Skip to main content

A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques

Abstract

Segmentation is an essential requirement to accurately access diabetic retinopathy (DR) and it becomes extremely time-consuming and challenging to detect manually. As a result, an automatic retinal fundus image segmentation (RFIS) system is required to precisely define the region of interest and help ophthalmologists in the rapid diagnosis of DR. This systematic review provides a comprehensive overview of the development of deep learning (DL) based approach for RFIS to diagnose DR at an early stage. This review is fivefold: (1) retinal datasets, (2) pre-processing approaches, (3) DR segmentation and detection methods, (4) performance evaluation measures, and (5) proposed methodology. Articles on RFIS for DR detection were identified using the query “Deep Learning Techniques”, “Diabetic Retinopathy”, and “RFIS”, alone and in combination using PubMed, Google Scholar, IEEE Xplore, and Research Gate databases until 2021 using PRISMA principle. Approximately 340 publications were searched and 115 relevant studies focused on the DL approaches for RFIS for DR diagnosis were chosen for study. According to the survey, 66% of researchers employed DL approaches for Blood vessel (BV) segmentation, 36% of researchers used DL approaches for lesion detection, and 15% of researchers used DL approaches for optic disc and optic cup (OD & OC) segmentation for DR Diagnosis. This systematic review provides detailed literature of the state-of-the-art relevant articles for RFIS of BV, Lesions, OD & OC for non-proliferative DR diagnosis and discusses future directions to improve the performance of DR and overcome research challenges. Finally, this article highlights the outline of the proposed work to improve the accuracy of existing models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Yadav P, Singh NP (2019) Classification of normal and abnormal retinal images by using feature-based machine learning approach. In: Recent trends in communication, computing, and electronics, pp 387–396

  2. Fisher DE, Jonasson F, Klein R, Jonsson PV, Eiriksdottir G, Launer LJ, Gudnason V, Cotch MF (2016) Mortality in older persons with retinopathy and concomitant health conditions: the age, gene/environment susceptibility-reykjavik study. Ophthalmology 123(7):1570–1580

    Google Scholar 

  3. Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11(6):749

    Google Scholar 

  4. Acharya UR, Mookiah MR, Koh JE, Tan JH, Bhandary SV, Rao AK, Fujita H, Hagiwara Y, Chua CK, Laude A (2016) Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index. Comput Biol Med 75:54–62

    Google Scholar 

  5. Ting DS, Wu WC, Toth C (2019) Deep learning for retinopathy of prematurity screening. Br J Ophthalmol 103(5):577–579

    Google Scholar 

  6. Barkana BD, Saricicek I, Yildirim B (2017) Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl-Based Syst 118:165–176

    Google Scholar 

  7. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y (2016) Convolutional neural networks for diabetic retinopathy. Procedia Compu Sci 90:200–205

    Google Scholar 

  8. Vashist P, Singh S, Gupta N, Saxena R (2011) Role of early screening for diabetic retinopathy in patients with diabetes mellitus: an overview. Indian J Commun Med 36(4):247

    Google Scholar 

  9. Kumar G, Jain S, Singh UP (2020) Stock market forecasting using computational intelligence: a survey. Arch Comput Methods Eng 15:1–33

    Google Scholar 

  10. Vij R, Kaushik B (2019) A survey on various face detecting and tracking techniques in video sequences. In: 2019 International conference on intelligent computing and control systems (ICCS), pp 69–73

  11. Vij R, Arora S (2022) A systematic survey of advances in retinal imaging modalities for Alzheimer’s disease diagnosis. Metab Brain Dis 15:1–31

    Google Scholar 

  12. Vij R, Arora S (2022) Computer vision with deep learning techniques for neurodegenerative diseases analysis using neuroimaging: a survey. In: International conference on innovative computing and communications, pp 179–189

  13. Diabetic Retinopathy Retina-Vitreous Surgeons of Central NY. https://www.rvscny.com/patient-eduction/conditions-we-treat/diabetic-retinopathy/. Accessed 29 Jan 2022

  14. Zabihollahy F, Lochbihler A, Ukwatta E (2019) Deep learning based approach for fully automated detection and segmentation of hard exudate from retinal images. In: Medical imaging 2019: biomedical applications in molecular, structural, and functional imaging, vol 10953. International Society for Optics and Photonics, p 1095308

  15. Keel S, Wu J, Lee PY, Scheetz J, He M (2019) Visualizing deep learning models for the detection of referable diabetic retinopathy and glaucoma. JAMA Ophthalmol 137(3):288–292

    Google Scholar 

  16. Sarki R, Ahmed K, Wang H, Zhang Y (2020) Automatic detection of diabetic eye disease through deep learning using fundus images: a survey. IEEE Access 8:151133–151149

    Google Scholar 

  17. Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: a review. Informat Med Unlock 20:100377

    Google Scholar 

  18. Mateen M, Wen J, Hassan M, Nasrullah N, Sun S, Hayat S (2020) Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics. IEEE Access 8:48784–48811

    Google Scholar 

  19. Amin J, Sharif M, Yasmin M (2016) A review on recent developments for detection of diabetic retinopathy. Scientifica. https://doi.org/10.1155/2016/6838976

    Article  Google Scholar 

  20. Gupta A, Chhikara R (2018) Diabetic retinopathy: present and past. Procedia computer science 132:1432–1440

    Google Scholar 

  21. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097–e1000106

    Google Scholar 

  22. I K Center (2010) What is data set. IBM Corporation. https://www.ibm.com/docs/en/zos-basic-skills?topic=more-what-is-data-set. Accessed 29 Jan 2022

  23. Abràmoff Michael D, Garvin Mona K, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Google Scholar 

  24. Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J (2017) Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE 12(6):e0179957

