 

  69. Kim J, Mun S, Lee S, Jeong K, Baek Y (2022) Prediction of metabolic and pre-metabolic syndromes using machine learning models with anthropometric, lifestyle, and biochemical factors from a middle-aged population in Korea. BMC Public Health. https://doi.org/10.1186/s12889-022-13131-x

    Article  Google Scholar 

  70. Kodipalli A, Devi S (2021) Prediction of PCOS and mental health using fuzzy inference and SVM. Front Public Health. https://doi.org/10.3389/fpubh.2021.789569

    Article  Google Scholar 

  71. Bharati S, Podder P, Hossain Mondal MR (2020) Diagnosis of polycystic ovary syndrome using machine learning algorithms. In: 2020 IEEE Region 10 Symposium (TENSYMP). Παρουσιάστηκε στο 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh. https://doi.org/10.1109/tensymp50017.2020.9230932

  72. Thakre V (2020) PCOcare: PCOS detection and prediction using machine learning algorithms. Biosci Biotechnol Res Commun 13(14):240–244

    Article  Google Scholar 

  73. Sumathi M, Chitra P, Sakthi Prabha R, Srilatha K (2021) Study and detection of PCOS related diseases using CNN. IOP Conf Series 1070:012062. https://doi.org/10.1088/1757-899x/1070/1/012062

    Article  Google Scholar 

  74. Xie NN, Wang FF, Zhou J, Liu C, Qu F (2020) Establishment and analysis of a combined diagnostic model of polycystic ovary syndrome with random forest and artificial neural network. BioMed Res Int. https://doi.org/10.1155/2020/2613091

    Article  Google Scholar 

  75. Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. https://doi.org/10.1007/s42979-021-00592-x

    Article  Google Scholar 

  76. Bhardwaj P, Bhandari G, Kumar Y et al (2022) An investigational approach for the prediction of gastric cancer using artificial intelligence techniques: a systematic review. Arch Comput Methods Eng 29:4379–4400. https://doi.org/10.1007/s11831-022-09737-4

    Article  Google Scholar 

  77. Feng Y, Wang Y, Zeng C, Mao H (2021) Artificial intelligence and machine learning in chronic airway diseases: focus on asthma and chronic obstructive pulmonary disease. Int J Med Sci 18(13):2871–2889. https://doi.org/10.7150/ijms.58191

    Article  Google Scholar 

  78. Kakudi HA, Loo CK, Moy FM (2020) Diagnosis of metabolic syndrome using machine learning, statistical and risk quantification techniques: a systematic literature review. medRxiv. https://doi.org/10.1101/2020.06.01.20119339

    Article  Google Scholar 

  79. Kumar Y, Gupta S, Singla R, Hu Y-C (2021) A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-021-09648-w

    Article  Google Scholar 

  80. Kumar Y, Koul A, Singla R, Ijaz MF (2022) Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-021-03612-z

    Article  Google Scholar 

  81. More S, Singla J (2019) Intelligent medical diagnostic systems for arthritis. Int J Recent Technol Eng. https://doi.org/10.35940/ijrte.b1455.0982s1119

    Article  Google Scholar 

  82. Munger E, Hickey JW, Dey AK, Jafri MS, Kinser JM, Mehta NN (2021) Application of machine learning in understanding atherosclerosis: emerging insights. APL Bioeng 5(1):011505. https://doi.org/10.1063/5.0028986

    Article  Google Scholar 

  83. Rashid J, Batool S, Kim J, WasifNisar M, Hussain A, Juneja S, Kushwaha R (2022) An augmented artificial intelligence approach for chronic diseases prediction. Front Public Health 10:860396. https://doi.org/10.3389/fpubh.2022.860396

    Article  Google Scholar 

  84. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D (2021) Machine learning solutions for osteoporosis—a review. J Bone Miner Res 36:833–851

    Article  Google Scholar 

  85. Zhang H, Chen D, Shao J, Zou P, Cui N, Tang L, Wang X, Wang D, Wu J, Ye Z (2021) Machine learning-based prediction for 4-year risk of metabolic syndrome in adults: a retrospective cohort study. Risk Manag Healthcare Policy 14:4361–4368. https://doi.org/10.2147/RMHP.S328180

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, K., Singh, I. & Kumar, Y. A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases. Arch Computat Methods Eng 30, 4733–4756 (2023). https://doi.org/10.1007/s11831-023-09957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09957-2

Navigation