Skip to main content

Advertisement

Log in

An Analytical Review on the Utilization of Machine Learning in the Biomass Raw Materials, Their Evaluation, Storage, and Transportation

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The utilization of biomass, as an energy resources, is required four main steps of production, pre-treatment, bio-refinery, and upgrading. Also, the production step of the biomass raw materials is followed by evaluation, storage, and transportation. This work investigates machine learning applications in the biomass production step with focusing on evaluation, storage, and transportation. By investigating numerous related works it is concluded that there is a considerable reviewing gap in the investigating and listing the applications of machine learning in the biomass evaluation, storage, and transportation. To fill this gap by the current work, the origin of biomass raw materials is explained and the application of machine learning in this section is scrutinized. Then, the kinds and resources of biomass as well as the role of machine learning in these fields are reviewed. Additionally, studying the characteristics of biomass raw materials such as components and elements are elaborated followed by the application of machine learning algorithms in these area. Afterwards, the storage and transportation of materials are explained and separately the application of machine learning in these areas are surveyed. Finally, after analysis of numerous and various papers, it is concluded that machine learning and deep learning are widely utilized in biomass preparation areas to enhance the crops production and quality, improve the predictions, diminish the losses, as well as increase storage and transformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ML:

Machine learning

DL:

Deep learning

ANN:

Artificial neural network

IoT:

Internet of things

SVM:

Super vector machine

NB:

Naive Bayes

KNN:

K-nearest neighbor

DT:

Decision tree

RF:

Random forest

ANFIS:

Adaptive Network Fuzzy Inference System

XGBoost:

Extreme gradient boosting

SMR:

Stepwise multiple regression

RNN:

Recurrent neural network

MLR:

Multiple linear regression

RBNN:

Radial-basis neural network

SMOR:

Sequential minimal optimization regression

LDA:

Linear discriminant analysis

FRBS:

Fuzzy rule-based systems

DBN:

Deep belief network

GRU:

Gated recurrent units

C:

Carbon

O:

Oxygen

S:

Sulphur

A:

Ash

K:

Potassium

P:

Phosphorus

Ca:

Calcium

Zn:

Zink

CO2 :

Carbon dioxide

NIR:

Near infrared

RBF:

Radial basis function

ET:

Extra trees

SPA:

Successive projection algorithm

LRM:

Linear regression model

CRBM:

Conditional restricted Boltzmann machine

RO:

Reverse osmosis

t-SNE:

T-distributed stochastic neighbor embedding

DBSCAN:

Density-based spatial clustering of applications with noise

LSTM:

Long short term memory

CNN:

Convolutional neural network

MLP:

Multilayer perceptron

FPN Mask:

Feature pyramid network mask

GP:

Gaussian process

DNN:

Deep neural network

PR:

Polynomial regression

GBDT:

Gradient boosting decision tree

AdaBoost:

Adaptive boosting

PLSDA:

Partial least square discriminant analysis

GLM:

Generalized linear model

PGM:

Probabilistic graphical models

GPR:

Gaussian processes regression

GAN:

Generative adversial network

LR:

Logistics regression

PLS-DA:

Partial least squares discriminant analysis

BRT:

Boosted regression tree

GMMs:

Gaussian mixture models

LRLS:

Kernel-based regularized least squares

GBM:

Generalized boosted model

H:

Hudrogen

N:

Nitrogen

Cl:

Chlorine

Pb:

Lead (Plumbum)

Na:

Sodium

Mg:

Magnesium

Si:

Silica

HHV:

Higher heating value

PMF:

Positive matrix factorization

PLS:

Partial least squares

KRR:

Kernel ridge regression

MARS:

Multivariate adaptive regression splines

CARS:

Competitive adaptive reweighted sampling

SVR:

Supper vector regression

PCA:

Principal component analysis

NF:

Nano-filtration

LSA:

Latent semantic analysis

GNN:

Graph neural networks

References

  1. Hall DO (1979) Solar energy use through biology past, present and future. Sol Energy 22:307–328

    Article  Google Scholar 

  2. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  3. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134

    Article  Google Scholar 

  4. Olatunji OO, Akinlabi S, Madushele N, Adedeji PA (2020) Property based biomass feedstock grading using k-Nearest Neighbour technique. Energy 190:116346. https://doi.org/10.1016/j.energy.2019.116346

    Article  Google Scholar 

  5. Amon A, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Pötsch E, Wagentristl H, Schnreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Biores Technol 98:3204–3212

    Article  Google Scholar 

  6. Tamiminia H, Salehi B, Mahdianpari M, Beier CM, Klimkowski DJ, Volk TA (2021) Random forest outperformed convolutional neural networks for shrub willow above ground biomass estimation using multi-spectral UAS imagery. IEEE Int Geosci Remote Sens Symp IGARSS 2021:8269–8272. https://doi.org/10.1109/IGARSS47720.2021.9553515

    Article  Google Scholar 

  7. Han Z, Sun J, Lv A, Sung Y, Shi H, Hu X, Xing K (2017) Isolation, identification and characterization of Shewanella algae from reared tongue sole, Cynoglossus semilaevis Günther. Aquaculture 468:356–362

    Article  Google Scholar 

  8. Erfanmanesh A, Beikzadeh B, Aziz Mohseni F, Nikaein D, Mohajerfar T (2019) Ulcerative dermatitis in barramundi due to coinfection with Streptococcus iniae and Shewanella algae. Dis Aquat Organ 134:89–97. https://doi.org/10.3354/dao03363