    Google Scholar 

  25. Ting DS, Cheung CY, Lim G, Tan GS, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223

    Google Scholar 

  26. Wang S, Tang HL, Hu Y, Sanei S, Saleh GM, Peto T (2016) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002

    Google Scholar 

  27. Xiao Z, Zhang X, Geng L, Zhang F, Wu J, Tong J, Ogunbona PO, Shan C (2017) Automatic non-proliferative diabetic retinopathy screening system based on color fundus image. Biomed Eng Online 16(1):1–9

    Google Scholar 

  28. Tan JH, Fujita H, Sivaprasad S, Bhandary SV, Rao AK, Chua KC, Acharya UR (2017) Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf Sci 420:66–76

    Google Scholar 

  29. Ponni Bala M, Vijayachitra S (2014) Early detection and classification of microaneurysms in retinal fundus images using sequential learning methods. Int J Biomed Eng Technol 15(2):128–143

    Google Scholar 

  30. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Compu 55(11):1959–1974

    Google Scholar 

  31. Ganesan K, Martis RJ, Acharya UR, Chua CK, Min LC, Ng EY, Laude A (2014) Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images. Med Biol Eng Compu 52(8):663–672

    Google Scholar 

  32. Xu K, Feng D, Mi H (2017) Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12):2054

    Google Scholar 

  33. Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M (2017) Deep image mining for diabetic retinopathy screening. Med Image Anal 39:178–193

    Google Scholar 

  34. Wan S, Liang Y, Zhang Y (2018) Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng 72:274–282

    Google Scholar 

  35. Li T, Gao Y, Wang K, Guo S, Liu H, Kang H (2019) Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf Sci 501:511–522

    Google Scholar 

  36. Zhang W, Zhong J, Yang S, Gao Z, Hu J, Chen Y, Yi Z (2019) Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl-Based Syst 175:12–25

    Google Scholar 

  37. Zhao Z, Zhang K, Hao X, Tian J, Chua MC, Chen L, Xu X (2019) Bira-net: bilinear attention net for diabetic retinopathy grading. In: 2019 IEEE International Conference on Image Processing (ICIP), pp 1385–1389

  38. Islam SM, Hasan MM, Abdullah S (2018) Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. arXiv:1812.10595

  39. Qummar S, Khan FG, Shah S, Khan A, Shamshirband S, Rehman ZU, Khan IA, Jadoon W (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539

    Google Scholar 

  40. Li X, Hu X, Yu L, Zhu L, Fu CW, Heng PA (2019) CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imaging 39(5):1483–1493

    Google Scholar 

  41. Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W (2019) An interpretable ensemble deep learning model for diabetic retinopathy disease classification. In: 2019 41st annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 2045–2048

  42. de La Torre J, Valls A, Puig D (2020) A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing 396:465–476

    Google Scholar 

  43. Ooi AZ, Embong Z, Abd Hamid AI, Zainon R, Wang SL, Ng TF, Hamzah RA, Teoh SS, Ibrahim H (2021) Interactive blood vessel segmentation from retinal fundus image based on canny edge detector. Sensors 21(19):6380

    Google Scholar 

  44. Leandro JJ, Soares JV, Cesar RM, Jelinek HF (2003) Blood vessels segmentation in nonmydriatic images using wavelets and statistical classifiers. In16th Brazilian symposium on computer graphics and image processing (SIBGRAPI 2003), pp 262–269

  45. Salem NM, Nandi AK (2007) Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. J Franklin Inst 344(3–4):243–256

    MATH  Google Scholar 

  46. Channel (digital image). Wikipedia. https://en.wikipedia.org/wiki/Channel_(digital_image. Accessed 29 Jan 2022

  47. Ratanapakorn T, Daengphoonphol A, Eua-Anant N, Yospaiboon Y (2019) Digital image processing software for diagnosing diabetic retinopathy from fundus photograph. Clin Ophthalmol (Auckland, NZ) 13:641

    Google Scholar 

  48. Sutton E (2016) Histograms and the zone system. Illustrat Photogr 2016:6–12

    Google Scholar 

  49. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall Inc, New York

    MATH  Google Scholar 

  50. Hossain F, Alsharif MR (2007) Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. In: 2007 International conference on convergence information technology (ICCIT 2007), pp 1439–1444

  51. Sahidan SI, Mashor MY, Wahab AS, Salleh Z, Ja’afar H (2008) Local and global contrast stretching for color contrast enhancement on Ziehl-Neelsen tissue section slide images. In: 4th Kuala Lumpur international conference on biomedical engineering, pp 583–586

  52. Aziz T, Ilesanmi AE, Charoenlarpnopparut C (2021) Efficient and accurate hemorrhages detection in retinal fundus images using smart window features. Appl Sci 11(14):6391

    Google Scholar 

  53. Al-amri SS, Kalyankar NV, Khamitkar SD (2010) Linear and non-linear contrast enhancement image. IJCSNS Int J Comput Sci Netw Secur 10(2):139–143

    Google Scholar 

  54. Iwasokun GB, Akinyokun OC (2016) Enhancement methods: a review. Sci Int 4:2251–2277

    Google Scholar 

  55. Oh K, Kang HM, Leem D, Lee H, Seo KY, Yoon S (2021) Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Sci Rep 11(1):1–9

    Google Scholar 

  56. Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56(4):2475–2480

    Google Scholar 

  57. Rahim SS, Jayne C, Palade V, Shuttleworth J (2016) Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. Neural Comput Appl 27(5):1149–1164

    Google Scholar 

  58. Rahim SS, Palade V, Shuttleworth J, Jayne C, Omar RN. Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In: International conference on engineering applications of neural networks 2015 Sep 25. Springer, Cham, pp 69–79

  59. Rahim SS, Palade V, Jayne C, Holzinger A, Shuttleworth J (2015) Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In: International conference on brain informatics and health, 2015 Aug 30. Springer, Cham, pp 379–388

