Skip to main content
Log in

Amalgamation of Artificial Intelligence with Nanoscience for Biomedical Applications

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Nanoscience in healthcare offers significant advancement in the areas of diagnostic and therapeutic for imaging, biosensing, targeted drug delivery systems, etc. To extend the applications in biomedical engineering, artificial intelligence (AI) technology holds the power to analyze and interpret biological data, accelerate drug discovery and identify selective small molecules or unique compounds with predictive behavior. Implementation of such database systems for rapid data analysis, treatment strategies, novel hypotheses development, and determination of disease progression remarkably improves the treatment outcomes with the potential to accelerate the high-throughput development and systematic design of highly effective smart materials and nanoformulations with pre-defined functionality. Specifically, optimizing physicochemical parameters, compatibility, and drug-dose parameters with higher prediction efficiency (above 90%) is the area where AI holds the potential to actionably cognize the full nanotechnology potential. This review article discusses the research findings to accelerate the clinical translation of nanoscience, bestow the potential development of high throughput experimentation-based, AI-assisted design, and data-driven production of nanosynthesized systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ML:

Machine learning

DL:

Deep learning

NN:

Neural network

ANN:

Artificial neural network

DNN:

Deep neural network

CNN:

Convolutional neural network

SPM:

Scanning probe microscopy

PCA:

Principal component analysis

PCL:

Poly(L-lactide)

PLGA:

Poly(lactic-co-glycolic acid)

EC:

Ethyl cellulose

PLA:

Polylactic acid

PEG:

Polyethylene glycol

PVA:

Polyvinyl alcohol

DLC:

Drug loading content

DLE:

Drug loading efficiency

DG:

Docking binding energy

RMSE:

Root mean square error

MAE:

Mean absolute error

HLB:

Hydrophilic lipophilic balance

DOX:

Doxorubicin

MLP:

Multi-layer perceptron

MON-MLP:

Monotome multi-layer perceptron

QSPR:

Quantitative structure property relationships

QSAR:

Quantitative structure activity relationship

SVR:

Support vector regression

HCA:

Hierarchical clustering algorithm

LDA:

Linear discriminant analysis

kNN:

K-nearest neighbors

HUVEC:

Human umbilical vein endothelial cells

GANDA:

Generative adversarial network for distribution analysis

QD:

Quantum-dot

ROI:

Region of interest

MLR:

Multiple linear regression

SERS:

Surface-enhanced raman spectroscopy

HCG:

Human chronic gonadotropin

References

  1. Ramesh AN, Kambhampati C, Monson J, Drew PJ (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl. https://doi.org/10.1308/147870804290

    Article  Google Scholar 

  2. Miles JC, Walker AJ (2006) The potential application of artificial intelligence in transport. IEE Proc: Intell Trans Syst 153:183–198. https://doi.org/10.1049/IP-ITS:20060014

    Article  Google Scholar 

  3. Yang Y, Siau K (2018) A qualitative research on marketing and sales in the artificial intelligence age. MWAIS 2018 Proceedings

  4. Wirtz BW, Weyerer JC, Geyer C (2018) Artificial intelligence and the public sector—applications and challenges. Int J Public Adm 42:596–615. https://doi.org/10.1080/01900692.2018.1498103

    Article  Google Scholar 

  5. Rajaraman V (2014) JohnMcCarthy—father of artificial intelligence. Resonance 19:198–207. https://doi.org/10.1007/S12045-014-0027-9

    Article  Google Scholar 

  6. Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011

    Article  Google Scholar 

  7. Ekins S (2006) Computer methods for predicting drug metabolism. Comput Appl Pharm Res Dev. https://doi.org/10.1002/0470037237

    Article  Google Scholar 

  8. Brady M (1985) Artificial intelligence and robotics. Artif Intell 26:79–121. https://doi.org/10.1016/0004-3702(85)90013-X

    Article  Google Scholar 

  9. Murase H (2000) Artificial intelligence in agriculture. Comput Electron Agric 29:1–2. https://doi.org/10.1016/S0168-1699(00)00132-0

    Article  Google Scholar 

  10. Cook DJ (2012) How smart is your home? Science 335:1579–1581. https://doi.org/10.1126/SCIENCE.1217640

    Article  Google Scholar 

  11. Jiang F, Jiang Y, Zhi H et al (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2:230–243. https://doi.org/10.1136/SVN-2017-000101

