Skip to main content
Log in

An Extensive Survey on Superpixel Segmentation: A Research Perspective

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Several Superpixel segmentation techniques have recently been developed. Superpixels combine perceptually similar pixels to form visually significant entities, lowering the amount of primitives required for future processing stages. We give a thorough examination of several superpixel algorithms, including watershed-based, graph-based, clustering-based, and energy optimization strategies. Along with the various computational intelligence techniques that are currently used by the researchers in the domain of Machine learning, Evolutionary computing and Deep Learning also looked at benchmark measures including accuracy, recall, intra-cluster variation, mean distance to edge, under segmentation error, and sum-of-squared error, as well as datasets like BSD500, SBD, NYUV2, SUNRGBD, FLASH, and PASCAL-S, to create a superpixel benchmark and its applications. This study will insight into the various superpixel segmentation techniques and also will assist researchers in determining the suitable superpixel segmentation approaches that are more feasible for their various problems in carrying out the research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang F, Lu H, Yang M-H (2014) Robust superpixel tracking. Transact Image Process 23(4):1639–1651

    Article  MathSciNet  MATH  Google Scholar 

  2. Meyer F (1992) Color image segmentation, in: International Conference on image processing and its applications. pp. 303–306

  3. Neubert P, Protzel P (2014) Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms, in: International Conference on Pattern Recognition. pp. 996–1001

  4. Benesova W, Kottman M (2014) Fast superpixel segmentation using morphological processing, In: Conference on machine vision and machine learning. pp. 67(1-9)

  5. Machairas V, Decenci`ere E, Walter T (2014) Waterpixels: superpixels based on the watershed transformation, In: International Conference on image processing pp. 4343–4347

  6. Machairas V, Faessel M, Cardenas-Pena D, Chabardes T, Walter T, Decenci`ere E (2015) Waterpixels. Transact Image Process 24(11):3707–3716

    Article  MathSciNet  MATH  Google Scholar 

  7. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  8. Vedaldi A, Soatto S (2008) Quick shift and kernel methods for mode seeking, In: European Conference on computer vision. 5305 pp. 705–718

  9. Ren X, Malik J (2003) Learning a classification model for segmentation, In: Computer vision, 2003. Proceedings. In: Proceedings of the Ninth IEEE International Conference on, IEEE. pp. 10–17

  10. Shi J, Malik J (1997) Normalized cuts and image segmentation. In CVPR ’97, pp. 731–7

  11. Felzenswalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vision 59(2):167–181

    Article  MATH  Google Scholar 

  12. Grady L, Funka-Lea G (2004) Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials, In: ECCV workshops on computer vision and mathematical methods in medical and biomedical image analysis. pp. 230–245

  13. Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783

    Article  Google Scholar 

  14. Veksler, Boykov Y, Mehrani P (2010) Superpixels and supervoxels in an energy optimization framework. In: European Conference on computer vision. 6315 pp. 211–224

  15. Lui MY, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation, In: IEEE Conference on computer vision and pattern recognition. pp. 2097–2104

  16. Zhang Y, Hartley R, Mashford J, Burn S (2011) Superpixels via pseudo-boolean optimization. In: International Conference on computer vision. pp. 1387–1394

  17. Humayun MRA, Li F (2015) The middle child problem: revisiting parametric min-cut and seeds for object proposals, in: international conference on computer vision. pp. 1600–1608

  18. Perbet F, Maki A (2011) Homogeneous superpixels from random walks. In: MVA pp. 26–30

  19. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) TurboPixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297

    Article  Google Scholar 

  20. Buyssens P, Gardin I, Ruan S (2014) Eikonal based region growing for superpixels generation: application to semi-supervised real time organ segmentation in CT images. Innov Res BioMed Eng 35(1):20–26

    Google Scholar 

  21. Buyssens P, Toutain M, Elmoataz A, L´ezoray O (2014) Eikonalbased vertices growing and iterative seeding for efficient graphbased segmentation. In: International Conference on image processing. pp. 4368–4372