  60. Yadav SK, Kumar S, Kumar B, Gupta R (2016) Comparative analysis of fundus image enhancement in detection of diabetic retinopathy. In: 2016 IEEE region 10 humanitarian technology conference (R10-HTC), 2016 Dec 21, pp 1–5

  61. Adaptive histogram equalization. Wikipedia. https://en.wikipedia.org/wiki/Adaptive_histogram_equalization. Accessed 29 Jan 2022

  62. Kim T, Paik J (2008) Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Trans Consum Electron 54(4):1803–1810

    Google Scholar 

  63. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Google Scholar 

  64. Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol 38(1):35–44

    Google Scholar 

  65. Dash J, Bhoi N (2018) Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. In: 2018 2nd international conference on inventive systems and control (ICISC), 2018 Jan 19. IEEE, pp 933–937

  66. Sim KS, Tso CP, Tan YY (2007) Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn Lett 28(10):1209–1221

    Google Scholar 

  67. Chen SD, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309

    Google Scholar 

  68. Singh K, Kapoor R (2014) Image enhancement using exposure based sub image histogram equalization. Pattern Recogn Lett 36:10–14

    Google Scholar 

  69. Costa LD, Cesar RM Jr (2000) Shape analysis and classification: theory and practice. CRC Press, Inc, Boca Raton

    MATH  Google Scholar 

  70. Kwan HK (2003) Fuzzy filters for noisy image filtering. In: Proceedings of the 2003 international symposium on circuits and systems, 2003. ISCAS'03, vol 4, pp IV

  71. Gonzalez RC, Woods RE, Masters BR (2002) Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  72. Orlando JI, Prokofyeva E, Del Fresno M, Blaschko MB (2018) An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed 153:115–127

    Google Scholar 

  73. Toh KK, Isa NA (2009) Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process Lett 17(3):281–284

    Google Scholar 

  74. Kumari VV, Suriyanarayanan N (2010) Blood vessel extraction using wiener filter and morphological operation. Int J Comput Sci Emerg Technol 1(4):7–10

    Google Scholar 

  75. Gao Z (2018) An adaptive median filtering of salt and pepper noise based on local pixel distribution. In: The 2018 international conference on transportation & logistics, information & communication, Smart City (TLICSC 2018)

  76. Ha R, Liu P, Jia K. An improved adaptive median filter algorithm and its application. In: Advances in Intelligent Information Hiding and Multimedia Signal Processing 2017 (pp. 179–186). Springer, Cham.

  77. Tang J, Wang Y, Cao W, Yang J (2019) Improved adaptive median filtering for structured light image denoising. In: 2019 7th International conference on information, communication and networks (ICICN) 2019 Apr 24. IEEE, pp 146–149

  78. Wiener Filtering and Image Processing. https://www.clear.rice.edu/elec431/projects95/lords/wiener.html. Accessed 29 Jan 2022

  79. dos Santos JC, Carrijo GA, dos Santos Cardoso CD, Ferreira JC, Sousa PM, Patrocínio AC (2020) Fundus image quality enhancement for blood vessel detection via a neural network using CLAHE and Wiener filter. Res Biomed Eng 11:1–3

    Google Scholar 

  80. Shinde K, Kulkarni S (2020) Business oriented enhancement model for diabetic retinopathy detection. In: International conference on business management, innovation & sustainability (ICBMIS) 2020 Sep 12

  81. Lestari T, Luthfi A (2019) Retinal blood vessel segmentation using Gaussian filter. J Phys 1376(1):012023

    Google Scholar 

  82. Shojaeipour A, Nordin MJ, Hadavi N (2014) Using image processing methods for diagnosis diabetic retinopathy. In: 2014 IEEE international symposium on robotics and manufacturing automation (ROMA) 2014 Dec 15. IEEE, pp 154–159

  83. Nelson J 2020 Why image preprocessing and augmentation matter. Roboflow. https://blog.roboflow.com/why-preprocess-augment/. Accessed 29 Jan 2022

  84. Prasad DK, Vibha L, Venugopal KR (2015) Early detection of diabetic retinopathy from digital retinal fundus images. In: 2015 IEEE recent advances in intelligent computational systems (RAICS). IEEE, pp 240–245

  85. Welikala RA, Dehmeshki J, Hoppe A, Tah V, Mann S, Williamson TH, Barman SA (2014) Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput Methods Programs Biomed 114(3):247–261

    Google Scholar 

  86. Akram MU, Khalid S, Khan SA (2013) Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recogn 46(1):107–116

    Google Scholar 

  87. Singh N, Tripathi RC (2010) Automated early detection of diabetic retinopathy using image analysis techniques. Int J Comput Appl 8(2):18–23

    Google Scholar 

  88. Fadzil MH, Ngah NF, George TM, Izhar LI, Nugroho H, Nugroho HA (2010) Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. In: 2010 annual international conference of the IEEE engineering in medicine and biology 2010 Aug 31. IEEE, pp 5632–5635

  89. Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ (2020) Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology 127(1):85–94

    Google Scholar 

  90. Yang Y, Li T, Li W, Wu H, Fan W, Zhang W (2017) Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: International conference on medical image computing and computer-assisted intervention, 2017 Sep 10. Springer, Cham, pp 533–540

  91. Kusakunniran W, Wu Q, Ritthipravat P, Zhang J (2018) Hard exudates segmentation based on learned initial seeds and iterative graph cut. Comput Methods Programs Biomed 158:173–183

    Google Scholar 

  92. Mo J, Zhang L (2017) Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12(12):2181–2193

    Google Scholar 

  93. Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717

    Google Scholar 

  94. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206

    Google Scholar 

  95. Gegundez-Arias ME, Marin D, Ponte B, Alvarez F, Garrido J, Ortega C, Vasallo MJ, Bravo JM (2017) A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Comput Biol Med 88:100–109