    Article  Google Scholar 

  12. Duch W, Swaminathan K, Meller J (2007) Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 13:1497–1508. https://doi.org/10.2174/138161207780765954

    Article  Google Scholar 

  13. Ardizzone E, Bonadonna F, Gaglio S et al (2009) Artificial intelligence techniques for cancer treatment planning. Med Inform 13:199–210. https://doi.org/10.3109/14639238809010100

    Article  Google Scholar 

  14. Szolovits P, Patil RS, Schwartz WB (1988) Artificial intelligence in medical diagnosis. Ann Int Med 108(1):80. https://doi.org/10.7326/0003-4819-108-1-80

    Article  Google Scholar 

  15. Hengstler M, Enkel E, Duelli S (2016) Applied artificial intelligence and trust—the case of autonomous vehicles and medical assistance devices. Technol Forecast Soc Change 105:105–120. https://doi.org/10.1016/J.TECHFORE.2015.12.014

    Article  Google Scholar 

  16. Menezes G, Menez P, Meneze C (2011) Nanoscience in diagnostics: a short review. Internet J Med Update EJournal 6:16–23. https://doi.org/10.4314/ijmu.v6i1.63971

    Article  Google Scholar 

  17. Hobson DW (2016) The commercialization of medical nanotechnology for medical applications. Intracell Delivery. https://doi.org/10.1007/978-3-319-43525-1_17

    Article  Google Scholar 

  18. Laouini S, Laouini SE, Bouafia A, Tedjani ML (2021) Catalytic activity for dye degradation and characterization of silver/silver oxide nanoparticles green synthesized by aqueous leaves extract of phoenix Dactylifera L. https://doi.org/10.21203/RS.3.RS-139856/V1

  19. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles – an eco-friendly approach. Resource-Efficient Technol 3:406–413. https://doi.org/10.1016/J.REFFIT.2017.03.002

    Article  Google Scholar 

  20. Bogutska КІ, Sklyarov YP, Prylutskyy Y (2013) Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr Bioorg Acta 1:9–16

    Google Scholar 

  21. Baker JR, Ward BB, Thomas T (2009) Nanotechnology in clinical and translational research. Clin Transl Sci: Princ Hum Res. https://doi.org/10.1016/B978-0-12-373639-0.00008-X

    Article  Google Scholar 

  22. Shiku H, Wang L, Ikuta Y et al (2000) Development of a cancer vaccine: peptides, proteins, and DNA. Cancer Chemother Pharmacol 46:S77–S82. https://doi.org/10.1007/S002800000179

    Article  Google Scholar 

  23. Saul JM, Annapragada A, Bellamkonda R (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Controlled Release 114:277–287. https://doi.org/10.1016/J.JCONREL.2006.05.028

    Article  Google Scholar 

  24. Shende P, Devlekar NP (2020) A review on the role of artificial intelligence in stem cell therapy: an initiative for modern medicines. Curr Pharm Biotechnol 22:1156–1163. https://doi.org/10.2174/1389201021666201007122524

    Article  Google Scholar 

  25. Pathan N, Govardhane S, Shende P (2021) Stem cell progression for transplantation. Artif Intell Med. https://doi.org/10.1007/978-3-030-58080-3_336-1

    Article  Google Scholar 

  26. Prajnamitra RP, Chen HC, Lin CJ et al (2019) Nanotechnology approaches in tackling cardiovascular diseases. Molecules 24:2017. https://doi.org/10.3390/MOLECULES24102017

    Article  Google Scholar 

  27. Hastie T, Tibshirani R, Friedman J (2009) Overview of supervised learning. Elem Stat Learn Data Mining Inference Predict. https://doi.org/10.1007/978-0-387-84858-7_2

    Article  MATH  Google Scholar 

  28. Wł Duch, Setiono R, Zurada JM (2004) Computational intelligence methods for rule-based data understanding. Proc IEEE 92:771–805. https://doi.org/10.1109/JPROC.2004.826605

    Article  Google Scholar 

  29. Svetnik V, Liaw A, Tong C et al (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958. https://doi.org/10.1021/CI034160G

    Article  Google Scholar 

  30. Burden FR, Polley MJ, Winkler DA (2009) Toward novel universal descriptors: charge fingerprints. J Chem Inf Model 49:710–715. https://doi.org/10.1021/CI800290H

    Article  Google Scholar 

  31. Le TC, Winkler DA (2016) Discovery and optimization of materials using evolutionary approaches. Chem Rev 116:6107–6132. https://doi.org/10.1021/ACS.CHEMREV.5B00691

