Skip to main content

Advertisement

Log in

Evolutionary Computation Modelling for Structural Health Monitoring of Critical Infrastructure

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Monitoring of critical infrastructure for Structural Health Monitoring (SHM) is vital for the detection of structural damage (cracks or voids) at an initial stage, thus increasing the structures’ serviceable life. The traditional methods of visual inspection to detect damages are time-consuming and less efficient. Sensor based Non-Destructive Techniques (S-NDTs) such as ground-penetration radar, acoustic emission, laser scanning, etc. for detection and analysis are extensively used to monitor structural health but are expensive and time-consuming. Recent advancements in Artificial Intelligence (AI) techniques such as Computer Vision (CV) assisted with Convolutional Neural Network (CNN), Machine Learning (ML) and Deep Learning (DL) in Structural Health Monitoring (SHM) provide more accurate data classification and damage detection systems. This paper provides a state-of-the-art review of the applications of AI-based techniques in SHM. A detailed study on vision data collection, processing techniques, and segmentation (feature, model, and pattern) is discussed, along with their limitations. The application of AI techniques for SHM to detect, isolate, and identify data anomalies, along with biomimetic algorithms are reviewed to assist in future research directions for life critical infrastructure monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Costa C, Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P (2011) Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol 4(5):673–692. https://doi.org/10.1007/S11947-011-0556-0

    Article  Google Scholar 

  2. Koch C, Georgieva K, Kasireddy V, Akinci B, Fieguth P (2015) A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv Eng Inform 29(2):196–210. https://doi.org/10.1016/J.Aei.2015.01.008

    Article  Google Scholar 

  3. Kim B, Yuvaraj N, Sri Preethaa KR, Arun Pandian R (2021) Surface crack detection using deep learning with shallow Cnn architecture for enhanced computation. Neural Comput Appl 33(15):9289–9305. https://doi.org/10.1007/S00521-021-05690-8

    Article  Google Scholar 

  4. Mohammadpour A, Karan E, Asadi S (2019) Artificial intelligence techniques to support design and construction. In: Proceedings of the 36th international symposium on automation and robotics in construction, Isarc 2019, pp 1282–1289. https://doi.org/10.22260/Isarc2019/0172.

  5. Tešić K, Baričević A, Serdar M (2021) Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: a review. Materials 14(4):975. https://doi.org/10.3390/Ma14040975

    Article  Google Scholar 

  6. Houston JT, Atimtay E, Ferguson PM (1972) Corrosion of reinforcing steel embedded in structural concrete. Accessed 17 Sept 2022. https://library.ctr.utexas.edu/digitized/texasarchive/phase1/112-1f-chr.pdf

  7. Misra S, Uomoto T (1991) Reinforcement corrosion under simultaneous diverse exposure conditions. Spec Publ 126:423–442. https://doi.org/10.14359/2238

    Article  Google Scholar 

  8. Ohta T (1991) Corrosion of reinforcing steel in concrete exposed to sea air. In: Durability of concrete. Second international conference, vol I. August 4–9, Montreal, Canada

  9. Miśkiewicz M, Daszkiewicz K, Lachowicz J, Tysiac P, Jaskula P, Wilde K (2021) Nondestructive methods complemented by fem calculations in diagnostics of cracks in bridge approach pavement. Autom Constr 128:103753. https://doi.org/10.1016/J.Autcon.2021.103753

    Article  Google Scholar 

  10. Wevers M, Surgeon M (2000) Acoustic emission and composites. Compr Compos Mater. https://doi.org/10.1016/B0-08-042993-9/00079-6

    Article  Google Scholar 

  11. Srinivas K, Siddiqui AO, Lahiri J (2006) Thermographic inspection of composite materials. In: National seminar on non-destructive evaluation, pp 7–9

  12. Daura LU, Tian GY, Yi Q, Sophian A (2020) Wireless power transfer-based eddy current non-destructive testing using a flexible printed coil array. Philos Trans R Soc A 378(2182):20190579. https://doi.org/10.1098/Rsta.2019.0579