    Article  Google Scholar 

  9. Chen J, Piva M, Labuza T (1984) Evaluation of water binding capacity (WBC) of food fiber sources. J Food Sci 49:59–63

    Article  Google Scholar 

  10. Waseem S, Imadi SR, Gul A, Ahmad P (2017) Oilseed crops present scenario and future prospects

  11. Medeiros AD, Silva LJD, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, Silva CBD (2020) Machine learning for seed quality classification: an advanced approach using merger data from FT-NIR spectroscopy and X-ray imaging. Sensors (Basel) 20(15):4319. https://doi.org/10.3390/s20154319

    Article  Google Scholar 

  12. Parmley KA, Higgins RH, Ganapathysubramanian B et al (2019) Machine learning approach for prescriptive plant breeding. Sci Rep 9:17132. https://doi.org/10.1038/s41598-019-53451-4

    Article  Google Scholar 

  13. Jin B, Qi H, Jia L, Qizhe Tang L, Gao ZL, Zhao G (2022) Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning. Infrared Phys Technol 122:104097. https://doi.org/10.1016/j.infrared.2022.104097

    Article  Google Scholar 

  14. He Y, Zeng H, Fan Y, Ji S, Wu J (2019) Application of deep learning in integrated pest management: a real-time system for detection and diagnosis of oilseed rape pests. Mob Inf Syst 2019:45708081–457080814

    Google Scholar 

  15. Mousavi-Avval SH, Rafiee S, Sharifi M, Hosseinpour S, Shah A (2017) Combined application of life cycle assessment and adaptive neuro-fuzzy inference system for modeling energy and environmental emissions of oilseed production. Renewable Sustain Energy Rev 78:807–820. https://doi.org/10.1016/j.rser.2017.05.002

    Article  Google Scholar 

  16. Song Y, Pei L, Chen G, Mu L, Yan B, Li H, Zhou T (2023) Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. Sci Total Environ 861:160552

    Article  Google Scholar 

  17. Singels A, Jackson P, Inman-Bamber G (2021) Chapter 21–Sugarcane. In: Sadras VO, Calderini DF (eds) Crop physiology case histories for major crops. Academic Press, Boca Raton, pp 674–713

    Chapter  Google Scholar 

  18. Lingle SE (1999) Sugarcane. In: Smith DL, Hamel C (eds) Crop yield. Springer, Berlin

    Google Scholar 

  19. Yeasin M, Haldar D, Kumar S, Paul RK, Ghosh S (2022) Machine learning techniques for phenology assessment of sugarcane using conjunctive SAR and optical data. Remote Sens 14(14):3249. https://doi.org/10.3390/rs14143249

    Article  Google Scholar 

  20. Xu J-X, Ma J, Tang Y-N, Wu W-X, Shao J-H, Wu W-B, Wei S-Y, Liu Y-F, Wang Y-C, Guo H-Q (2020) Estimation of sugarcane yield using a machine learning approach based on UAV-LiDAR data. Remote Sens 12(17):2823. https://doi.org/10.3390/rs12172823

    Article  Google Scholar 

  21. Poudyal C, Sandhu H, Ampatzidis Y, Odero DC, Arbelo OC, Cherry RH, Costa LF (2023) Prediction of morpho-physiological traits in sugarcane using aerial imagery and machine learning. Smart Agric Technol 3:100104. https://doi.org/10.1016/j.atech.2022.100104

    Article  Google Scholar 

  22. Sreedhar R, Varshney A, Dhanya M (2022) Sugarcane crop classification using time series analysis of optical and SAR sentinel images: a deep learning approach. Remote Sens Lett 13(8):812–821. https://doi.org/10.1080/2150704X.2022.2088254

    Article  Google Scholar 

  23. Rocha MGD, Barros FMMD, Oliveira SRDM, Amaral LRD (2019) Biometric characteristics and canopy reflectance association for early-stage sugarcane biomass prediction. Scientia Agricola 76:274–280

    Article  Google Scholar 

  24. Poudyal C, Fideles Costa L, Sandhu H, Ampatzidis Y (2022) Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyperspectral imaging and machine learning. Wiley, Hoboken

    Book  Google Scholar 

  25. Revathy R, Balamurali S (2022) Developing an efficient irrigation scheduling system using hybrid machine learning algorithm to enhance the sugarcane crop productivity. Research Square. https://doi.org/10.21203/rs.3.rs-1504824/v1

  26. Canata TF, Wei MCF, Maldaner LF, Molin JP (2021) Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sens 13(2):232. https://doi.org/10.3390/rs13020232

    Article  Google Scholar 

  27. Das K, Khiripet N, Chattanrassamee P, Kijkullert C, Veerachit V (2020) Crop evapotranspiration estimates for sugarcane based on remote sensing and land surface model in Thailand. In: IGARSS 2020-2020 IEEE International geoscience and remote sensing symposium, pp 5175–5178. https://doi.org/10.1109/IGARSS39084.2020.9323195

  28. Coppin A, Varre J-S, Lienard L, Dauvillee D, Guerardel Y, Soyer-Gobillard M-O, Buleon A, Ball S, Tomavo S (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267