    Article  Google Scholar 

  32. Rashidi HH, Tran NK, Betts EV et al (2019) Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad Pathol 6:2374289519873088. https://doi.org/10.1177/2374289519873088

    Article  Google Scholar 

  33. Hochreiter S (2011) The vanishing gradient Problem during Learning recurrent neural nets and Problem Solutions. Int J Uncertain Fuzzin Knowledge-Based Syst 6:107–116. https://doi.org/10.1142/S0218488598000094

    Article  MATH  Google Scholar 

  34. Sathya Professor R, Nivas College J, Abraham Professor A (2013) Comparison of supervised and unsupervised learning algorithms for pattern classification. Int J Adv Res Artif Intell. https://doi.org/10.14569/IJARAI.2013.020206

    Article  Google Scholar 

  35. Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71:2668–2679. https://doi.org/10.1016/J.JACC.2018.03.521

    Article  Google Scholar 

  36. Ghahramani, Z. (2003). Unsupervised learning. Summer school on machine learning. (72-112). https://doi.org/10.1007/978-3-540-28650-9_5

  37. Jung E, Kim J, Choi SH et al (2010) Artificial neural network study on organ-targeting peptides. J Comput Aided Mol Des 24:49–56. https://doi.org/10.1007/S10822-009-9313-0

    Article  Google Scholar 

  38. Mater AC, Coote ML (2019) Deep learning in chemistry. J Chem Inf Model. https://doi.org/10.1021/ACS.JCIM.9B00266

    Article  Google Scholar 

  39. Hinton GE, Osindero SA (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  40. Schmidhuber J (2014) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  41. Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inf 35:3–14. https://doi.org/10.1002/MINF.201501008

    Article  Google Scholar 

  42. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1

    Google Scholar 

  43. Sacha GM, Varona P (2013) Artificial intelligence in nanotechnology. Nanotechnology 24:452002. https://doi.org/10.1088/0957-4484/24/45/452002

    Article  Google Scholar 

  44. Adir O, Poley M, Chen G et al (2020) Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater 32:1901989. https://doi.org/10.1002/ADMA.201901989

    Article  Google Scholar 

  45. Dana D, Gadhiya S, Surin LGS et al (2018) Deep learning in drug discovery and medicine, scratching the surface. Molecules 23:2384. https://doi.org/10.3390/MOLECULES23092384

    Article  Google Scholar 

  46. Harashima H, Sakata K, Funato K, Kiwada H (1994) Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res: Of J Am Assoc Pharm Sci 11:402–406. https://doi.org/10.1023/A:1018965121222/METRICS

    Article  Google Scholar 

  47. Ren J, Hong H, Song J, Ren T (2005) Particle size and distribution of biodegradable poly-D,L-lactide-co-poly(ethylene glycol) block polymer nanoparticles prepared by nanoprecipitation. J Appl Polym Sci 98:1884–1890. https://doi.org/10.1002/APP.22070

    Article  Google Scholar 

  48. Kunjachan S, Detappe A, Kumar R et al (2015) Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett 15:7488–7496. https://doi.org/10.1021/acs.nanolett.5b03073

    Article  Google Scholar 

  49. Youshia J, Ali ME, Lamprecht A (2017) Artificial neural network based particle size prediction of polymeric nanoparticles. Eur J Pharm Biopharm 119:333–342. https://doi.org/10.1016/J.EJPB.2017.06.030

    Article  Google Scholar 

  50. Li Y, Abbaspour MR, Grootendorst P et al (2015) Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur J Pharm Biopharm 94:170–179. https://doi.org/10.1016/J.EJPB.2015.04.028

    Article  Google Scholar 

  51. Shalaby KS, Soliman ME, Casettari L et al (2014) Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine 9:4953–4964. https://doi.org/10.2147/IJN.S68737

    Article  Google Scholar 

  52. Wu J, Zhu Y-J, Cao S-W et al (2010) Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. AdM 22:749–753. https://doi.org/10.1002/ADMA.200903020

    Article  Google Scholar 

  53. Ribeiro CAS, de Castro CE, Albuquerque LJC et al (2017) Biodegradable nanoparticles as nanomedicines: are drug-loading content and release mechanism dictated by particle density? Colloid Polym Sci 295:1271–1280. https://doi.org/10.1007/S00396-016-4007-3