    Article  MathSciNet  MATH  Google Scholar 

  13. Ni QQ, Hong J, Xu P, Xu Z, Khvostunkov K, Xia H (2021) Damage detection of Cfrp composites by electromagnetic wave nondestructive testing (Emw-Ndt). Compos Sci Technol 210:108839. https://doi.org/10.1016/J.Compscitech.2021.108839

    Article  Google Scholar 

  14. Vesela J, Mares P, Zahradka P, Patera J (2021) Evaluation of steam turbine blades surface cracks detectability by nondestructive methods. J Nucl Eng Radiat Sci 7(2):1087186. https://doi.org/10.1115/1.4048479/1087186

    Article  Google Scholar 

  15. Xu Y, Wang Q, Jiang X, Zu H, Wang W, Feng R (2021) Nondestructive assessment of microcracks detection in cementitious materials based on nonlinear ultrasonic modulation technique. Constr Build Mater 267:121653. https://doi.org/10.1016/J.Conbuildmat.2020.121653

    Article  Google Scholar 

  16. Horňáková M, Lehner P (2020) Relationship of surface and bulk resistivity in the case of mechanically damaged fibre reinforced red ceramic waste aggregate. Concr Mater 13(23):5501. https://doi.org/10.3390/Ma13235501

    Article  Google Scholar 

  17. Lee S, Kalos N, Shin DH (2014) Non-destructive testing methods in the U.S. for bridge inspection and maintenance. Ksce J Civil Eng 18(5):1322–1331. https://doi.org/10.1007/S12205-014-0633-9

    Article  Google Scholar 

  18. Amafabia DAM, Montalvão D, David-West O, Haritos G (2017) A review of structural health monitoring techniques as applied to composite structures. Sdhm Struct Durab Health Monit 11(2):91–147. https://doi.org/10.3970/Sdhm.2017.011.091

    Article  Google Scholar 

  19. Clark MR, Mccann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. Ndt & E Int 36(4):265–275. https://doi.org/10.1016/S0963-8695(02)00060-9

    Article  Google Scholar 

  20. Cassidy NJ, Eddies R, Dods S (2011) Void detection beneath reinforced concrete sections: the practical application of ground-penetrating radar and ultrasonic techniques. J Appl Geophys 74(4):263–276. https://doi.org/10.1016/J.Jappgeo.2011.06.003

    Article  Google Scholar 

  21. Olisa SC, Khan MA, Starr A (2021) Review of current guided wave ultrasonic testing (Gwut) limitations and future directions. Sensors 21(3):811. https://doi.org/10.3390/S21030811

    Article  Google Scholar 

  22. Maillet E, Baker C, Morscher GN, Pujar VV, Lemanski JR (2015) Feasibility and limitations of damage identification in composite materials using acoustic emission. Composites Part A 75:77–83. https://doi.org/10.1016/J.Compositesa.2015.05.003

    Article  Google Scholar 

  23. Hernandez-Valle F, Clough AR, Edwards RS (2014) Stress corrosion cracking detection using non-contact ultrasonic techniques. Corros Sci 78:335–342. https://doi.org/10.1016/J.Corsci.2013.10.018

    Article  Google Scholar 

  24. Nsengiyumva W, Zhong S, Lin J, Zhang Q, Zhong J, Huang Y (2021) Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: a state-of-the-art review. Compos Struct 256:112951. https://doi.org/10.1016/J.Compstruct.2020.112951

    Article  Google Scholar 

  25. Czarnecki S, Hoła J (2016) Evaluation of the height 3d roughness parameters of concrete substrate and the adhesion to epoxy resin. Int J Adhes Adhes 67:3–13. https://doi.org/10.1016/J.Ijadhadh.2015.12.019

    Article  Google Scholar 

  26. Garbacz A, Piotrowski T, Courard L, Kwaśniewski L (2017) On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Constr Build Mater 134:311–323. https://doi.org/10.1016/J.Conbuildmat.2016.12.064