    Article  Google Scholar 

  29. Liu J-L, Cheng X, Xie G-H, Zhu W-B, Xiong S-J (2009) Variation in corn stover yield and fuel quality with harvest time. Asia-Pacific Power Energy Eng Conf 2009:1–6. https://doi.org/10.1109/APPEEC.2009.4918959

    Article  Google Scholar 

  30. Lee EK, Zhang W-J, Zhang X et al (2020) Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. Sci ’e Total Environ 714:136697

    Article  Google Scholar 

  31. Kjær A, Nielsen G, Stærke S, Clausen MR, Edelenbos M, Jørgensen B (2016) Prediction of starch, soluble sugars and amino acids in potatoes (Solanum tuberosum L.) using hyperspectral imaging, dielectric and LF-NMR methodologies. Potato Res 59:357–374

    Article  Google Scholar 

  32. Xiao Q, Bai X, He Y (2020) Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging coupled with multivariate analysis. Foods 9:94

    Article  Google Scholar 

  33. Tian XY, Aheto JH, Bai JW, Dai C, Ren Y, Chang X (2021) Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging. J Food Process Preserv 45:e15128

    Article  Google Scholar 

  34. Rady AM, Guyer DE, Watson NJ (2021) Near-infrared spectroscopy and hyperspectral imaging for sugar content evaluation in potatoes over multiple growing seasons. Food Anal Methods 14:581–595

    Article  Google Scholar 

  35. Wang F, Wang C, Song S, Xie S, Kang F (2021) Study on starch content detection and visualization of potato based on hyperspectral imaging. Food Sci Nutr 9:4420–4430

    Article  Google Scholar 

  36. Wang F, Wang C, Song S (2021) A study of starch content detection and the visualization of fresh-cut potato based on hyperspectral imaging. RSC Adv 11:13636–13643

    Article  Google Scholar 

  37. Kasampalis DA, Alexandridis TK, Deva C, Challinor A, Moshou D, Zalidis G (2018) Contribution of remote sensing on crop models: a review. J Imaging 4:52. https://doi.org/10.3390/jimaging4040052

    Article  Google Scholar 

  38. Stark J, Love S (2003) Potato production systems. Springer, Berlin

    Google Scholar 

  39. Motes J, Greig J (1970) Specific gravity, potato chip color and tuber mineral content as affected by soil moisture and harvest dates. Am Potato J 47:413

    Article  Google Scholar 

  40. Robertson JA, de Monredon FD, Dysseler P, Guillon F, Amado R, Thibault J-F (2000) Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT-Food Sci Technol 33:72–79

    Article  Google Scholar 

  41. Rady AM, Guyer DE, Kirk W, Donis-González IR (2014) The potential use of visible/near infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of potatoes. J Food Eng 135:11–25

    Article  Google Scholar 

  42. Dacal-Nieto A, Formella A, Carrión P, Vazquez-Fernandez E, Fernández-Delgado M (2011) Common scab detection on potatoes using an infrared hyperspectral imaging system. In International conference on image analysis and processing. Springer, Berlin pp 303–312

  43. Fechner R, Legler S, Engelmann T (2012) Germany-a source of raw materials. In: 2012 electronics goes green 2012+. pp 1–6

  44. Martin-Luengo MA et al (2011) Renewable raw materials for advanced applications. World Congr Sustain Technol (WCST) 2011:19–22. https://doi.org/10.1109/WCST19361.2011.6114229

    Article  Google Scholar 

  45. Xue W, Hu X, Wei Z, Mei X, Chen X, Xu Y (2019) A fast and easy method for predicting agricultural waste compost maturity by image-based deep learning. Bioresour Technol 290:121761. https://doi.org/10.1016/j.biortech.2019.121761

    Article  Google Scholar 

  46. Toklu E (2017) Biomass energy potential and utilization in Turkey. Renew Energy 107:235–244. https://doi.org/10.1016/j.renene.2017.02.008

    Article  Google Scholar 

  47. Boudru M (1989) Forêt et Sylviculture. Le Traitement Des forêts [Forest and Silviculture. The Treatment of Forests]. Tome 2. Presses Agronomiques de Gembloux, Gembloux, p 344

    Google Scholar 

  48. Matthews JD (1989) Silvicultural systems. Claredon Press, Oxford, p 284

    Google Scholar 

  49. Abbas D, Current D, Phillips M, Rossman R, Hoganson H, Brooks KN (2011) Guidelines for harvesting forest biomass for energy: a synthesis of environmental considerations. Biomass Bioenerg 35:4538–4546

    Article  Google Scholar 

  50. McKendry K (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46

    Article  Google Scholar 

  51. Windrim L, Bryson M, McLean M, Randle J, Stone C (2019) Automated mapping of woody debris over harvested forest plantations using UAVs, high-resolution imagery, and machine learning. Remote Sens 11(6):733. https://doi.org/10.3390/rs11060733

    Article  Google Scholar 

  52. He T, Marco J, Soares R, Yin Y, Wiedenhoeft AC (2019) Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests 11(1):36

    Article  Google Scholar 

  53. De Wit M, Junginger M, Faaij A (2013) Learning in dedicated wood production systems: past trends, future outlook and implications for bioenergy. Renew Sust Energ Rev 19:417–432

    Article  Google Scholar 

  54. Mattsson JE (1990) Basic handling characteristics of wood fuel: angle of repose, friction against surfaces and tendency to bridge building for different assortments. Scand J Forest Res 5:583–597