  22. Drucker F, MacCormick J (2009) Fast superpixels for video analysis. In: Workshop on motion and video computing. pp. 1–8

  23. Diao Q, Dai Y, Zhang C, Wu Y, Feng X, Pan F (2022) Superpixel-based attention graph neural network for semantic segmentation in aerial images. Remote Sens 14:305. https://doi.org/10.3390/rs14020305

    Article  Google Scholar 

  24. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slicsuperpixelscompared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  25. Wang P, Zeng G, Gan R, Wang J, Zha H (2013) Structure-sensitive superpixels via geodesic distance. Int J Comput Vision 103(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  26. Papon J, Abramov A, Schoeler M, W¨org¨otter F (2013) Voxel cloud connectivity segmentation - supervoxels for point clouds, In: IEEE Conference on computer vision and pattern recognition. pp. 2027–2034

  27. Weikersdorfer D, Gossow D, Beetz M (2012) Depth-adaptive superpixels, In: International Conference on pattern recognition. pp. 2087–2090

  28. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering, In: IEEE Conference on computer vision and pattern recognition. pp. 1356–1363.

  29. Mester R, Conrad C, Guevara A (2011) Multichannel segmentation using contour relaxation: Fast super-pixels and temporal propagation, In: Scandinavian Conference Image Analysis. pp. 250–261

  30. Conrad C, Mertz M, Mester R (2013) Contour-relaxed superpixels, In: Energy minimization methods in computer vision and pattern recognition. pp. 280–293

  31. van den Bergh M, Boix X, Roig G, de Capitani B, van Gool L (2012) SEEDS: superpixels extracted via energy-driven sampling, In: European Conference on computer vision, 7578, pp. 13–26

  32. Tasli HE, igla CC, Gevers T, Alatan AA (2013) Super pixel extraction via convexity induced boundary adaptation, In: IEEE International Conference on multimedia and expo. pp. 1–6

  33. Tasli HE, Cigla C, Alatan AA (2015) Convexity constrained efficient superpixel and supervoxel extraction. Signal Process: Image Commun 33:71–85

    Google Scholar 

  34. Yao J, Boben M, Fidler S, Urtasun R (2015) Real-time coarse-tofine topologically preserving segmentation, In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 2947–2955

  35. Strassburg J, Grzeszick R, Rothacker L, Fink GA (2015) On the influence of superpixel methods for image parsing, In: International Conference on computer vision theory and application pp. 518–527

  36. A.P. Moore, J. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8

  37. Moore AP, Prince SJ, Warrell J, Mohammed U, Jones G (2009) Scene shape priors for superpixel segmentation, In: Computer Vision, 2009 IEEE Proceedings of the 12th International Conference on, IEEE. pp. 771–778

  38. Moore AP, Prince SJ, Warrell J (2010) Lattice cut-constructing superpixels using layer constraints, In: Computer vision and pattern recognition (CVPR), 2010 IEEE Conference on, IEEE. pp. 2117–2124

  39. Xie Y, Xu L, Wang Z (2014) Automated co-superpixel generation via graph matching. Signal, Image Video Process 8(4):753–763

    Article  Google Scholar 

  40. Xu L, Zeng L, Wang Z (2014) Saliency-based superpixels. Signal, Image Video Process 8(1):181–190

    Article  Google Scholar 

  41. Wang J, Wang X (2012) VCells: simple and efficient superpixels using edge-weighted centroidal voronoi tessellations. IEEE Trans Pattern Anal Mach Intell 34(6):1241–1247

    Article  Google Scholar 

  42. Gong Y-J, Zhou Y (2018) Differential Evolutionary Superpixel Segmentation, IEEE Transactions on Image Processing. 27(3)

  43. Ji S, Wei B, Zhen Yu, Yang G, Yin Y (2014) A new multistage medical segmentation method based on superpixel and fuzzy clustering. Comput Math Methods Med. https://doi.org/10.1155/2014/747549

    Article  MathSciNet  MATH  Google Scholar 

  44. Tang D, Fu H, Cao X (2012) Topology preserved regular superpixel. In: IEEE International Conference on multimedia and expo. pp. 765–768