    Article  Google Scholar 

  27. Czarnecki L, Garbacz A, Krystosiak M (2006) On the ultrasonic assessment of adhesion between polymer coating and concrete substrate. Cem Concr Compos 28(4):360–369. https://doi.org/10.1016/J.Cemconcomp.2006.02.017

    Article  Google Scholar 

  28. Senthilkumar M, Sreekanth TG, Manikanta Reddy S (2020) Nondestructive health monitoring techniques for composite materials: a review. Polym Polym Compos 29(5):528–540. https://doi.org/10.1177/0967391120921701

    Article  Google Scholar 

  29. Kot P, Muradov M, Gkantou M, Kamaris GS, Hashim K, Yeboah D (2021) Recent advancements in non-destructive testing techniques for structural health monitoring. Appl Sci 11(6):2750. https://doi.org/10.3390/App11062750

    Article  Google Scholar 

  30. Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1–2):13–27. https://doi.org/10.1016/S0020-7683(99)00074-8

    Article  MATH  Google Scholar 

  31. Turing AM (2009) Computing machinery and intelligence. Pars Turing Test. https://doi.org/10.1007/978-1-4020-6710-5_3

    Article  MATH  Google Scholar 

  32. Liu J, Sun J, Wang S (2006) Pattern recognition: an overview. Int J Comput Sci Netw Secur 6(6):57–61

    Google Scholar 

  33. Roberts L (1963) Machine perception of three-dimensional solids. Massachusetts Institute of Technology. Accessed 24 March 2022. https://dspace.mit.edu/bitstream/handle/1721.1/11589/33959125-mit.pdf

  34. Forsyth D, Ponce J (2003) Computer vision: a modern approach, 2nd edn, vol 17. Archive Ouverte Hal

  35. Jiménez AA, García Márquez FP, Moraleda VB, Gómez Muñoz CQ (2019) Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis. Renew Energy 132:1034–1048. https://doi.org/10.1016/J.Renene.2018.08.050

    Article  Google Scholar 

  36. Entezami A, Shariatmadar H, Sarmadi H (2020) Condition assessment of civil structures for structural health monitoring using supervised learning classification methods. Iranian J Sci Technol Trans Civil Eng 44(1):51–66. https://doi.org/10.1007/S40996-020-00463-0

    Article  Google Scholar 

  37. Pang L et al (2020) Case study—spiking neural network hardware system for structural health monitoring. Sensors 20(18):5126. https://doi.org/10.3390/S20185126

    Article  Google Scholar 

  38. Gang N, Son JD, Widodo A, Yang BS, Hwang DH, Kang DS (2007) A comparison of classifier performance for fault diagnosis of induction motor using multi-type signals. Struct Health Monit Sage J 6(3):215–229. https://doi.org/10.1177/1475921707081110

    Article  Google Scholar 

  39. Hundi P, Shahsavari R (2020) Comparative studies among machine learning models for performance estimation and health monitoring of thermal power plants. Appl Energy 265:114775. https://doi.org/10.1016/J.Apenergy.2020.114775

    Article  Google Scholar 

  40. Attard L, Debono CJ, Valentino G, Di Castro M, Masi A, Scibile L (2019) Automatic crack detection using mask R-Cnn. Int Symp Image Signal Process Anal Ispa 2019:152–157. https://doi.org/10.1109/Ispa.2019.8868619

    Article  Google Scholar 

  41. Cheng Y, Johnson A, Matthies L (2005) Mer-Dimes: a planetary landing application of computer vision. In: Proceedings—2005 IEEE computer society conference on computer vision and pattern recognition, Cvpr 2005, vol I, pp 806–813. https://doi.org/10.1109/Cvpr.2005.222

  42. Buch N, Velastin SA, Orwell J (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12(3):920–939. https://doi.org/10.1109/Tits.2011.2119372