    Article  Google Scholar 

  55. Retschitzegger S, Brunner T, Obernberger I (2015) Low temperature corrosion in biomass boilers fired with chemically untreated wood chips and bark. Energy Fuels 29:3913–3921

    Article  Google Scholar 

  56. Kibleur P, Aelterman J, Boone MN, Van den Bulcke J, Van Acker J (2022) Deep learning segmentation of wood fiber bundles in fiberboards. Compos Sci Technol 221:109287. https://doi.org/10.1016/j.compscitech.2022.109287

    Article  Google Scholar 

  57. Pierdicca R, Balestra M, Micheletti G, Felicetti A, Toscano G (2022) Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach. Renew Energy 197:406–416. https://doi.org/10.1016/j.renene.2022.07.109

    Article  Google Scholar 

  58. Plankenbuhler T et al (2020) Image-based model for assessment of wood chip quality and mixture ratios. Processes 8:6

    Article  Google Scholar 

  59. Pitak L, Laloon K, Wongpichet S, Sirisomboon P, Posom J (2021) Machine learning-based prediction of selected parameters of commercial biomass pellets using line scan near infrared-hyperspectral image. Processes 9(2):316. https://doi.org/10.3390/pr9020316

    Article  Google Scholar 

  60. Oehmcke S, Li L, Revenga JC, Nord-Larsen T, Trepekli K, Gieseke F, Igel C (2021) Deep learning based 3D point cloud regression for estimating forest biomass. J Comput Vis Pattern Recogn

  61. Tiitta M, Tiitta V, Heikkinen J, Lappalainen R, Tomppo L (2020) Classification of wood chips using electrical impedance spectroscopy and machine learning. Sensors (Basel) 20(4):1076. https://doi.org/10.3390/s20041076

    Article  Google Scholar 

  62. Malek S, Miglietta F, Gobakken T, Næsset E, Gianelle D, Dalponte M (2019) Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques. iForest 12:323–329. https://doi.org/10.3832/ifor2980-012

    Article  Google Scholar 

  63. Xue B (2012) Lidar and machine learning estimation of hardwood forest biomass in mountainous and bottomland environments. Thesis, Northwest University, Bachelor of Science in Management of Resource and Environment and Urban-Rural Planning

  64. Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A (2011) Global food losses and food waste. FAO, Rome

    Google Scholar 

  65. Basher SA, Raboy D, Kaitibie S, Hossain I (2013) Understanding challenges to food security in dry arab micro-states: evidence from Qatari micro-data. Social Science Research Network, Rochester

    Google Scholar 

  66. Irani Z, Sharif AM (2016) Sustainable food security futures: Perspectives on food waste and information across the food supply chain. J Enterp Inf Manag 29:171–178. https://doi.org/10.1108/JEIM-12-2015-0117

    Article  Google Scholar 

  67. Barad M, Braha D (1996) Control limits for multi-stage manufacturing processes with binomial yield (single and multiple production runs). J Oper Res Soc 47:98–112. https://doi.org/10.1057/jors.1996.9

    Article  MATH  Google Scholar 

  68. Garre A, Ruiz MC, Hontoria E (2020) Application of machine learning to support production planning of a food industry in the context of waste generation under uncertainty. Oper Res Perspect 7:100147. https://doi.org/10.1016/j.orp.2020.100147

    Article  Google Scholar 

  69. Czarnecki S, Hadzima-Nyarko M, Chajec A et al (2022) Design of a machine learning model for the precise manufacturing of green cementitious composites modified with waste granite powder. Sci Rep 12:13242. https://doi.org/10.1038/s41598-022-17670-6

    Article  Google Scholar 

  70. Bhandari S (2020) Automative waste sorting in industrial environment via machine learning approaches. Information Technology and Communication Sciences TAU, Master's Thesis

  71. Lee HY, Choi HN, Jung YJ, Uhm HS, Kang BK (2003) Sewage sludge treatment by arc discharge. Digest of Technical Papers. PPC-2003. 14th IEEE international pulsed power conference (IEEE Cat. No.03CH37472), vol 2, pp 1247–1249. https://doi.org/10.1109/PPC.2003.1278039

  72. Zambrano J, Samuelsson O, Carlsson B (2019) Machine learning techniques for monitoring the sludge profile in a secondary settler tank. Appl Water Sci 9:146. https://doi.org/10.1007/s13201-019-1018-5

    Article  Google Scholar 

  73. Boniecki P, Dach J, Pilarski K, Piekarska-Boniecka H (2012) Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmos Environ 57:49–54. https://doi.org/10.1016/j.atmosenv.2012.04.036

    Article  Google Scholar 

  74. Kujawa S, Mazurkiewicz J, Czekała W (2020) Using convolutional neural networks to classify the maturity of compost based on sewage sludge and rapeseed straw. J Clean Prod 258:120814. https://doi.org/10.1016/j.jclepro.2020.120814

    Article  Google Scholar 

  75. Safder U, Loy-Benitez J, Nguyen H-T, Yoo CK (2022) A hybrid extreme learning machine and deep belief network framework for sludge bulking monitoring in a dynamic wastewater treatment process. J Water Process Eng 46:102580. https://doi.org/10.1016/j.jwpe.2022.102580

