Skip to main content

Advertisement

Log in

Applications of Artificial Intelligence in Inventory Management: A Systematic Review of the Literature

  • Review Article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Today, companies that want to keep up with technological development and globalization must be able to effectively manage their supply chains to achieve high quality, increased efficiency, and low costs. Diversified customer needs, global competitors, and market competition have led companies to pay more attention to inventory management. This article provides a comprehensive and up-to-date review of Artificial Intelligence (AI) applications used in inventory management through a systematic literature review. As a result of this analysis, which focused on research articles in two scientific databases published between 2012 and 2022 for detailed study, 59 articles were identified. Furthermore, the current situation is summarized and possible future aspects of inventory management are identified. The results show that the interest in AI methods has increased in recent years and machine learning algorithms are the most commonly used methods. This study is meticulously and comprehensively conducted so it will probably make significant contributions to the further studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Perez HD et al (2021) Algorithmic approaches to inventory management optimization. Processes 9(1):102

    Article  Google Scholar 

  2. Singh D, Verma A (2018) Inventory management in supply chain. Mater Today 5(2):3867–3872

    MathSciNet  Google Scholar 

  3. Haberleitner H, Meyr H, Taudes A (2010) Implementation of a demand planning system using advance order information. Int J Prod Econ 128(2):518–526

    Article  Google Scholar 

  4. Abbasimehr H, Shabani M, Yousefi M (2020) An optimized model using LSTM network for demand forecasting. Comput Ind Eng 143:106435

    Article  Google Scholar 

  5. Beutel A-L, Minner S (2012) Safety stock planning under causal demand forecasting. Int J Prod Econ 140(2):637–645

    Article  Google Scholar 

  6. Sridhar P, Vishnu C, Sridharan R (2021) Simulation of inventory management systems in retail stores: a case study. Mater Today 47:5130–5134

    Google Scholar 

  7. Granillo-Macías R (2020) Inventory management and logistics optimization: a data mining practical approach. LogForum 16(4):535–547

    Article  Google Scholar 

  8. Nallusamy S (2021) Performance measurement on inventory management and logistics through various forecasting techniques. Int J Perform Eng 17(2):216–228

    Article  Google Scholar 

  9. Acosta ICG et al (2018) Design of an inventory management system in an agricultural supply chain considering the deterioration of the product: the case of small citrus producers in a developing country. J Appl Eng Sci 16(4):523–537

    Article  Google Scholar 

  10. Varghese V et al (2012) Applying actual usage inventory management best practice in a health care supply chain. Int J Supply Chain Manage 1(2):1–10

    Google Scholar 

  11. Xie C, Wang L, Yang C (2021) Robust inventory management with multiple supply sources. Eur J Oper Res 295(2):463–474

    Article  MathSciNet  MATH  Google Scholar 

  12. Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

    Article  Google Scholar 

  13. Evangelista P, Durst S (2015) Knowledge management in environmental sustainability practices of third-party logistics service providers. Vine 45(4):509–529

    Article  Google Scholar 

  14. Bryman A (2007) The research question in social research: what is its role? Int J Soc Res Methodol 10(1):5–20

    Article  Google Scholar 

  15. Nguyen KTP, Medjaher K (2019) A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliab Eng Syst Saf 188:251–262

    Article  Google Scholar 

  16. Tabernik D, Skocaj D (2020) Deep learning for large-scale traffic-sign detection and recognition. IEEE Trans Intell Transp Syst 21(4):1427–1440

    Article  Google Scholar 

  17. Mohammaditabar D, Ghodsypour SH, O’Brien C (2012) Inventory control system design by integrating inventory classification and policy selection. Int J Prod Econ 140(2):655–659

    Article  Google Scholar 

  18. Liu JP et al (2016) A classification approach based on the outranking model for multiple criteria ABC analysis. Omega-International J Manage Sci 61:19–34

    Article  Google Scholar 

  19. Kartal H et al (2016) An integrated decision analytic framework of machine learning with multi-criteria decision making for multi-attribute inventory classification. Comput Ind Eng 101:599–613