    Article  Google Scholar 

  43. Thomas G, Gade R, Moeslund TB, Carr P, Hilton A (2017) Computer vision for sports: current applications and research topics. Comput Vis Image Underst 159:3–18. https://doi.org/10.1016/J.Cviu.2017.04.011

    Article  Google Scholar 

  44. Spencer BF, Hoskere V, Narazaki Y (2019) Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 5(2):199–222. https://doi.org/10.1016/J.Eng.2018.11.030

    Article  Google Scholar 

  45. Rose P, Aaron B, Tamir DE, Lu L, Hu J, Shi H (2014) Supervised computer-vision-based sensing of concrete bridges for crack-detection and assessment. https://trid.trb.org/view/1289058. Accessed 25 March 2022

  46. Da Silva WRL, De Lucena DS (2018) Concrete cracks detection based on deep learning image classification. In: Proceedings, vol 2, no. 8, p 489. https://doi.org/10.3390/Icem18-05387

  47. Dong CZ, Catbas FN (2021) A review of computer vision-based structural health monitoring at local and global levels. Struct Health Monit 20(2):692–743. https://doi.org/10.1177/1475921720935585

    Article  Google Scholar 

  48. Zhu Y, Huang C (2021) An improved median filtering algorithm for image noise reduction. Phys Procedia 25:609–616. https://doi.org/10.1016/J.Phpro.2012.03.133

    Article  Google Scholar 

  49. Fujita Y, Hamamoto Y (2010) A robust automatic crack detection method from noisy concrete surfaces. Mach Vis Appl 22(2):245–254. https://doi.org/10.1007/S00138-009-0244-5

    Article  Google Scholar 

  50. Boodhun S, Moon H-G, Kim J-H (2011) Inteligent crack detecting algorithm on the concrete crack image using neural network related papers inteligent crack detecting algorithm on the concrete crack image using neural network. In: Proceedings of the 28th ISARC, pp 1461–1467

  51. Jahanshahi M, Masri S, Vision CP-M (2013) An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach Vis Appl 24:227–241. https://doi.org/10.1007/S00138-011-0394-0

    Article  Google Scholar 

  52. Nieniewski M, Chmielewski L, Jozwik A, Sklodowski M (1999) Morphological detection and feature-based classification of cracked cegions in ferrites. Academia.Edu. Accessed 25 March 2022. https://www.academia.edu/download/42137997/morphological_detection_and_feature-base20160205-30232-pajpc0.pdf

  53. Sinha SK, Fieguth PW (2006) Morphological segmentation and classification of underground pipe images. Mach Vis Appl 17(1):21–31. https://doi.org/10.1007/S00138-005-0012-0

    Article  Google Scholar 

  54. Chen C et al (2019) Automatic pavement crack detection based on image recognition. In: International conference on smart infrastructure and construction 2019, Icsic 2019: driving data-informed decision-making, pp 361–369. https://doi.org/10.1680/Icsic.64669.361

  55. Sumathi S, Narayanan K, Nandhini U, Ramyashri J (2013) Crack detection in armoured fighting vechicles using contourlet transform analysis. Int J Adv Res Technol 2(4):254–259

    Google Scholar 

  56. Lei M, Liu L, Shi C, Tan Y, Lin Y, Wang W (2021) A novel tunnel-lining crack recognition system based on digital image technology. Tunnell Undergr Space Technol 108:103724. https://doi.org/10.1016/J.Tust.2020.103724

    Article  Google Scholar 

  57. Li D et al (2021) Automatic defect detection of metro tunnel surfaces using a vision-based inspection system. Adv Eng Inform 47:101206. https://doi.org/10.1016/J.Aei.2020.101206

    Article  Google Scholar 

  58. La HM, Gucunski N, Dana K, Kee SH (2017) Development of an autonomous bridge deck inspection robotic system. J Field Robot 34(8):1489–1504. https://doi.org/10.1002/Rob.21725

    Article  Google Scholar 

  59. Eschmann C, Kuo C, Kuo C, Boller C (2012) Unmanned aircraft systems for remote building inspection and monitoring. Accessed 25 March 2022. http://publications.rwth-aachen.de/record/565142/files/full%20paper.pdf

  60. Fujita Y, Mitani Y, Hamamoto Y (2006) A method for crack detection on a concrete structure. In: 18th international conference on pattern recognition (Icpr’06), pp 901–904. https://doi.org/10.1109/Icpr.2006.98.