    Article  Google Scholar 

  76. Araujo M, Rivas T, Giraldez E, Taboada J (2011) Use of machine learning techniques to analyse the risk associated with mine sludge deposits. Math Comput Model 54(7–8):1823–1828. https://doi.org/10.1016/j.mcm.2010.11.066

    Article  MATH  Google Scholar 

  77. Goldstein H (2002) Waste not, pollute not [animal waste recycling for power production]. IEEE Spectr 39(1):72–77. https://doi.org/10.1109/6.975026

    Article  Google Scholar 

  78. Pence I, Kumaş K, Siseci MC, Akyüz A (2022). Detailed analysis of animal manure-based CO2 emissions, coal, electricity, thermal energy, and CH4 emissions and using machine learning as a forecasting method: a study from Turkey. Research Square. https://doi.org/10.21203/rs.3.rs-1648218/v1

  79. Matthews SG, Miller AL, PlÖtz T, Kyriazakis I (2017) Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci Rep 7:17582

    Article  Google Scholar 

  80. Alonso J, Villa A, Bahamonde A (2015) Improved estimation of bovine weight trajectories using support vector machine classification. Comput Electron Agric 110:36–41

    Article  Google Scholar 

  81. Cordero T, Marquez F, Rodriquez-Mirasol J, Rodriguez JJ (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571

    Article  Google Scholar 

  82. ASTM Standard D5373–02 (2003) Standard test method instrumental determination of carbon, hydrogen and nitrogen in laboratory samples of coal and coke. ASTM International, West Conshohocken, pp 2–5

  83. Kucukbayrak S, Durus B, Mericboyu AE, Kadioglu E (1991) Estimation of calorific values of Turkish lignites. Fuel 70:979–981

    Article  Google Scholar 

  84. LePori WA, Soltes EJ (1985) Thermochemical conversion for energy and fuel. Biomass energy. Texas A&University Press, College Station, p 546

    Google Scholar 

  85. Rahimo M, et al (2021) An advanced adjustable switch hybrid (ASH) concept for high power automotive converters.PCIM Europe digital days 2021; international exhibition and conference for power electronics, intelligent motion, renewable energy and energy management, pp 1–8

  86. Tosti L, van Zomeren A, Pels JR et al (2021) Evaluating biomass ash properties as influenced by feedstock and thermal conversion technology towards cement clinker production with a lower carbon footprint. Waste Biomass Valor 12:4703–4719. https://doi.org/10.1007/s12649-020-01339-0

    Article  Google Scholar 

  87. Dodo UA, Ashigwuike EC, Abba SI (2022) Machine learning models for biomass energy content prediction: a correlation-based optimal feature selection approach. Bioresour Technol Rep 19:101167. https://doi.org/10.1016/j.biteb.2022.101167

    Article  Google Scholar 

  88. Yaka H, Insel MA, Yucel O, Sadikoglu H (2022) A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis. Fuel 320:123971. https://doi.org/10.1016/j.fuel.2022.123971

    Article  Google Scholar 

  89. Xing J, Luo K, Wang H, Gao Z, Fan J (2019) A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188:116077. https://doi.org/10.1016/j.energy.2019.116077

    Article  Google Scholar 

  90. Tao J, Liang R, Li J, Yan B, Chen G, Cheng Z, Li W, Lin F, Hou L (2020) Fast characterization of biomass and waste by infrared spectra and machine learning models. J Hazard Mater 387:121723. https://doi.org/10.1016/j.jhazmat.2019.121723

    Article  Google Scholar 

  91. Ahmed MU, Andersson P, Andersson T, Aparicio ET, Baaz H, Barua S, Bergström A, Bengtsson D, Orisio D, Skvaril J, Zambrano J (2019) A machine learning approach for biomass characterization. Energy Procedia. 1(158):1279–1287. https://doi.org/10.1016/j.egypro.2019.01.316

    Article  Google Scholar 

  92. Tschand A (2023) Semi-supervised machine learning analysis of crop color for autonomous irrigation. Smart Agric Technol 3:100116. https://doi.org/10.1016/j.atech.2022.100116

    Article  Google Scholar 

  93. Morris JD, Daood SS, Nimmo W (2022) Machine learning prediction and analysis of commercial wood fuel blends used in a typical biomass power station. Fuel 316:123364. https://doi.org/10.1016/j.fuel.2022.123364

    Article  Google Scholar 

  94. Gudavalli C, Bose E, Donohoe BS et al (2020) Real-time biomass feedstock particle quality detection using image analysis and machine vision. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00904-w

    Article  Google Scholar 

  95. Phongsathorn Kittiworapanya, Kitsuchart Pasupa, and Peter Auer. 2021. Particle Size Estimation in Mixed Commercial Waste Images Using Deep Learning. In The 12th international conference on advances in information technology (IAIT2021). Association for computing machinery, New York, NY, USA, Article 31, 1–5. https://doi.org/10.1145/3468784.3471273

  96. Wu G, Yu B, Guan Y, Wu X, Zhang K, Li Y (2019) Mixing characteristics of binary mixture with biomass in a gas-solid rectangular fluidized bed. Energies 12(10):2011. https://doi.org/10.3390/en12102011

    Article  Google Scholar 

  97. Chaudhry T, Moinuddin K (2017) Method of identifying burning material from its smoke using attenuation of light. Fire Saf J 93:84–97. https://doi.org/10.1016/j.firesaf.2017.08.001