    Article  Google Scholar 

  54. Trucillo P, Campardelli R, Reverchon E (2017) Supercritical CO2 assisted liposomes formation: optimization of the lipidic layer for an efficient hydrophilic drug loading. J CO2 Utilization 18:181–188. https://doi.org/10.1016/J.JCOU.2017.02.001

    Article  Google Scholar 

  55. Metwally AA, Hathout RM (2015) Computer-assisted drug formulation design: novel approach in drug delivery. Mol Pharm 12:2800–2810. https://doi.org/10.1021/MP500740D

    Article  Google Scholar 

  56. Esmaeilzadeh-Gharehdaghi E, Faramarzi MA, Amini MA et al (2014) Processing/formulation parameters determining dispersity of chitosan particles: an ANNs study. J Microencapsul 31:77–85. https://doi.org/10.3109/02652048.2013.805842

    Article  Google Scholar 

  57. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397. https://doi.org/10.3390/POLYM3031377

    Article  Google Scholar 

  58. Husseini GA, Mjalli FS, Pitt WG, Abdel-Jabbar NM (2009) Using artificial neural networks and model predictive control to optimize acoustically assisted doxorubicin release from polymeric micelles. Tech Cancer Res Treat 8:479–488. https://doi.org/10.1177/153303460900800609

    Article  Google Scholar 

  59. Szlek J, Pacławski A, Llau R et al (2013) Heuristic modeling of macromolecule release from PLGA microspheres. Int J Nanomed 8:4601–4611. https://doi.org/10.2147/IJN.S53364

    Article  Google Scholar 

  60. Yadav S, Sharma AK, Kumar P (2020) Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol 8:127. https://doi.org/10.3389/FBIOE.2020.00127

    Article  Google Scholar 

  61. Li F, Han J, Cao T et al (2019) Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc Natl Acad Sci USA 166:11259–11264. https://doi.org/10.1073/PNAS.1903376116

    Article  Google Scholar 

  62. Tu KH, Huang H, Lee S et al (2020) Machine learning predictions of block copolymer self-assembly. Adv Mater 32:2005713. https://doi.org/10.1002/ADMA.202005713

    Article  Google Scholar 

  63. Govardhane S, Gandhi S, Shende P (2022) Neural-ensemble-based detection: a modern way to diagnose lung cancer. Artif Intell Cancer Diagn Progn. https://doi.org/10.1088/978-0-7503-3595-9CH2

    Article  Google Scholar 

  64. Boso DP, Lee SY, Ferrari M et al (2011) Optimizing particle size for targeting diseased microvasculature: from experiments to artificial neural networks. Int J Nanomedicine 6:1517–1526. https://doi.org/10.2147/IJN.S20283

    Article  Google Scholar 

  65. Bozuyuk U, Dogan NO, Kizilel S (2018) Deep insight into pegylation of bioadhesive chitosan nanoparticles: sensitivity study for the key parameters through artificial neural network model. ACS Appl Mater Interfaces 10:33945–33955. https://doi.org/10.1021/ACSAMI.8B11178

    Article  Google Scholar 

  66. Bhatt M, Shende P (2023) Advancement in machine learning: a strategic lookout from cancer identification to treatment. Arch Comput Methods Eng 30(4):2777–2792. https://doi.org/10.1007/S11831-023-09886-0

    Article  Google Scholar 

  67. Alafeef M, Srivastava I, Pan D (2020) Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization. ACS Sens 5:1689–1698. https://doi.org/10.1021/ACSSENSORS.0C00329

    Article  Google Scholar 

  68. Winkler DA, Burden FR, Yan B et al (2014) Modelling and predicting the biological effects of nanomaterials. SAR QSAR Environ Res 25:161–172. https://doi.org/10.1080/1062936X.2013.874367

    Article  Google Scholar 

  69. Burden FR, Winkler DA (2009) Optimal sparse descriptor selection for QSAR using bayesian methods. QSAR Comb Sci 28:645–653. https://doi.org/10.1002/QSAR.200810173

    Article  Google Scholar 

  70. Burden FR, Winkler DA (1999) Robust QSAR models using bayesian regularized neural networks. J Med Chem 42:3183–3187. https://doi.org/10.1021/JM980697N

    Article  Google Scholar 

  71. Tang Y, Zhang J, He D et al (2021) GANDA: a deep generative adversarial network conditionally generates intratumoral nanoparticles distribution pixels-to-pixels. J Controlled Release 336:336–343. https://doi.org/10.1016/J.JCONREL.2021.06.039