    Google Scholar 

  96. Arunkumar R, Karthigaikumar P (2017) Multi-retinal disease classification by reduced deep learning features. Neural Comput Appl 28(2):329–334

    Google Scholar 

  97. Prentasic P, Loncaric S (2014) Weighted ensemble based automatic detection of exudates in fundus photographs. In: 2014 36th Annual international conference of the IEEE Engineering in Medicine and Biology Society, 2014 Aug 26. IEEE, pp 138–141

  98. Kaur J, Mittal D (2017) A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 37(1):184–200

    Google Scholar 

  99. Sahu S, Singh AK, Ghrera SP, Elhoseny M (2019) An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt Laser Technol 110:87–98

    Google Scholar 

  100. Leopold HA, Orchard J, Zelek JS, Lakshminarayanan V (2019) PixelBNN: augmenting the PixelCNN with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J Imaging 5(2):26

    Google Scholar 

  101. Mahapatra D, Bozorgtabar B, Garnavi R (2019) Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph 71:30–39

    Google Scholar 

  102. Wang X, Jiang X, Ren J (2019) Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognit 88:331–341

    Google Scholar 

  103. Fan Z, Lu J, Wei C, Huang H, Cai X, Chen X (2018) A hierarchical image matting model for blood vessel segmentation in fundus images. IEEE Trans Image Process 28(5):2367–2377

    MathSciNet  Google Scholar 

  104. Bandara AMRR, Giragama PWGRMPB (2017) A retinal image enhancement technique for blood vessel segmentation algorithm. In: 2017 IEEE international conference on industrial and information systems (ICIIS), pp 1–5. https://doi.org/10.1109/ICIINFS.2017.8300426

  105. Adal KM, Van Etten PG, Martinez JP, Rouwen KW, Vermeer KA, van Vliet LJ (2017) An automated system for the detection and classification of retinal changes due to red lesions in longitudinal fundus images. IEEE Trans Biomed Eng 65(6):1382–1390

    Google Scholar 

  106. Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM, Campilho A (2017) End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging 37(3):781–791

    Google Scholar 

  107. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International conference on medical image computing and computer-assisted intervention 2016 Oct 17. Springer, Cham, pp 140–148

  108. Tennakoon R, Mahapatra D, Roy P, Sedai S, Garnavi R (2016) Image quality classification for DR screening using convolutional neural networks

  109. Lahiri A, Roy AG, Sheet D, Biswas PK (2016) Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC) 2016 Aug 16. IEEE, pp 1340–1343

  110. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Google Scholar 

  111. Hemanth DJ, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32(3):707–721

    Google Scholar 

  112. Chudzik P, Majumdar S, Calivá F, Al-Diri B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comput Methods Programs Biomed 158:185–192

    Google Scholar 

  113. Bui T, Maneerat N, Watchareeruetai U (2017) Detection of cotton wool for diabetic retinopathy analysis using neural network. In: 2017 IEEE 10th international workshop on computational intelligence and applications (IWCIA) 2017 Nov 11. IEEE, pp 203–206

  114. Nijalingappa P, Sandeep B (2015) Machine learning approach for the identification of diabetes retinopathy and its stages. In: 2015 International conference on applied and theoretical computing and communication technology (iCATccT) 2015 Oct 29). IEEE, pp 653–658

  115. Fan Z, Mo JJ (2016) Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In: 2016 International conference on machine learning and cybernetics (ICMLC) 2016 Jul 10, vol 2. IEEE, pp 849–856

  116. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  117. Khalaf AF, Yassine IA, Fahmy AS (2016) Convolutional neural networks for deep feature learning in retinal vessel segmentation. In: 2016 IEEE international conference on image processing (ICIP) 2016 Sep 25. IEEE, pp 385–388

  118. Luo Y, Cheng H, Yang L (2016) Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In: 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA) 2016 Dec 13. IEEE, pp 1–7

  119. Vengalil SK, Sinha N, Kruthiventi SS, Babu RV (2016) Customizing CNNs for blood vessel segmentation from fundus images. In: 2016 international conference on signal processing and communications (SPCOM) 2016 Jun 12. IEEE, pp 1–4

  120. Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Google Scholar 

  121. Hua CH, Huynh-The T, Lee S (2019) Retinal vessel segmentation using round-wise features aggregation on bracket-shaped convolutional neural networks. In: 2019 41st Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2019 Jul 23. IEEE, pp 36–39

  122. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242

    Google Scholar 

  123. Jiang Z, Zhang H, Wang Y, Ko SB (2018) Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–5

    Google Scholar 

  124. Lu J, Xu Y, Chen M, Luo Y (2018) A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry 10(11):607

    Google Scholar 

  125. Soomro TA, Afifi AJ, Gao J, Hellwich O, Zheng L, Paul M (2019) Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst Appl 134:36–52

    Google Scholar 

  126. Dasgupta A, Singh S (2017) A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) 2017 Apr 18. IEEE, pp 248–251

  127. Guo Y, Budak Ü, Vespa LJ, Khorasani E, Şengür A (2018) A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy. Measurement 125:586–591

    Google Scholar 

  128. Li, W, et al (2020) Fundus retinal blood vessel segmentation based on active learning. In: 2020 International conference on computer information and big data applications (CIBDA) 2020, pp 264–268

  129. Guo C, Szemenyei M, Pei Y, Yi Y, Zhou W (2019) SD-UNet: A structured dropout U-Net for retinal vessel segmentation. In: 2019 IEEE 19th international conference on bioinformatics and bioengineering (BIBE) 2019 Oct 28. IEEE, pp 439–444

  130. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention 2015 Oct 5. Springer, Cham, pp 234–241

  131. Ghiasi G, Lin TY, Le QV. Dropblock: a regularization method for convolutional networks. arXiv:1810.12890. Accessed 30 Oct 2018