  61. Agarwal V, Tarcar AK (2011) 3-D image segmentation using recursive neural networks (Rnns). Cs229 Project. Accessed 17 Sept 2022. http://cs229.stanford.edu/proj2011/agarwalkamattarcat-3dimagesegmentationusingrecursiveneuralnetworks.pdf

  62. Qian S, Weng GR (2015) Research on object detection based on mathematical morphology. In: 4th international conference on information technology and management innovation, pp 203–208. https://doi.org/10.2991/Icitmi-15.2015.36

  63. David Mumford JS (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 13:577–685

    Article  MathSciNet  MATH  Google Scholar 

  64. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331. https://doi.org/10.1007/Bf00133570

    Article  MATH  Google Scholar 

  65. Alvarez L, Guichard F, Lions PL, Morel JM (1993) Axioms and fundamental equations of image processing. Arch Ration Mech Anal 123(3):199–257. https://doi.org/10.1007/Bf00375127

    Article  MathSciNet  MATH  Google Scholar 

  66. Paniagua Mejia CM, Mejia P (2016) Mathematical hybrid models for image segmentation. Recommended Citation. https://doi.org/10.18297/Etd/2534

  67. Liu H, Yang F, Wang X, Si J (2022) Mathematical formula image screening based on feature correlation enhancement. Electronics 11(5):799. https://doi.org/10.3390/Electronics11050799

    Article  Google Scholar 

  68. Abdel-Qader I, Abudayyeh O, Asce M, Kelly ME (2003) Analysis of edge-detection techniques for crack identification in bridges. J Comput Civil Eng 17(4):255–263. https://doi.org/10.1061/(Asce)0887-3801(2003)17:4(255)

    Article  Google Scholar 

  69. Yamaguchi T, Hashimoto S (2010) Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach Vis Appl 21(5):797–809. https://doi.org/10.1007/S00138-009-0189-8

    Article  Google Scholar 

  70. Fokkinga M (2011) Functional pearl the hough transform. J Funct Programm 21(2):129–133. https://doi.org/10.1017/S0956796810000341

    Article  MATH  Google Scholar 

  71. Cha YJ, You K, Choi W (2016) Vision-based detection of loosened bolts using the hough transform and support vector machines. Autom Constr 71(2):181–188. https://doi.org/10.1016/J.Autcon.2016.06.008

    Article  Google Scholar 

  72. Ahmadi A, Khalesi S, Golroo A (2021) An integrated machine learning model for automatic road crack detection and classification in urban areas. Int J Pavement Eng. https://doi.org/10.1080/10298436.2021.1905808

    Article  Google Scholar 

  73. Wu L, Wang T, Hu Y, Liu J, Song M (2020) A method for improving the crack resistance of aluminum alloy aircraft skin inspired by plant leaf. Theoret Appl Fract Mech 106:102444. https://doi.org/10.1016/J.Tafmec.2019.102444

    Article  Google Scholar 

  74. Kirschke KR, Velinsky SA (1992) Histogram-based approach for automated pavement-crack sensing. J Transp Eng 118(5):700–710. https://doi.org/10.1061/(Asce)0733-947x(1992)118:5(700)

    Article  Google Scholar 

  75. Mohanty A, Wang TT (2012) Image mosaicking of a section of a tunnel lining and the detection of cracks through the frequency histogram of connected elements concept. In: 2012 international workshop on image processing and optical engineering, vol 8335, p 83351. https://doi.org/10.1117/12.917800.