  45. Fu H, Cao X, Tang D, Han Y, Xu D (2014) Regularity preserved superpixels and supervoxels. IEEE Trans Multimedia 16(4):1165–1175

    Article  Google Scholar 

  46. Yaping W, Zhao Z, Weiguo W, Yusong L, Meiyun Wang W et al (2019) Automatic glioma segmentation based on adaptive superpixel. BMC Med Imaging 19:73. https://doi.org/10.1186/s12880-019-0369-6

    Article  Google Scholar 

  47. Wu H, Wu Y, Zhang S, Li P, Wen Z (2016). Cartoon image segmentation based on improved SLIC superpixels and adaptive region propagation merging. 2016 IEEE International Conference on Signal and Image Processing (ICSIP). https://doi.org/10.1109/siprocess.2016.7888267

  48. Yuan C et al (2018) Image segmentation based on modified superpixel segmentation and spectral clustering. J Eng 2018(16):1704–1711

    Article  Google Scholar 

  49. Chen X, Peng X, Wang S (2021) Superpixel segmentation based on grid point density peak clustering. Sensors 21(19):6374. https://doi.org/10.3390/s21196374

    Article  Google Scholar 

  50. Ebenezer P, Nunoo-Mensah H, Junior R, Raissa J (2018) Brain tumor segmentation using SLIC Superpixels and optimized thresholding algorithm. Int J Comput Appl 181(20):1–5. https://doi.org/10.5120/ijca2018917915

    Article  Google Scholar 

  51. Zhu Y, Luo K, Ma C, Liu Q, Jin B (2018) Superpixel segmentation based synthetic classifications with clear boundary information for a legged robot. Sensors 18(9):2808. https://doi.org/10.3390/s18092808

    Article  Google Scholar 

  52. Shi Y, Wang W, Gong Q, Li D (2019) Superpixel segmentation and machine learning classification algorithm for cloud detection in remote-sensing images. J Eng 2019(20):6675–6679. https://doi.org/10.1049/joe.2019.0240

    Article  Google Scholar 

  53. Magaña-Tellez O, Vrigkas M, Nikou C, Kakadiaris I (2018) SPICE: Superpixel classification for cell detection and counting. Proceedings of the 13th International Joint Conference on computer vision, imaging and computer graphics theory and applications. https://doi.org/10.5220/0006508304850490

  54. Xiong D, Yan L (2019) Early smoke detection of forest fires based on SVM image segmentation. Journal of Forest Science 65(4):150–159. https://doi.org/10.17221/82/2018-jfs

    Article  Google Scholar 

  55. Zhang H, Jiang R, Yang T, Gao J, Wang Y, Zhang J (2022) Study on TCM tongue image segmentation model based on convolutional neural network fused with superpixel. Evidence-Based Complement Alt Med 2022:1–12. https://doi.org/10.1155/2022/3943920

    Article  Google Scholar 

  56. Xue H, Chen X, Zhang R, Wu P, Li X, Liu Y (2021) Deep learning-based maritime environment segmentation for unmanned surface vehicles using Superpixel algorithms. J Marine Sci Eng 9(12):1329. https://doi.org/10.3390/jmse9121329

    Article  Google Scholar 

  57. Albayrak A, Bilgin G (2018). A hybrid method of Superpixel segmentation algorithm and deep learning method in histopathological image segmentation. 2018 Innovations in Intelligent Systems and Applications (INISTA). https://doi.org/10.1109/inista.2018.8466281

  58. Khan A, Ur Rehman Z, Jaffar MA, Ullah J, Din A, Ali A, Ullah N (2019) Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI). SIViP 13(5):833–841. https://doi.org/10.1007/s11760-019-01419-2

    Article  Google Scholar 

  59. Martin D, Fowlkes C, Tal D, & Malik J (n.d.). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. https://doi.org/10.1109/iccv.2001.937655

  60. Larabi-Marie-Sainte S, Alskireen R, Alhalawani S (2021) Emerging applications of bio-inspired algorithms in image segmentation. Electronics 10(24):3116. https://doi.org/10.3390/electronics10243116