  132. Zhang Y, Chung AC (2018) Deep supervision with additional labels for retinal vessel segmentation task. In: International conference on medical image computing and computer-assisted intervention 2018 Sep 16. Springer, Cham, pp 83–91

  133. Mishra S, Chen DZ, Hu XS (2020) A data-aware deep supervised method for retinal vessel segmentation. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI) 2020 Apr 3. IEEE, pp 1254–1257

  134. Laibacher T, Weyde T, Jalali S (2019) M2u-net: effective and efficient retinal vessel segmentation for real-world applications. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops

  135. Jin Q, Meng Z, Pham TD, Chen Q, Wei L, Su R (2019) DUNet: A deformable network for retinal vessel segmentation. Knowl-Based Syst 178:149–162

    Google Scholar 

  136. Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (2017) Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 764–773

  137. Wang D, Hu G, Lyu C (2021) Frnet: an end-to-end feature refinement neural network for medical image segmentation. Vis Comput 37:1101–1112

    Google Scholar 

  138. Yin P, Yuan R, Cheng Y, Wu Q (2020) Deep guidance network for biomedical image segmentation. IEEE Access 16(8):116106–116116

    Google Scholar 

  139. Dharmawan DA, Li D, Ng BP, Rahardja S (2019) A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access 7:41885–41896

    Google Scholar 

  140. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  141. Xiuqin P, Zhang Q, Zhang H, Li S (2019) A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access 7:122634–122643

    Google Scholar 

  142. Li D, Dharmawan DA, Ng BP, Rahardja S (2019) Residual u-net for retinal vessel segmentation. In: 2019 IEEE international conference on image processing (ICIP). IEEE, pp 1425–1429

  143. Khan TM, Alhussein M, Aurangzeb K, Arsalan M, Naqvi SS, Nawaz SJ (2020) Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation. IEEE Access 8:131257–131272

    Google Scholar 

  144. Guo C, Szemenyei M, Hu Y, Wang W, Zhou W, Yi Y (2021) Channel attention residual U-net for retinal vessel segmentation. In: ICASSP 2021–2021 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1185–1189

  145. Mou L, Chen L, Cheng J, Gu Z, Zhao Y, Liu J (2019) Dense dilated network with probability regularized walk for vessel detection. IEEE Trans Med Imaging 39(5):1392–1403

    Google Scholar 

  146. Adarsh R, Amarnageswarao G, Pandeeswari R, Deivalakshmi S (2020) Dense residual convolutional auto encoder for retinal blood vessels segmentation. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, pp 280–284

  147. Lopes AP, Ribeiro A, Silva CA (2019) Dilated convolutions in retinal blood vessels segmentation. In: 2019 IEEE 6th Portuguese meeting on bioengineering (ENBENG) 2019 Feb 22. IEEE, pp 1–4

  148. Jiang Y, Tan N, Peng T, Zhang H (2019) Retinal vessels segmentation based on dilated multi-scale convolutional neural network. IEEE Access 7:76342–76352

    Google Scholar 

  149. Soomro TA, Afifi AJ, Shah AA, Soomro S, Baloch GA, Zheng L, Yin M, Gao J (2019) Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access 7:158183–158197

    Google Scholar 

  150. Biswas R, Vasan A, Roy SS (2020) Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iran J Sci Technol Trans Electr Eng 44(1):505–518

    Google Scholar 

  151. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008

  152. Lv Y, Ma H, Li J, Liu S (2020) Attention guided u-net with atrous convolution for accurate retinal vessels segmentation. IEEE Access 8:32826–32839

    Google Scholar 

  153. Yan Z, Yang X, Cheng KT (2018) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65(9):1912–1923

    Google Scholar 

  154. Galdran A, Costa P, Bria A, Araújo T, Mendonça AM, Campilho A (2018) A no-reference quality metric for retinal vessel tree segmentation. In: International conference on medical image computing and computer-assisted intervention 2018 Sep 16. Springer, Cham, pp 82–90

  155. Fu Q, Li S, Wang X (2020) MSCNN-AM: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access 8:163926–163936

    Google Scholar 

  156. Tang X, Zhong B, Peng J, Hao B, Li J (2020) Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Appl Soft Comput 93:106353

    Google Scholar 

  157. Alvarado-Carrillo DE, Ovalle-Magallanes E, Dalmau-Cedeño OS (2021) D-GaussianNet: adaptive distorted gaussian matched filter with convolutional neural network for retinal vessel segmentation. Geometry Vision 1386:378

    Google Scholar 

  158. Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J (2021) SCS-Net: a scale and context sensitive network for retinal vessel segmentation. Med Image Anal 70:102025

    Google Scholar 

  159. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, vol 27

  160. Tu W, Hu W, Liu X, He J (2019) DRPAN: a novel adversarial network approach for retinal vessel segmentation. In: 2019 14th IEEE conference on industrial electronics and applications (ICIEA) 2019 Jun 19. IEEE, pp 228–232

  161. Wu C, Zou Y, Yang Z. U-GAN: generative adversarial networks with U-net for retinal vessel segmentation. In: 2019 14th international conference on computer science & education (ICCSE) 2019 Aug 19. IEEE, pp 642–646

  162. Ma J, Wei M, Ma Z, Shi L, Zhu K (2019) Retinal vessel segmentation based on generative adversarial network and dilated convolution. In: 2019 14th international conference on computer science & education (ICCSE) 2019 Aug 19. IEEE, pp 282–287

  163. Dong Y, Ren W, Zhang K. Deep supervision adversarial learning network for retinal vessel segmentation. In: 2019 12th international congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI) 2019 Oct 19. IEEE, pp 1–6

  164. Zhou Y, Chen Z, Shen H, Zheng X, Zhao R, Duan X (2021) A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing 437:118–130

    Google Scholar 

  165. Guo X, Chen C, Lu Y, Meng K, Chen H, Zhou K, Wang Z, Xiao R (2020) Retinal vessel segmentation combined with generative adversarial networks and dense U-net. IEEE Access 8:194551–194560