  76. Gunn SR (1999) On the discrete representation of the laplacian of gaussian. Pattern Recognit 32(8):1463–1472. https://doi.org/10.1016/S0031-3203(98)00163-0

    Article  Google Scholar 

  77. Jena KK, Mishra S, Mishra S, Bhoi SK (2019) Unmanned aerial vehicle assisted bridge crack severity inspection using edge detection methods. Ieeexplore.Ieee.Org, 2019. Accessed 25 March 2022. https://ieeexplore.ieee.org/abstract/document/9032510/

  78. Dorafshan S, Thomas RJ, Maguire M (2018) Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr Build Mater 186:1031–1045. https://doi.org/10.1016/J.Conbuildmat.2018.08.011

    Article  Google Scholar 

  79. Yu T, Twumasi JO, Le V, Tang Q, Damico N (2017) Surface and subsurface remote sensing of concrete structures using synthetic aperture radar imaging. J Struct Eng 143(10):04017143. https://doi.org/10.1061/(Asce)St.1943-541x.0001730

    Article  Google Scholar 

  80. Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput-Aid Civil Infrastruct Eng 32(5):361–378. https://doi.org/10.1111/Mice.12263

    Article  Google Scholar 

  81. Yamaguchi T, Nakamura S, Hashimoto S (2008) An efficient crack detection method using percolation-based image processing. In: 3rd IEEE conference on industrial electronics and applications, pp 1875–1880

  82. Volkov VY, Bogachev MI, Kayumov AR (2020) Object selection in computer vision: from multi-thresholding to percolation based scene representation. Intell Syst Ref Lib 175:161–194. https://doi.org/10.1007/978-3-030-33795-7_6

    Article  Google Scholar 

  83. Yu SN, Jang JH, Han CS (2007) Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom Constr 16(3):255–261. https://doi.org/10.1016/J.Autcon.2006.05.003

    Article  Google Scholar 

  84. Katakam N (2009) Pavement crack detection system through localized thresholing. Accessed 28 March 2022. https://rave.ohiolink.edu/etdc/view?acc_num=toledo1260820344

  85. Yang Q, Deng Y (2019) Evaluation of cracking in asphalt pavement with stabilized base course based on statistical pattern recognition. Int J Pavement Eng 20(4):417–424. https://doi.org/10.1080/10298436.2017.1299528

    Article  Google Scholar 

  86. Mokhtari S, Wu L, Yun HB (2016) Comparison of supervised classifcation techniques for vision-based pavement crack detection. Transp Res Rec 2595:119–127. https://doi.org/10.3141/2595-13

    Article  Google Scholar 

  87. Kaseko MS, Lo ZP, Ritchie SG (1994) Comparison of traditional and neural classifiers for pavement-crack detection. J Transp Eng 120(4):552–569. https://doi.org/10.1061/(Asce)0733-947x(1994)120:4(552)

    Article  Google Scholar 

  88. Yu Y, Rashidi M, Samali B, Yousefi A (2021) Multi-image-feature-based hierarchical concrete crack identification framework using optimized Svm multi-classifiers and D–S fusion algorithm for bridge structures. Mdpi.Com. Accessed 28 March 2022. https://www.mdpi.com/958410

  89. Dhakal N (2020) Identification of top-down, bottom-up, and cement-treated reflective cracks using convolutional neural network and artificial neural network. Lsu Doctoral Dissertations. Accessed 28 March 2022. https://digitalcommons.lsu.edu/gradschool_dissertations/5270

  90. Fan Z, Wu Y, Lu J, Li W (2018) Automatic pavement crack detection based on structured prediction with the convolutional neural network. Cornell University, Arxiv Preprint arXiv:abs/1802.02208. https://doi.org/10.48550/Arxiv.1802.02208

  91. Wang X, Hu Z (2017) Grid-based pavement crack analysis using deep learning. In: 2017 4th international conference on transportation information and safety, Ictis 2017—Proceedings, pp 917–924. https://doi.org/10.1109/Ictis.2017.8047878