    Article  Google Scholar 

  98. Sharma S, Khanra P, Ramkumar KR (2021) Performance analysis of biomass energy using machine and deep learning approaches. J Phys Conf Ser 2089:1. https://doi.org/10.1088/1742-6596/2089/1/012003

    Article  Google Scholar 

  99. Septiyadi E, Firmansyah E, Danang Wijaya F (2017) Preliminary design of biomass fuel storage on a thermoelectric based biomass-electric energy conversion. 2017 7th International Annual Engineering Seminar (InAES), pp 1–5. https://doi.org/10.1109/INAES.2017.8068572

  100. Farahani RZ, Asgari N, Hojabri H, Jaafari AA (2009) Optimizing wheat storage and transportation system using a mixed integer programming model and genetic Algorithm: a case study. IEEE Int Conf Ind Eng Eng Manag 2009:2109–2113. https://doi.org/10.1109/IEEM.2009.5373152

    Article  Google Scholar 

  101. Wang G, Li Q, You J (2008) On wheat storage period estimation using Markov_chain analysis. In: 2008 6th IEEE international conference on industrial informatics, pp 882–887. https://doi.org/10.1109/INDIN.2008.4618225

  102. Goettsch D, Castillo-Villar KK, Aranguren M (2020) Machine-learning methods to select potential depot locations for the supply chain of biomass co-firing. Energies 13(24):6554. https://doi.org/10.3390/en13246554

    Article  Google Scholar 

  103. Ahmad F, Younis MS, Zahid RU, Shahid LA (2020) Machine learning based grain moisture estimation for real-time monitoring of high-temperature paddy drying silo. In: 2020 IEEE 23rd international multitopic conference (INMIC), pp 1–6. https://doi.org/10.1109/INMIC50486.2020.9318071

  104. Sivasothy P, Andres M, Corbin G (2018) Machine learning based filling level estimation for bulk solid silos. J Acoust Soc Am 144:1685. https://doi.org/10.1121/1.5067492

    Article  Google Scholar 

  105. Serva L, Magrin L, Marchesini G, Andrighetto I (2022) Short communication: Prognostic values of a multiparametric risk score in maize silage undergoing different ensiling conditions. Agronomy 12(4):774. https://doi.org/10.3390/agronomy12040774

    Article  Google Scholar 

  106. Support vector machine classifier of grain stored in silo-bags by using wireless network of temperature and moisture sensors

  107. Kowalczyk-Juśko A, Pochwatka P, Zaborowicz M, Czekała W, Mazurkiewicz J, Mazur A, Janczak D, Marczuk A, Dach J (2020) Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 202:117729. https://doi.org/10.1016/j.energy.2020.117729

    Article  Google Scholar 

  108. Duysak H, Yigit E (2020) Machine learning based quantity measurement method for grain silos. Measurement 152:107279. https://doi.org/10.1016/j.measurement.2019.107279

    Article  Google Scholar 

  109. Lutz É (2022) Applications of new technologies for monitoring and predicting grains quality stored: sensors, internet of things, and artificial intelligence. Measurement 188:110609. https://doi.org/10.1016/j.measurement.2021.110609

    Article  Google Scholar 

  110. Zahraee SM, Golroudbary SR, Shiwakoti N, Stasinopoulos P (2022) Palm oil biomass global supply chain: environmental emissions vs. technology development of maritime transportation. Procedia CIRP 105:817–822. https://doi.org/10.1016/j.procir.2022.02.135

    Article  Google Scholar 

  111. Milenković M, Milosavljevic N, Bojović N, Val S (2017) Container flow forecasting through neural networks based on metaheuristics. Oper Res 21:1–33

    Google Scholar 

  112. Niu M, Hu Y, Sun S, Liu Y (2018) A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting. Appl Math Model 57:163–178. https://doi.org/10.1016/j.apm.2018.01.014

    Article  MathSciNet  MATH  Google Scholar 

  113. Du Y, Meng Q, Wang S, Kuang H (2019) Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data. Transp Res B 122:88–114

    Article  Google Scholar 

  114. Gao Y, Chang D, Chen CH, Fang T (2018) Deep learning with long short-term memory recurrent neural network for daily container volumes of storage yard predictions in port. In: 2018 international conference on cyberworlds, IEEE, pp 427–430

  115. Shyur HJ, Luxhoj JT, Williams TP (1996) Using neural networks to predict component inspection requirements for aging aircraft. Comput Ind Eng 30(2):257–267

    Article  Google Scholar 

  116. Kim JS (2017) Vessel target prediction method and dead reckoning position based on SVR seaway model. Int J Fuzzy Logic Intell Syst 17(4):279–288

    Article  MathSciNet  Google Scholar 

  117. Parolas I, Tavasszy L, Kourounioti I, van Duin R, Cities K (2017) Prediction of vessel’s estimated time of arrival (ETA) using machine learning—a port of Rotterdam case study. In: 96th annual meeting of the transportation research, pp 8–12

  118. Xie Y, Huynh N (2010) Kernel-based machine learning models for predicting daily truck volume at seaport terminals. J Transp Eng 136(12):1145–1152

    Article  Google Scholar 

  119. Mohri S, Haghshenas H (2017) Modeling the container selection for freight transportation: case study of Iran. Int J Transp Eng 5(1):31–44