    Article  Google Scholar 

  20. Aggarwal SC (1974) A review of current inventory theory and its applications. Int J Prod Res 12(4):443–482

    Article  Google Scholar 

  21. Giannoccaro I, Pontrandolfo P (2002) Inventory management in supply chains: a reinforcement learning approach. Int J Prod Econ 78(2):153–161

    Article  Google Scholar 

  22. Cachon GP, Fisher M (2000) Supply chain inventory management and the value of shared information. Manage Sci 46(8):1032–1048

    Article  MATH  Google Scholar 

  23. Partovi FY, Anandarajan M (2002) Classifying inventory using an artificial neural network approach. Comput Ind Eng 41(4):389–404

    Article  Google Scholar 

  24. Giannoccaro I, Pontrandolfo P, Scozzi B (2003) A fuzzy echelon approach for inventory management in supply chains. Eur J Oper Res 149(1):185–196

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang L, Li H, Campbell JF (2020) Improving order fulfillment performance through integrated inventory management in a multi-item finished goods system. J Bus Logistics 41(1):54–66

    Article  Google Scholar 

  26. Wang Z, Mersereau AJ (2017) Bayesian inventory management with potential change-points in demand. Prod Oper Manage 26(2):341–359

    Article  Google Scholar 

  27. Calle M et al (2016) Integrated management of inventory and production systems based on floating decoupling point and real-time information: a simulation based analysis. Int J Prod Econ 181:48–57

    Article  Google Scholar 

  28. KP ASR, Nayak N (2017) A study on the effectiveness of inventory management and control system in a milk producer organisation. Int J Logistics Syst Manage 28(2):253–266

    Article  Google Scholar 

  29. Rana R, Oliveira FS (2015) Dynamic pricing policies for interdependent perishable products or services using reinforcement learning. Expert Syst Appl 42(1):426–436

    Article  Google Scholar 

  30. Pirayesh Neghab D, Khayyati S, Karaesmen F (2022) An integrated data-driven method using deep learning for a newsvendor problem with unobservable features. Eur J Operational Res 302(2):482–496

    Article  MathSciNet  MATH  Google Scholar 

  31. Bandaru S et al (2015) Generalized higher-level automated innovization with application to inventory management. Eur J Oper Res 243(2):480–496

    Article  MathSciNet  MATH  Google Scholar 

  32. Kara A, Dogan I (2018) Reinforcement learning approaches for specifying ordering policies of perishable inventory systems. Expert Syst Appl 91:150–158

    Article  Google Scholar 

  33. Zwaida TA, Pham C, Beauregard Y (2021) Optimization of inventory management to prevent drug shortages in the hospital supply chain. Appl Sci 11(6):2726

    Article  Google Scholar 

  34. Katanyukul T (2014) Ruminative reinforcement learning: improve intelligent inventory control by ruminating on the past. J Comput 9(7):1530–1535

    Article  Google Scholar 

  35. De Moor BJ, Gijsbrechts J, Boute RN (2021) Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management. Eur J Operational Res 301(2):535–545

    Article  MATH  Google Scholar 

  36. Boute RN et al (2021) Deep reinforcement learning for inventory control: a roadmap. Eur J Operational Res 298(2):401–412

    Article  MathSciNet  MATH  Google Scholar 

  37. Gijsbrechts J et al (2021) Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems. M SOM-Manuf Serv Operations Manag. https://doi.org/10.1287/msom.2021.1064

    Article  Google Scholar 

  38. Kegenbekov Z, Jackson I (2021) Adaptive supply chain: demand–supply synchronization using deep reinforcement learning. Algorithms 14(8):240

    Article  Google Scholar 

  39. Meisheri H et al (2022) Scalable multi-product inventory control with lead time constraints using reinforcement learning. Neural Comput Appl 34(3):1735–1757