    Article  Google Scholar 

  72. Harrison PJ, Wieslander H, Sabirsh A et al (2021) Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine 16:1097–1110. https://doi.org/10.2217/NNM-2020-0461

    Article  Google Scholar 

  73. Wiedswang G, Næss AB, Naume B, Kaåresen R (2001) Micrometastasis to axillary lymph nodes and bone marrow in breast cancer patients. Breast 10:237–242. https://doi.org/10.1054/BRST.2000.0245

    Article  Google Scholar 

  74. van den Brekell MWM, Stele H v., van der Valk P et al (1992) Micrometastases from squamous cell carcinoma in neck dissection specimens. Eur Arch Otorhinolaryngol 249:349–353. https://doi.org/10.1007/BF00179388

    Article  Google Scholar 

  75. Kingston BR, Syed AM, Ngai J et al (2019) Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proc Natl Acad Sci USA 116:14937–14946. https://doi.org/10.1073/PNAS.1907646116

    Article  Google Scholar 

  76. Banerjee A, Maity S, Mastrangelo CH (2021) Nanostructures for biosensing, with a brief overview on cancer detection, IoT, and the role of machine learning in smart biosensors. Sensors 21:1253. https://doi.org/10.3390/S21041253

    Article  Google Scholar 

  77. Schluep T, Hwang J, Hildebrandt IJ et al (2009) Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proc Natl Acad Sci USA 106:11394–11399. https://doi.org/10.1073/PNAS.0905487106

    Article  Google Scholar 

  78. Villa Nova M, Lin TP, Shanehsazzadeh S et al (2022) Nanomedicine ex machina: between model-informed development and artificial intelligence. Front Digit Health 4:17. https://doi.org/10.3389/FDGTH.2022.799341

    Article  Google Scholar 

  79. Cui F, Yue Y, Zhang Y et al (2020) Advancing biosensors with machine learning. ACS Sens 5:3346–3364. https://doi.org/10.1021/ACSSENSORS.0C01424

    Article  Google Scholar 

  80. Erzina M, Trelin A, Guselnikova O et al (2020) Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs. Sens Actuators B Chem 308:127660. https://doi.org/10.1016/J.SNB.2020.127660

    Article  Google Scholar 

  81. Guselnikova O, Hrobonova K, Postnikov P et al (2017) Lipophilic gold grating for SERS detection of biological objects. Proceedings 1:4. https://doi.org/10.3390/PROCEEDINGS1040415

    Article  Google Scholar 

  82. Yan W, Wang K, Xu H et al (2019) Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nanomicro Lett 11:1–15. https://doi.org/10.1007/S40820-019-0239-3

    Article  Google Scholar 

  83. Pandit S, Banerjee T, Srivastava I et al (2019) Machine learning-assisted array-based biomolecular sensing using surface-functionalized carbon dots. ACS Sens 4:2730–2737. https://doi.org/10.1021/ACSSENSORS.9B01227

    Article  Google Scholar 

  84. Furxhi I, Murphy F, Mullins M et al (2020) Practices and trends of machine learning application in nanotoxicology. Nanomaterials 10:116. https://doi.org/10.3390/NANO10010116

    Article  Google Scholar 

  85. Lamon L, Asturiol D, Richarz A et al (2018) Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part Fibre Toxicol 15:1–17. https://doi.org/10.1186/S12989-018-0273-1

    Article  Google Scholar 

  86. Epa VC, Burden FR, Tassa C et al (2012) Modeling biological activities of nanoparticles. Nano Lett 12:5808–5812. https://doi.org/10.1021/NL303144K

    Article  Google Scholar 

  87. Horev-Azaria L, Baldi G, Beno D et al (2013) Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part Fibre Toxicol 10:1–17. https://doi.org/10.1186/1743-8977-10-32

    Article  Google Scholar 

  88. Liu R, Jiang W, Walkey CD, Chan WCW, Cohen Y (2015) Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7(21):9664-9675. https://doi.org/10.1039/C5NR01537E

    Article  Google Scholar 

  89. Manickam P, Mariappan SA, Murugesan SM et al (2022) Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors 12:562. https://doi.org/10.3390/BIOS12080562

    Article  Google Scholar 

  90. Desai D, Shende P (2021) Integration of internet of things with quantum dots: a state-of-the-art of medicine. Curr Pharm Des 27:2068–2075. https://doi.org/10.2174/1381612827666210222113740