    Google Scholar 

  166. Rammy SA, Anwar SJ, Abrar M, Zhang W (2019) Conditional patch-based generative adversarial network for retinal vessel segmentation. In: 2019 22nd international multitopic conference (INMIC) 2019 Nov 29. IEEE, pp 1–6

  167. Son J, Park SJ, Jung KH (2019) Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J Digit Imaging 32(3):499–512

    Google Scholar 

  168. Yang T, Wu T, Li L, Zhu C (2020) SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J Digit Imaging 33(4):946–957

    Google Scholar 

  169. He J, Jiang D (2020) Fundus image segmentation based on improved generative adversarial network for retinal vessel analysis. In: 2020 3rd International conference on artificial intelligence and big data (ICAIBD) 2020 May 28. IEEE, pp 231–236

  170. Park KB, Choi SH, Lee JY (2020) M-gan: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8:146308–146322

    Google Scholar 

  171. Huo Q, Tang G, Zhang F (2019) Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In: Machine learning and medical engineering for cardiovascular health and intravascular imaging and computer assisted stenting 2019 Oct 13. Springer, Cham, pp 112–120

  172. Kennedy J, Eberhart R (1995) IEEE, Particle swarm optimization. In: 1995 IEEE international conference on neural networks proceedings, vol 1–6

  173. Lahiri A, Jain V, Mondal A, Biswas PK (2020) Retinal vessel segmentation under extreme low annotation: a gan based semi-supervised approach. In: 2020 IEEE international conference on image processing (ICIP) 2020 Oct 25. IEEE, pp 418–422

  174. Nasery V, Soundararajan KB, Galeotti J (2020) Learning to segment vessels from poorly illuminated fundus images. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI) 2020 Apr 3. IEEE, pp 1232–1236

  175. Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y (2020) Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Health Inform 24(12):3384–3396

    Google Scholar 

  176. Budak Ü, Cömert Z, Çıbuk M, Şengür A (2020) DCCMED-net: densely connected and concatenated multi encoder-decoder CNNs for retinal vessel extraction from fundus images. Med Hypotheses 134:109426

    Google Scholar 

  177. Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2020) NFN+: a novel network followed network for retinal vessel segmentation. Neural Netw 126:153–162

    Google Scholar 

  178. Tian C, Fang T, Fan Y, Wu W (2020) Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybernet Biomed Eng 40(2):583–595

    Google Scholar 

  179. Atli İ, Gedik OS (2021) Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation. Eng Sci Technol Int J 24(2):271–283

    Google Scholar 

  180. Wang B, Wang S, Qiu S, Wei W, Wang H, He H (2020) CSU-Net: a context spatial U-net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inform 25(4):1128–1138

    Google Scholar 

  181. Li X, Jiang Y, Li M, Yin S (2020) Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Industr Inf 17(3):1958–1967

    Google Scholar 

  182. Li K, Qi X, Luo Y, Yao Z, Zhou X, Sun M (2020) Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J Biomed Health Inform 25(6):2071–2081

    Google Scholar 

  183. Definition of lesion. Merriam-Webster dictionary online. www.merriam-webster.com/dictionary/lesion. Accessed 15 Nov 2021

  184. Chakrabarti R, Harper CA, Keeffe JE (2012) Diabetic retinopathy management guidelines. Expert Rev Ophthalmol 7(5):417–439

    Google Scholar 

  185. Dubow M, Pinhas A, Shah N, Cooper RF, Gan A, Gentile RC, Hendrix V, Sulai YN, Carroll J, Chui TY, Walsh JB (2014) Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 55(3):1299–1309

    Google Scholar 

  186. Shan J, Li L (2016) A deep learning method for microaneurysm detection in fundus images. In: 2016 IEEE first international conference on connected health: applications, systems and engineering technologies (CHASE) 2016 Jun 27. IEEE, pp 357–358

  187. Zhao H, Li H, Maurer-Stroh S, Guo Y, Deng Q, Cheng L (2018) Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans Med Imaging 38(1):46–56

    Google Scholar 

  188. Lam C, Yu C, Huang L, Rubin D (2018) Retinal lesion detection with deep learning using image patches. Invest Ophthalmol Vis Sci 59(1):590–596

    Google Scholar 

  189. Van Grinsven MJ, van Ginneken B, Hoyng CB, Theelen T, Sánchez CI (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284

    Google Scholar 

  190. Yan Y, Gong J, Liu Y (2019) A novel deep learning method for red lesions detection using hybrid feature. In: 2019 Chinese control and decision conference (CCDC) 2019 Jun 3. IEEE, pp 2287–2292

  191. Shah A, Lynch S, Niemeijer M, Amelon R, Clarida W, Folk J, Russell S, Wu X, Abràmoff MD (2018) Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018 Apr 4. IEEE, pp 1454–1457

  192. Mateen M, Wen J, Song S, Huang Z (2019) Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11(1):1

    Google Scholar 

  193. Gondal WM, Köhler JM, Grzeszick R, Fink GA, Hirsch M (2017) Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. In: 2017 IEEE international conference on image processing (ICIP) 2017 Sep 17. IEEE, pp 2069–2073

  194. Kwasigroch A, Jarzembinski B, Grochowski M (2018) Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy. In: 2018 International interdisciplinary PhD workshop (IIPhDW) 2018 May 9. IEEE, pp 111–116

  195. Suriyal S, Druzgalski C, Gautam K (2018) Mobile assisted diabetic retinopathy detection using deep neural network. In: 2018 Global medical engineering physics exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2018 Mar 19. IEEE, pp 1–4

  196. Paing MP, Choomchuay S, Yodprom MR (2016) Detection of lesions and classification of diabetic retinopathy using fundus images. In: 2016 9th Biomedical engineering international conference (BMEiCON) 2016 Dec 7. IEEE, pp 1–5