    Article  Google Scholar 

  40. Priore P et al (2019) Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. Int J Prod Res 57(11):3663–3677

    Article  Google Scholar 

  41. Demey YT, Wolff M (2017) SIMISS: a model-based searching strategy for inventory management systems. IEEE Internet Things J 4(1):172–182

    Google Scholar 

  42. Merrad Y et al (2020) A real-time mobile notification system for inventory stock out detection using SIFT and RANSAC. Int J Interactive Mobile Technol. https://doi.org/10.3991/ijim.v14i05.13315

    Article  Google Scholar 

  43. Kalinov I et al (2020) WareVision: CNN barcode detection-based uav trajectory optimization for autonomous warehouse stocktaking. IEEE Rob Autom Lett 5(4):6647–6653

    Article  Google Scholar 

  44. Giaconia C, Chamas A (2022) GAIA: great-distribution artificial intelligence-based algorithm for advanced large-scale commercial store management. Appl Sci-Basel 12(9):4798

    Article  Google Scholar 

  45. Kosanoglu F, Atmis M, Turan HH (2022) A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem. Annals of Operations Research 15:1–32

    Google Scholar 

  46. Deutsch J, He D (2017) Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans Syst Man Cybernetics: Syst 48(1):11–20

    Article  Google Scholar 

  47. Tao F et al (2019) Digital twin-driven product design framework. Int J Prod Res 57(12):3935–3953

    Article  Google Scholar 

  48. Fuller A et al (2020) Digital twin: enabling technologies, challenges and open research. IEEE Access 8:108952–108971

    Article  Google Scholar 

  49. Abosuliman SS, Almagrabi AO (2021) Computer vision assisted human computer interaction for logistics management using deep learning. Comput Electr Eng 96:107555

    Article  Google Scholar 

  50. Mao J et al (2020) The importance of public support in the implementation of green transportation in the smart cities. Computational Intell. https://doi.org/10.1111/coin.12326

    Article  Google Scholar 

  51. Tian X, Wang H, Erjiang E (2021) Forecasting intermittent demand for inventory management by retailers: a new approach. J Retailing Consumer Serv 62:102662

    Article  Google Scholar 

  52. do Rego JR, De Mesquita MA (2015) Demand forecasting and inventory control: a simulation study on automotive spare parts. Int J Prod Econ 161:1–16

    Article  Google Scholar 

  53. Tangtisanon P (2018) Web service based food additive inventory management with forecasting system. in 2018 3rd International Conference on Computer and Communication Systems (ICCCS). IEEE

  54. Yu Q et al (2017) Application of long short-term memory neural network to sales forecasting in retail—a case study. in International Workshop of Advanced Manufacturing and Automation. Springer

  55. Kumar A, Shankar R, Aljohani NR (2020) A big data driven framework for demand-driven forecasting with effects of marketing-mix variables. Ind Mark Manage 90:493–507

    Article  Google Scholar 

  56. Seyedan M, Mafakheri F, Wang C (2022) Cluster-based demand forecasting using bayesian model averaging: an ensemble learning approach. Decis Anal J 3:100033

    Article  Google Scholar 

  57. Feizabadi J (2022) Machine learning demand forecasting and supply chain performance. Int J Logistics Res Appl 25(2):119–142

    Article  Google Scholar 

  58. Deng CN, Liu YJ (2021) A deep learning-based inventory management and demand prediction optimization method for anomaly detection. Wirel Commun Mobile Comput. https://doi.org/10.1155/2021/9969357

    Article  Google Scholar 

  59. Kack M, Freitag M (2021) Forecasting of customer demands for production planning by local k-nearest neighbor models. Int J Prod Econ 231:107837

    Article  Google Scholar 

  60. Bala PK (2012) Improving inventory performance with clustering based demand forecasts. J Modelling Manage 7(1):23–37

    Article  Google Scholar 

  61. Lee CY, Liang CL (2018) Manufacturer’s printing forecast, reprinting decision, and contract design in the educational publishing industry. Comput Ind Eng 125:678–687

    Article  Google Scholar 

  62. Abbasi B et al (2020) Predicting solutions of large-scale optimization problems via machine learning: a case study in blood supply chain management. Comput Operations Res 119:104941