  92. Li S, Fei D, Cheng Z (2020) Identification of rail crack defects based on support vector machine and artificial neural network. Ieeexplore.Ieee.Org. Accessed 28 March 2022. https://ieeexplore.ieee.org/abstract/document/9445529/

  93. Ji A, Xue X, Wang Y, Luo X, Xue W (2020) An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement. Autom Constr 114:103176. https://doi.org/10.1016/J.Autcon.2020.103176

    Article  Google Scholar 

  94. Ji A, Xue X, Wang Y, Luo X, Wang L (2021) Image-based road crack risk-informed assessment using a convolutional neural network and an unmanned aerial vehicle. Struct Control Health Monit 28(7):2749. https://doi.org/10.1002/Stc.2749

    Article  Google Scholar 

  95. Song L, Wang X (2021) Faster region convolutional neural network for automated pavement distress detection. Road Mater Pavement Des 22(1):23–41. https://doi.org/10.1080/14680629.2019.1614969

    Article  Google Scholar 

  96. Zona A (2021) Vision-based vibration monitoring of structures and infrastructures: an overview of recent applications. Infrastructures 6(1):1–22. https://doi.org/10.3390/Infrastructures6010004

    Article  Google Scholar 

  97. Doulamis A, Doulamis N, Protopapadakis E, Voulodimos A (2018) Combined convolutional neural networks and fuzzy spectral clustering for real time crack detection in tunnels. In: Proceedings—international conference on image processing, Icip, pp 4153–4157. https://doi.org/10.1109/Icip.2018.8451758

  98. Xu Y, Bao Y, Chen J, Zuo W, Li H (2019) Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct Health Monit 18(3):653–674. https://doi.org/10.1177/1475921718764873

    Article  Google Scholar 

  99. Qiao W, Ma B, Liu Q, Wu X, Li G (2021) Computer vision-based bridge damage detection using deep convolutional networks with expectation maximum attention module. Sensors 21(3):1–18. https://doi.org/10.3390/S21030824

    Article  Google Scholar 

  100. Zhang L, Wang Z, Wang L, Zhang Z, Chen X, Meng L (2021) Machine learning-based real-time visible fatigue crack growth detection. Digital Commun Netw 7(4):551–558. https://doi.org/10.1016/J.Dcan.2021.03.003

    Article  Google Scholar 

  101. Wang W et al (2021) Automated crack severity level detection and classification for ballastless track slab using deep convolutional neural network. Autom Constr 124:103484. https://doi.org/10.1016/J.Autcon.2020.103484

    Article  Google Scholar 

  102. Li G, Li X, Zhou J, Liu D, Ren W (2021) Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network. Measurement 176:109171. https://doi.org/10.1016/J.Measurement.2021.109171

    Article  Google Scholar 

  103. Xiao B, Kang S-C (2021) Vision-based method integrating deep learning detection for tracking multiple construction machines. J Comput Civil Eng 35(2):04020071. https://doi.org/10.1061/(Asce)Cp.1943-5487.0000957

    Article  Google Scholar 

  104. Jamil M, Khan MN, Rind SJ, Awais Q, Uzair M (2021) Neural network predictive control of vibrations in tall structure: an experimental controlled vision. Comput Electr Eng 89:106940. https://doi.org/10.1016/J.Compeleceng.2020.106940

    Article  Google Scholar 

  105. Chen PH, Shen HK, Lei CY, Chang LM (2012) Support-vector-machine-based method for automated steel bridge rust assessment. Autom Constr 23:9–19. https://doi.org/10.1016/J.Autcon.2011.12.001

    Article  Google Scholar 

  106. Bai Y, Zha B, Sezen H, Yilmaz A (2020) Deep cascaded neural networks for automatic detection of structural damage and cracks from images. Isprs Ann Photogramm Remote Sens Spatial Inf Sci 5(2):411–417. https://doi.org/10.5194/Isprs-Annals-V-2-2020-411-2020