    Google Scholar 

  120. Ning H, Li R, Zhou T (2022) Machine learning for microalgae detection and utilization. Front Mar Sci 9:947394. https://doi.org/10.3389/fmars.2022.947394

    Article  Google Scholar 

  121. Coşgun A, Günay ME, Yıldırım R (2021) Analysis of lipid production from Yarrowia lipolytica for renewable fuel production by machine learning. Fuel 315:122817. https://doi.org/10.1016/j.fuel.2021.122817

    Article  Google Scholar 

  122. Long B, Fischer B, Zeng Y, Amerigian Z, Li Q, Bryant H, Li M, Dai SY, Yuan JS (2022) Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat Commun 13(1):541. https://doi.org/10.1038/s41467-021-27665-y

    Article  Google Scholar 

  123. Schmid-Staiger U, Stier M, Yeh Y Machine learning for algae cultivation. Fraunhofer Institute for Interfacial Engineering and Biotechnology Publication, Stuttgart

  124. Rodríguez-Rangel H, Morales-Rosales LA, Imperial-Rojo R, Roman-Garay MA, Peralta-Peñuñuri GE, Lobato-Báez M (2022) Analysis of statistical and artificial intelligence algorithms for real-time speed estimation based on vehicle detection with YOLO. Appl Sci 12:2907. https://doi.org/10.3390/app12062907

    Article  Google Scholar 

  125. Daniels ET, McPheron BD (2017) A machine learning approach to classifying algae concentrations. IEEE MIT Undergrad Res Technol Conf (URTC) 2017:1–4. https://doi.org/10.1109/URTC.2017.8284201

    Article  Google Scholar 

  126. Otálora P, Guzmán JL, Acién FG, Berenguel M, Reul A (2021) Microalgae classification based on machine learning techniques. Algal Res 55:102256. https://doi.org/10.1016/j.algal.2021.102256

    Article  Google Scholar 

  127. Cruz RC, Reis Costa P, Vinga S, Krippahl L, Lopes MB (2021) A review of recent machine learning advances for forecasting harmful algal blooms and shellfish contamination. J Mar Sci Eng 9(3):283. https://doi.org/10.3390/jmse9030283

    Article  Google Scholar 

  128. Zhang D (2018) Deep learning based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J. https://doi.org/10.1002/aic.16473

    Article  Google Scholar 

  129. Viljanen N, Honkavaara E, Näsi R, Hakala T, Niemeläinen O, Kaivosoja J (2018) A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone. Agriculture 8(5):70. https://doi.org/10.3390/agriculture8050070

    Article  Google Scholar 

  130. Ali I, Cawkwell F, Dwyer E, Green S (2017) Modeling managed grassland biomass estimation by using multitemporal remote sensing data—a machine learning approach. IEEE J Select Top Appl Earth Observ Remote Sens 10(7):3254–3264. https://doi.org/10.1109/JSTARS.2016.2561618

    Article  Google Scholar 

  131. Castro W, Marcato Junior J, Polidoro C, Osco LP, Gonçalves W, Rodrigues L, Santos M, Jank L, Barrios S, Valle C, Simeão R, Carromeu C, Silveira E, Jorge LADC, Matsubara E (2020) Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery. Sensors 20(17):4802. https://doi.org/10.3390/s20174802

    Article  Google Scholar 

  132. Berger C, et al (2020) Annual grass biomass mapping with landsat-8 and sentinel-2 data over Kruger National Park, South Africa. IGARSS 2020-2020 IEEE international geoscience and remote sensing symposium, pp 4323–4326. https://doi.org/10.1109/IGARSS39084.2020.9324413

  133. Narayanan B, Saadeldin M, Albert P, McGuinness K, Mac Namee B (2021) Extracting pasture phenotype and biomass percentages using weakly supervised multitarget deep learning on a small dataset

  134. Oliveira RA, Näsi R, Niemeläinen O, Nyholm L, Alhonoja K, Kaivosoja J, Jauhiainen L, Viljanen N, Nezami S, Markelin L, Hakala T (2020) Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens Environ 246:111830. https://doi.org/10.1016/j.rse.2020.111830

    Article  Google Scholar 

  135. Khan R, Kumar S, Srivastava AK, Dhingra N, Gupta M, Bhati N, Kumari P (2021) Machine learning and IoT-based waste management model. Comput Intell Neurosci 26(2021):5942574. https://doi.org/10.1155/2021/5942574

    Article  Google Scholar 

  136. Sevcik M, Skvaril J, Tomas Aparicio E (2019) Applications of hyperspectral imaging and machine learning methods for real-time classification of waste stream components. Presented at the 19th International conference on near infrared spectroscopy-NIR 2019, Gold Coast, Australia, 15–20 September 2019.