    Article  Google Scholar 

  91. Ahmed S, Srinivasu PN, Alhumam A, Alarfaj M (2022) AAL and internet of medical things for monitoring type-2 diabetic patients. Diagnostics 12:2739. https://doi.org/10.3390/DIAGNOSTICS12112739

    Article  Google Scholar 

  92. Wagan SA, Koo J, Siddiqui IF et al (2022) Internet of medical things and trending converged technologies: a comprehensive review on real-time applications. J King Saud Univ Comput Inform Sci 34:9228–9251. https://doi.org/10.1016/J.JKSUCI.2022.09.005

    Article  Google Scholar 

  93. Hemmati A, Rahmani AM (2022) Internet of medical things in the COVID-19 Era: a systematic literature review. Sustainability 14:12637. https://doi.org/10.3390/SU141912637

    Article  Google Scholar 

  94. Fang Y, Zou Y, Xu J et al (2021) Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv Mater 33:2104178. https://doi.org/10.1002/ADMA.202104178

    Article  Google Scholar 

  95. Nakhleh MK, Baram S, Jeries R et al (2016) Artificially intelligent nanoarray for the detection of preeclampsia under real-world clinical conditions. Adv Mater Technol 1:1600132. https://doi.org/10.1002/ADMT.201600132

    Article  Google Scholar 

  96. Lee HJ, Yang JC, Choi J et al (2021) Hetero-dimensional 2D Ti3C2TxMXene and 1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors. ACS Nano 15:10347–10356. https://doi.org/10.1021/ACSNANO.1C02567

    Article  Google Scholar 

  97. Luo M, Feng Y, Wang T, Guan J (2018) Micro-/nanorobots at work in active drug delivery. Adv Funct Mater 28:1706100. https://doi.org/10.1002/ADFM.201706100

    Article  Google Scholar 

  98. Tripathi R, Kumar A (2018) Application of nanorobotics for cancer treatment. Mater Today Proc 5:9114–9117. https://doi.org/10.1016/J.MATPR.2017.10.029

    Article  Google Scholar 

  99. Virgolino Glécia et al (2016) Nanorobotics in drug delivery systems for treatment of cancer: a review. J Mater Sci Eng A. https://doi.org/10.17265/2161-6213/2016.5-6.005

    Article  Google Scholar 

  100. Mir UB, Sharma S, Kar AK, Gupta MP (2020) Critical success factors for integrating artificial intelligence and robotics. Digit Policy Regul Gov 22:307–331. https://doi.org/10.1108/DPRG-03-2020-0032

    Article  Google Scholar 

  101. Fletcher M, Biglarbegian M, Neethirajan S (2013) Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol 4:117–125. https://doi.org/10.1007/S12645-013-0044-5

    Article  Google Scholar 

  102. He W, Frueh J, Hu N et al (2016) Guidable thermophoretic janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding. Adv Sci 3:1600206. https://doi.org/10.1002/ADVS.201600206

    Article  Google Scholar 

  103. Yan X, Zhou Q, Vincent M et al (2017) Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot. https://doi.org/10.1126/SCIROBOTICS.AAQ1155. 2:

    Article  Google Scholar 

  104. Hoop M, Ribeiro AS, Rösch D et al (2018) Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater 28:1705920. https://doi.org/10.1002/ADFM.201705920

    Article  Google Scholar 

  105. Baylis JR, Yeon JH, Thomson MH et al (2015) Self-propelled particles that transport cargo through flowing blood and halt hemorrhage. Sci Adv. https://doi.org/10.1126/SCIADV.1500379

    Article  Google Scholar 

  106. Li J, Angsantikul P, Liu W et al (2017) Micromotors spontaneously neutralize gastric acid for pH-Responsive payload release. Angew Chem Int Ed 56:2156–2161. https://doi.org/10.1002/ANIE.201611774

    Article  Google Scholar 

  107. Karshalev E, De Esteban-Fernández B, Beltrán-Gastélum M et al (2018) Micromotor pills as a dynamic oral delivery platform. ACS Nano 12:8397–8405. https://doi.org/10.1021/ACSNANO.8B03760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasture, K., Shende, P. Amalgamation of Artificial Intelligence with Nanoscience for Biomedical Applications. Arch Computat Methods Eng 30, 4667–4685 (2023). https://doi.org/10.1007/s11831-023-09948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09948-3

Navigation