    Article  Google Scholar 

  61. Gong Y, Zhou Y, Zhang X (2016). A superpixel segmentation algorithm based on differential evolution. 2016 IEEE International Conference on Multimedia and Expo (ICME). https://doi.org/10.1109/icme.2016.7552990

  62. Islam MK, Ali MS, Miah MS, Rahman MM, Alam MS, Hossain MA (2021) Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm. Mach Learn Appl 5:100044. https://doi.org/10.1016/j.mlwa.2021.100044

    Article  Google Scholar 

  63. Duan J, Mao S, Jin J, Zhou Z, Chen L, Chen CL (2021) A novel GA-based optimized approach for regional multimodal medical image fusion with Superpixel segmentation. IEEE Access 9:96353–96366. https://doi.org/10.1109/access.2021.3094972

    Article  Google Scholar 

  64. Gould S, Fulton R, Koller D (2009) Decomposing a scene into geometric and semantically consistent regions, In: International Conference on computer vision. pp. 1–8

  65. Song S, Lichtenberg SP, Xiao J (2015) SUN RGB-D: A RGB-D scene understanding benchmark suite, in: IEEE Conference on Computer Vision and Pattern Recognition. pp. 567–576

  66. Yamaguchi K, Ortiz LE, Berg TL (2012) Parsing clothing in fashion photographs, In: IEEE Conference on computer vision and pattern recognition pp. 3570–3577

  67. Xu Y, Xu D, Hong X, Ouyang W, Ji R, Xu M, Zhao G (2019). Structured modeling of joint deep feature and prediction refinement for salient object detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2019.00389

  68. Ji S, Wei B, Yu Z, Yang G, Yin Y (2014) A new multistage medical segmentation method based on Superpixel and fuzzy clustering. Comput Math Methods Med 2014:1–13. https://doi.org/10.1155/2014/747549

    Article  MathSciNet  MATH  Google Scholar 

  69. Mukherjee A, Sarkar S, Saha SK (2020) Segmentation of natural images based on superpixel and graph merging. IET Comput Vis. https://doi.org/10.1049/cvi2.12008

    Article  Google Scholar 

  70. Mi L, Chen Z (2020) Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS J Photogramm Remote Sens 159:140–152. https://doi.org/10.1016/j.isprsjprs.2019.11.006

    Article  Google Scholar 

  71. Gharibbafghi Z, Tian J, Reinartz P (2018) Modified superpixel segmentation for digital surface model refinement and building extraction from satellite stereo imagery. Remote Sensing 10(11):1824. https://doi.org/10.3390/rs10111824

    Article  Google Scholar 

  72. Giordano D, Murabito F, Palazzo S, Spampinato C (2015). Superpixel-based video object segmentation using perceptual organization and location prior. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2015.7299114

  73. Li Y, Hou X, Koch C, Rehg JM, Yuille AL (2014) “The secrets of salient object segmentation,” In Proc. CVPR. pp. 280–287

  74. Chen M, Kanade T (2016) Detect cells and cellular behaviors in phase contrast microscopy images. Medical Image Recogn Segm Parsing. https://doi.org/10.1016/b978-0-12-802581-9.00021-4

    Article  Google Scholar 

  75. Tu W-C et al (2018) Learning superpixels with segmentation-aware affinity loss. IEEE/CVF Conf Comput Vision Pattern Recogn 2018:568–576. https://doi.org/10.1109/CVPR.2018.00066

    Article  Google Scholar 

  76. Goceri E (2019). Challenges and recent solutions for image segmentation in the era of deep learning. 2019 Ninth International Conference on image processing theory, tools and applications (IPTA). https://doi.org/10.1109/ipta.2019.8936087

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash J.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J, P., Kumar, B.V. An Extensive Survey on Superpixel Segmentation: A Research Perspective. Arch Computat Methods Eng 30, 3749–3767 (2023). https://doi.org/10.1007/s11831-023-09919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09919-8

Navigation