    Article  MathSciNet  MATH  Google Scholar 

  63. van Steenbergen RM, Mes MRK (2020) Forecasting demand profiles of new products. Decis Support Syst 139:113401

    Article  Google Scholar 

  64. Zhu XD et al (2021) Demand forecasting with supply-chain information and machine learning: evidence in the Pharmaceutical Industry. Prod Oper Manage 30(9):3231–3252

    Article  Google Scholar 

  65. Benhamida FZ et al (2021) Demand forecasting tool for inventory control smart systemsy. J Commun Softw Syst 17(2):185–196

    Article  Google Scholar 

  66. Zhang P et al (2021) Pharmaceutical cold chain management based on blockchain and deep learning. J Internet Technol 22(7):1531–1542

    Article  MathSciNet  Google Scholar 

  67. Ulrich M et al (2021) Distributional regression for demand forecasting in e-grocery. Eur J Oper Res 294(3):831–842

    Article  MATH  Google Scholar 

  68. Li N et al (2021) A decision integration strategy for short-term demand forecasting and ordering for red blood cell components. Oper Res Health Care 29:100290

    Article  Google Scholar 

  69. Ran H (2021) Construction and optimization of inventory management system via cloud-edge collaborative computing in supply chain environment in the internet of things era. PLoS ONE 16:e0259284

    Article  Google Scholar 

  70. Sun X et al (2021) RBC inventory-management system based on XGBoost model. Indian J Hematol Blood Transfus 37(1):126–133

    Article  Google Scholar 

  71. Aktepe A, Yanik E, Ersoz S (2021) Demand forecasting application with regression and artificial intelligence methods in a construction machinery company. J Intell Manuf 32(6):1587–1604

    Article  Google Scholar 

  72. Galli L et al (2021) Prescriptive analytics for inventory management in health. J Oper Res Soc 72(10):2211–2224

    Article  Google Scholar 

  73. Eljaouhari A et al (2022) Demand forecasting application with regression and iot based inventory management system: a case study of a semiconductor manufacturing company. Int J Eng Res Afr 60:189–210

    Article  Google Scholar 

  74. Sucharitha RS, Lee S (2022) GMM clustering for in-depth food accessibility pattern exploration and prediction model of food demand behavior. Socio-Economic Plan Sci. https://doi.org/10.48550/arXiv.2202.01347

    Article  Google Scholar 

  75. Wang Z et al (2022) Development and validation of a machine learning method to predict intraoperative red blood cell transfusions in cardiothoracic surgery. Sci Rep 12(1):1–9

    Google Scholar 

  76. Ulrich M et al (2022) Classification-based model selection in retail demand forecasting. Int J Forecast 38(1):209–223

    Article  Google Scholar 

  77. Ji S et al (2019) An application of a three-stage XGboost-based model to sales forecasting of a cross-border e-commerce enterprise. Math Probl Eng. https://doi.org/10.1155/2019/8503252

    Article  Google Scholar 

  78. Wang S, Yang Y (2021) M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores. Data Technol Appl 55(5):749–770

    MathSciNet  Google Scholar 

  79. Kim M et al (2022) Framework of 2D KDE and LSTM-based forecasting for cost-effective inventory management in smart manufacturing. Appl Sci-Basel 12(5):2380

    Article  Google Scholar 

  80. Ntakolia C et al (2021) An explainable machine learning model for material backorder prediction in inventory management. Sensors 21(23):7926

    Article  Google Scholar 

  81. Islam S, Amin SH (2020) Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques. J Big Data 7(1):1–22

    Article  Google Scholar 

  82. O’Neil S et al (2016) Newsvendor problems with demand shocks and unknown demand distributions. Decis Sci 47(1):125–156

    Article  Google Scholar 

  83. Lee CKM et al (2017) Design and development of inventory knowledge discovery system. Enterp Inform Syst 11(8):1262–1282