  137. Ali RA, Ibrahim NNLN, Ghani WAAK, Sani NS, Lam HL (2022) A hybrid P-graph and WEKA approach in decision-making: waste conversion technologies selection. J Appl Sci Eng 26(2):261–267

    Google Scholar 

  138. Huang GL, He J, Xu Z, Huang G (2020) A combination model based on transfer learning for waste classification. Concurr Comput 32(19):1–12. https://doi.org/10.1002/cpe.5751

    Article  Google Scholar 

  139. Vo AH, HoangSon L, Vo MT, Le T (2019) A novel framework for trash classification using deep transfer learning. IEEE Access 7:178631–178639. https://doi.org/10.1109/ACCESS.2019.2959033

    Article  Google Scholar 

  140. Kang Z, Yang J, Li G, Zhang Z (2020) An automatic garbage classification system based on deep learning. IEEE Access 8:140019–140029. https://doi.org/10.1109/ACCESS.2020.3010496

    Article  Google Scholar 

  141. Bai J, Lian S, Liu Z, Wang K, Liu D (2019) Deep learning based robot for automatically picking up garbage on the grass. IEEE Trans Consum Electron 64(3):382–389

    Article  Google Scholar 

  142. Kumar S, Yadav D, Gupta H, Verma OP, Ansari IA, Ahn CW (2021) A novel yolov3 algorithm-based deep learning approach for waste segregation: towards smart waste management. Electron 10(1):1–20. https://doi.org/10.3390/electronics10010014

    Article  Google Scholar 

  143. Cubillos M (2020) Multi-site household waste generation forecasting using a deep learning approach. Waste Manag 115:8–14. https://doi.org/10.1016/j.wasman.2020.06.046

    Article  Google Scholar 

  144. Mao WL, Chen WC, Wang CT, Lin YH (2020) Recycling waste classification using optimized convolutional neural network. Resour Conserv Recycl 164(105132):2021. https://doi.org/10.1016/j.resconrec.2020.105132

    Article  Google Scholar 

  145. Ping P, Xu G, Kumala E, Gao J (2020) Smart street litter detection and classification based on faster R-CNN and edge computing. Int J Softw Eng Knowl Eng 30(4):537–553. https://doi.org/10.1142/S0218194020400045

    Article  Google Scholar 

  146. Bobulski KM (2019) Waste classification system using image processing and convolutional neural networks. Int Work Artif Neural Netw. https://doi.org/10.1007/978-3-030-20518-8_30

    Article  Google Scholar 

  147. Hussain A et al (2020) Waste management and prediction of air pollutants using IoT and machine learning approach. Energies 13(15):3930–3951

    Article  Google Scholar 

  148. Liang S, Gu Y (2021) A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manag 126:247–257. https://doi.org/10.1016/j.wasman.2021.03.017

    Article  Google Scholar 

  149. Panwar H et al (2020) AquaVision: automating the detection of waste in water bodies using deep transfer learning. Case Stud Chem Environ Eng. https://doi.org/10.1016/j.cscee.2020.100026

    Article  Google Scholar 

  150. Sterkens W, Diaz-Romero D, Goedemé T, Dewulf W, Peeters JR (2021) Detection and recognition of batteries on X-ray images of waste electrical and electronic equipment using deep learning. Resour Conserv Recycl 168:105246. https://doi.org/10.1016/j.resconrec.2020

    Article  Google Scholar 

  151. Birgen C, Magnanelli E, Carlsson P, Skreiberg Ø, Mosby J, Becidan M (2021) Machine learning based modelling for lower heating value prediction of municipal solid waste. Fuel 283:118906. https://doi.org/10.1016/j.fuel.2020.118906

    Article  Google Scholar 

  152. Bijos JCBF, Zanta VM, Morató J, Queiroz LM, Oliveira-Esquerre KPSR (2022) Improving circularity in municipal solid waste management through machine learning in Latin America and the Caribbean. Sustain Chem Pharm 28:100740. https://doi.org/10.1016/j.scp.2022.100740

    Article  Google Scholar 

  153. Kabugo JC, Jämsä-Jounela S-L, Schiemann R, Binder C (2020) Industry 4.0 based process data analytics platform: a waste-to-energy plant case study. Int J Electr Power Energy Syst 115:105508. https://doi.org/10.1016/j.ijepes.2019.105508

    Article  Google Scholar 

  154. Zhang J, Petersen SD, Radivojevic T et al (2020) Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nat Commun 11:1–13

    Google Scholar 

  155. Carbonell JG, Michalski RS, Mitchell TM (1983) Machine learning: a historical and methodological analysis. AI Mag 4(3):69–79. https://doi.org/10.1609/aimag.v4i3.406

    Article  Google Scholar 

  156. Anjum M, Umar MS (2018) Garbage localization based on weakly supervised learning in Deep Convolutional Neural Network. In: Proceedings-IEEE 2018 international conference on advances in computing, communication control and networking, ICACCCN 2018, pp 1108–1113. https://doi.org/10.1109/ICACCCN.2018.8748568

  157. Su W-H, Sun D-W (2019) Rapid determination of starch content of potato and sweet potato by using NIR hyperspectral imaging. HortScience 54:S38

    Google Scholar 

  158. Shao Y, Liu Y, Xuan G, Wang Y, Gao Z, Hu Z, Han X, Gao C, Wang K (2020) Application of hyperspectral imaging for spatial prediction of soluble solid content in sweet potato. RSC Adv 10:33148–33154

    Article  Google Scholar 

  159. Loaiza MF, Solano RP, Simancas R, Ojito VH (2017) Modeling demand for air cargo in the Colombian context. Int Conf Adv Mater Sci Civil Eng 70:132–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Karimi Sadaghiani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Sadaghiani, O.K. An Analytical Review on the Utilization of Machine Learning in the Biomass Raw Materials, Their Evaluation, Storage, and Transportation. Arch Computat Methods Eng 30, 4711–4732 (2023). https://doi.org/10.1007/s11831-023-09950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09950-9

Navigation