  197. Zago GT, Andreão RV, Dorizzi B, Salles EO (2020) Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Comput Biol Med 116:103537

    Google Scholar 

  198. Khojasteh P, Júnior LA, Carvalho T, Rezende E, Aliahmad B, Papa JP, Kumar DK (2019) Exudate detection in fundus images using deeply-learnable features. Comput Biol Med 104:62–69

    Google Scholar 

  199. Types of Retinal Hemorrhages. OPTX optometry. https://optxoptometry.com/5-types-of-retinal-hemorrhages/#:~:text=These%20hemorrhages%20are%20classified%20by,retinal%20hemorrhages%2C%20and%20vitreous%20hemorrhages. Accessed 29 Jan 2022

  200. Singh RK, Gorantla R (2020) DMENet: diabetic macular edema diagnosis using hierarchical ensemble of CNNs. PLoS ONE 15(2):e0220677

    Google Scholar 

  201. Adem K (2018) Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks. Expert Syst Appl 114:289–295

    Google Scholar 

  202. Wang H, Yuan G, Zhao X, Peng L, Wang Z, He Y, Qu C, Peng Z (2020) Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. Comput Methods Programs Biomed 191:105398

    Google Scholar 

  203. Mo J, Zhang L, Feng Y (2018) Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing 290:161–171

    Google Scholar 

  204. Omar M, Khelifi F, Tahir MA (2016) Detection and classification of retinal fundus images exudates using region based multiscale LBP texture approach. In: 2016 international conference on control, decision and information technologies (CoDIT) 2016 Apr 6. IEEE, pp 227–232

  205. Wu L, Wan C, Wu Y, Liu J (2017) Generative caption for diabetic retinopathy images. In: 2017 International conference on security, pattern analysis, and cybernetics (SPAC) 2017 Dec 15. IEEE, pp 515–519

  206. Wang J, Luo J, Liu B, Feng R, Lu L, Zou H (2020) Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Comput Vision 14(1):1–8

    Google Scholar 

  207. Alghamdi HS, Tang HL, Waheeb SA, Peto T (2016) Automatic optic disc abnormality detection in fundus images: a deep learning approach

  208. Pekala M, Joshi N, Liu TA, Bressler NM, DeBuc DC, Burlina P (2019) Deep learning based retinal OCT segmentation. Comput Biol Med 114:103445

    Google Scholar 

  209. Fu H, Cheng J, Xu Y, Wong DW, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605

    Google Scholar 

  210. Wang L, Liu H, Lu Y, Chen H, Zhang J, Pu J (2019) A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomed Signal Process Control 51:82–89

    Google Scholar 

  211. Hasan MK, Alam MA, Elahi MT, Roy S, Martí R (2021) DRNet: Segmentation and localization of optic disc and Fovea from diabetic retinopathy image. Artif Intell Med 111:102001

    Google Scholar 

  212. Prabha DS, Kumar JS (2013) Three dimensional object detection and classification methods: a study. Int J Eng Res Sci Tech 2(2):33–42

    Google Scholar 

  213. Kheirkhah E, Tabatabaie ZS (2015) A hybrid face detection approach in color images with complex background. Indian J Sci Technol 8(1):49–60

    Google Scholar 

  214. Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8):1335–1346

    Google Scholar 

  215. Zhang YJ (1997) Evaluation and comparison of different segmentation algorithms. Pattern Recogn Lett 18(10):963–974

    Google Scholar 

  216. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277–1294

    Google Scholar 

  217. Prabha DS, Kumar JS (2016) Performance evaluation of image segmentation using objective methods. Indian J Sci Technol 9(8):1–8

    Google Scholar 

  218. Heath M, Sarkar S, Sanocki T, Bowyer K (1998) Comparison of edge detectors: a methodology and initial study. Comput Vis Image Underst 69(1):38–54

    Google Scholar 

  219. Avcibas I, Sankur B, Sayood K (2002) Statistical evaluation of image quality measures. J Electron Imaging 11(2):206–223

    Google Scholar 

  220. Razzak MI, Naz S, Zaib A (2018) Deep learning for medical image processing: overview, challenges and the future. Classif BioApps 323–350

  221. Seth S, Agarwal B (2018) A hybrid deep learning model for detecting diabetic retinopathy. J Stat Manag Syst 21(4):569–574

    Google Scholar 

  222. ElTanboly A, Ghazal M, Khalil A, Shalaby A, Mahmoud A, Switala A, El-Azab M, Schaal S, El-Baz A. An integrated framework for automatic clinical assessment of diabetic retinopathy grade using spectral domain OCT images. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) 2018 Apr 4. IEEE, pp 1431–1435

  223. Li YH, Yeh NN, Chen SJ, Chung YC (2019) Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mobile Inform Syst. https://doi.org/10.1155/2019/6142839

    Article  Google Scholar 

  224. Sisodia DS, Nair S, Khobragade P (2017) Diabetic retinal fundus images: preprocessing and feature extraction for early detection of diabetic retinopathy. Biomed Pharmacol J 10(2):615–626

    Google Scholar 

  225. Zhou L, Zhao Y, Yang J, Yu Q, Xu X (2018) Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Proc 12(4):563–571

    Google Scholar 

  226. Purandare M, Noronha K (2016) Hybrid system for automatic classification of diabetic retinopathy using fundus images. In: 2016 Online international conference on green engineering and technologies (IC-GET), pp 1–5

  227. Wang X, Jiang X, Ren J (2019) Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn 88:331–341

    Google Scholar 

  228. Hossain NI, Reza S (2017) Blood vessel detection from fundus image using Markov random field based image segmentation. In: 2017 4th International conference on advances in electrical engineering (ICAEE) 2017 Sep 28. IEEE, pp 123–127