    Article  Google Scholar 

  84. Van Belle J, Guns T, Verbeke W (2021) Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains. Eur J Oper Res 288(2):466–479

    Article  MathSciNet  MATH  Google Scholar 

  85. Tang Y-M et al (2022) Integrated smart warehouse and manufacturing management with demand forecasting in small-scale cyclical industries. Machines 10(6):472

    Article  Google Scholar 

  86. Ecemiş O, Irmak S (2018) Paslanmaz çelik sektörü satış tahmininde veri madenciliği yöntemlerinin karşılaştırılması. Kilis 7 Aralık Üniversitesi Sosyal Bilimler Dergisi. 8:148–16915

  87. Aktepe A et al (2018) An inventory classification approach combining expert systems, clustering, and fuzzy logic with the abc method, and an application. S Afr J Ind Eng 29(1):49–62

    Google Scholar 

  88. Huang B, Gan W, Li Z (2021) Application of medical material inventory model under deep learning in supply planning of public emergency. IEEE Access 9:44128–44138

    Article  Google Scholar 

  89. Wang A, Gao XD (2021) A variable-scale dynamic clustering method. Comput Commun 171:163–172

    Article  Google Scholar 

  90. Kaabi H, Jabeur K, Ladhari T (2018) A genetic algorithm-based classification approach for multicriteria ABC analysis. Int J Inform Technol Decis Mak 17(6):1805–1837

    Article  Google Scholar 

  91. Maathavan KSK, Venkatraman S (2022) A secure encrypted classified electronic healthcare data for public cloud environment. Intell Autom Soft Comput 32(2):765–779

    Article  Google Scholar 

  92. García-Barrios D et al (2021) A machine learning based method for managing multiple impulse purchase products: an inventory management approach. J Eng Sci Technol Rev 14(1):25–37

    Article  Google Scholar 

  93. Yang K et al (2021) Multi-criteria spare parts classification using the deep convolutional neural network method. Appl Sci 11(15):7088

    Article  Google Scholar 

  94. Zhang S et al (2020) Importance degree evaluation of spare parts based on clustering algorithm and back-propagation neural network. Math Problems Eng. https://doi.org/10.1155/2020/6161825

    Article  Google Scholar 

  95. Balali V, Ashouri Rad A, Golparvar-Fard M (2015) Detection, classification, and mapping of U.S. traffic signs using google street view images for roadway inventory management. Vis Eng 3(1):1–18

    Article  Google Scholar 

  96. Balali V, Golparvar-Fard M (2016) Evaluation of multiclass traffic sign detection and classification methods for us roadway asset inventory management. J Comput Civil Eng 30(2):04015022

    Article  Google Scholar 

  97. Van Eck NJ et al (2010) A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. J Am Soc Inform Sci Technol 61(12):2405–2416

    Article  Google Scholar 

  98. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  99. Bai J et al (2022) Multinomial random forest. Pattern Recogn 122:108331

    Article  Google Scholar 

  100. Liu Y, Wang Y, Zhang J (2012) New machine learning algorithm: Random forest. International Conference on Information Computing and Applications. Springer, Berlin

    Google Scholar 

  101. Hong JS, Lie CH (1993) Joint reliability-importance of two edges in an undirected network. IEEE Trans Reliab 42(1):17–23

    Article  MATH  Google Scholar 

  102. Ma M et al (2021) XGBoost-based method for flash flood risk assessment. J Hydrol 598:126382

    Article  Google Scholar 

  103. Jawad J, Hawari AH, Zaidi SJ (2021) Artificial neural network modeling of wastewater treatment and desalination using membrane processes: a review. Chem Eng J 419:129540

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Erkayman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Full names of the algorithms used in the study.

Table 8

Table 8 Full names of the algorithms used in the study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albayrak Ünal, Ö., Erkayman, B. & Usanmaz, B. Applications of Artificial Intelligence in Inventory Management: A Systematic Review of the Literature. Arch Computat Methods Eng 30, 2605–2625 (2023). https://doi.org/10.1007/s11831-022-09879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09879-5

keywords

Navigation