  229. Roychowdhury S, Koozekanani DD, Parhi KK (2014) Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J Biomed Health Inform 19(3):1118–1128

    Google Scholar 

  230. Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O, Angelopoulou E (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc 7(4):373–383

    MathSciNet  Google Scholar 

  231. Srivastava R, Wong DW, Duan L, Liu J, Wong TY (2015) Red lesion detection in retinal fundus images using Frangi-based filters. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 5663–5666

  232. Javidi M, Pourreza HR, Harati A (2017) Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation. Comput Methods Programs Biomed 139:93–108

    Google Scholar 

  233. Chowdhury AR, Chatterjee T, Banerjee S (2019) A random forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Compu 57(1):193–203

    Google Scholar 

  234. Cao W, Czarnek N, Shan J, Li L (2018) Microaneurysm detection using principal component analysis and machine learning methods. IEEE Trans Nanobiosci 17(3):191–198

    Google Scholar 

  235. Ayhan MS, Berens P (2018) Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks

  236. Lara Rodríguez LD, Urcid SG (2016) Exudates and blood vessel segmentation in eye fundus images using the fourier and cosine discrete transforms. Computación y Sistemas 20(4):697–708

    Google Scholar 

  237. Roychowdhury S (2016) Classification of large-scale fundus image data sets: a cloud-computing framework. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 3256–3259

  238. Rahim SS, Palade V, Shuttleworth J, Jayne C (2016) Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain informatics 3(4):249–267

    Google Scholar 

  239. Issac A, Parthasarthi M, Dutta MK (2015) An adaptive threshold based algorithm for optic disc and cup segmentation in fundus images. In: 2015 2nd international conference on signal processing and integrated networks (SPIN). IEEE, pp 143–147

  240. Tan NM, Xu Y, Goh WB, Liu J (2015) Robust multi-scale superpixel classification for optic cup localization. Comput Med Imaging Graph 40:182–193

    Google Scholar 

  241. Zhang S, Liang G, Pan S, Zheng L (2018) A fast medical image super resolution method based on deep learning network. IEEE Access 7:12319–12327

    Google Scholar 

  242. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci 441:41–49

    MathSciNet  Google Scholar 

  243. Wang S, Jin K, Lu H, Cheng C, Ye J, Qian D (2015) Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Trans Med Imaging 35(4):1046–1055

    Google Scholar 

  244. Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V (2015) Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. Journal of ophthalmology 25:2015

    Google Scholar 

  245. Ghosh A, Sarkar A, Ashour AS, Balas-Timar D, Dey N, Balas VE (2015) Grid color moment features in glaucoma classification. Int J Adv Comput Sci Appl 6(9):99–107

    Google Scholar 

  246. Salam AA, Akram MU, Wazir K, Anwar SM, Majid M (2015) Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: 2015 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, pp 370–374

  247. Samanta S, Ahmed SS, Salem MA, Nath SS, Dey N, Chowdhury SS (2014) Haralick features based automated glaucoma classification using back propagation neural network. In: Proceedings of the 3rd international conference on frontiers of intelligent computing: theory and applications (FICTA). Springer, Cham, pp 351–358

  248. Venhuizen FG, van Ginneken B, Bloemen B, van Grinsven MJ, Philipsen R, Hoyng C, Theelen T, Sánchez CI (2015) Automated age-related macular degeneration classification in OCT using unsupervised feature learning. In: Medical imaging 2015: computer-aided diagnosis, vol 9414. International Society for Optics and Photonics, p. 94141I

  249. Li X, Pang T, Xiong B, Liu W, Liang P, Wang T. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In: 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI). IEEE, pp 1–11

  250. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Google Scholar 

  251. Patwari MB, Manza RR, Rajput YM, Rathod DD, Saswade M, Deshpande N (2016) Classification and calculation of retinal blood vessels parameters. In: IEEE's international conferences for convergence of technology, Pune, India, pp 1–6

  252. Wu J, Zhang S, Xiao Z, Zhang F, Geng L, Lou S, Liu M (2019) Hemorrhage detection in fundus image based on 2D Gaussian fitting and human visual characteristics. Opt Laser Technol 110:69–77

    Google Scholar 

  253. Adem K, Hekim M, Demir S (2019) Detection of hemorrhage in retinal images using linear classifiers and iterative thresholding approaches based on firefly and particle swarm optimization algorithms. Turk J Electr Eng Comput Sci 27(1):499–515

    Google Scholar 

  254. Prentašić P, Lončarić S. Detection of exudates in fundus photographs using convolutional neural networks. In: 2015 9th international symposium on image and signal processing and analysis (ISPA). IEEE, pp 188–192

  255. Perdomo O, Otálora S, González FA, Meriaudeau F, Müller H (2018) Oct-net: a convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 1423–1426

  256. Jeena RS, Sukesh Kumar A, Mahadevan K (2019) Stroke diagnosis from retinal fundus images using multi texture analysis. J Intell Fuzzy Syst 36(3):2025–2032

    Google Scholar 

  257. Prentašić P, Lončarić S (2016) Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Programs Biomed 137:281–292

    Google Scholar 

  258. Bhat SH, Kumar P (2019) Segmentation of optic disc by localized active contour model in retinal fundus image. In: Smart innovations in communication and computational sciences. Springer, Singapore, pp 35–44

  259. Baddeley AJ (1992) An error metric for binary images. Robust computer vision, 5978

  260. Abdou IE, Pratt WK (1979) Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE 67(5):753–763

    Google Scholar 

Download references

Funding

No Funding was received from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Vij.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vij, R., Arora, S. A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques. Arch Computat Methods Eng 30, 2211–2256 (2023). https://doi.org/10.1007/s11831-022-09862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09862-0

Keywords

  • Diabetic retinopathy
  • Retinal fundus image segmentation
  • Deep learning
  • Blood vessels
  • Retinal lesions
  • Optic disc
  • Optic cup