    Article  Google Scholar 

  107. Hou Y, Shi H, Chen N, Liu Z, Wei H, Han Q (2022) Vision image monitoring on transportation infrastructures: a lightweight transfer learning approach. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/Tits.2022.3150536

    Article  Google Scholar 

  108. Zhang H, Lin J, Hua J, Gao F, Tong T (2022) Data anomaly detection for bridge shm based on Cnn combined with statistic features. J Nondestruct Eval 41(1):1–13. https://doi.org/10.1007/S10921-022-00857-2

    Article  Google Scholar 

  109. Jana D, Patil J, Herkal S, Nagarajaiah S, Duenas-Osorio L (2022) Cnn and convolutional autoencoder (Cae) based real-time sensor fault detection, localization and correction. Mech Syst Signal Process 169:108723. https://doi.org/10.1016/J.Ymssp.2021.108723

    Article  Google Scholar 

  110. Venkatesh R, Vignesh Saravanan K, Aswin VR, Balaji S, Amudhan K, Rajakarunakaran S (2022) Detection of cracks in surfaces and materials using convolutional neural network, pp 223–241. https://doi.org/10.1007/978-981-16-7018-3_18

  111. Sony S, Gamage S, Sadhu A, Samarabandu J (2021) Multiclass damage identification in a full-scale bridge using optimally tuned one-dimensional convolutional neural network. J Comput Civil Eng 36(2):04021035. https://doi.org/10.1061/(Asce)Cp.1943-5487.0001003

    Article  Google Scholar 

  112. Gordan M et al (2022) State-of-the-art review on advancements of data mining in structural health monitoring. Measurement 193:110939. https://doi.org/10.1016/J.Measurement.2022.110939

    Article  Google Scholar 

  113. Meshram K, Reddy NG (2022) Development of a machine learning-based drone system for management of construction sites. In: Advances in Sustainable Materials and Resilient Infrastructure. https://doi.org/10.1007/978-981-16-9744-9_5

  114. Avci O, Abdeljaber O, Kiranyaz S (2022) An overview of deep learning methods used in vibration-based damage detection in civil engineering. In: Conference proceedings of the society for experimental mechanics series, pp 93–98. https://doi.org/10.1007/978-3-030-77143-0_10

  115. Chou JS, Karundeng MA, Truong DN, Cheng MY (2022) Identifying deflections of reinforced concrete beams under seismic loads by bio-inspired optimization of deep residual learning. Struct Control Health Monit 29(4):E2918. https://doi.org/10.1002/Stc.2918

    Article  Google Scholar 

  116. Su Z, Ye L (2004) Lamb wave-based quantitative identification of delamination in Cf/Ep composite structures using artificial neural algorithm. Compos Struct 66(1–4):627–637. https://doi.org/10.1016/J.Compstruct.2004.05.011

    Article  Google Scholar 

  117. Mojtahedi A, Lotfollahi Yaghin MA, Hassanzadeh Y, Abbasidoust F, Ettefagh MM, Aminfar MH (2012) A robust damage detection method developed for offshore jacket platforms using modified artificial immune system algorithm. China Ocean Eng 26(3):379–395. https://doi.org/10.1007/S13344-012-0029-X

    Article  Google Scholar 

  118. Smarsly K, Hartmann D (2007) Artificial intelligence in structural health monitoring

  119. Peckens CA, Lynch JP (2013) Utilizing the cochlea as a bio-inspired compressive sensing technique. Smart Mater Struct 22(10):105027. https://doi.org/10.1088/0964-1726/22/10/105027

    Article  Google Scholar 

  120. Smarsly K (2010) Biologically-inspired condition monitoring of civil engineering structures. Int J Comput Electr Eng 2(4):1793–8163

    Google Scholar 

  121. Chen B, Zang C (2009) Artificial immune pattern recognition for structure damage classification. Comput Struct 87(21–22):1394–1407. https://doi.org/10.1016/J.Compstruc.2009.08.012

    Article  Google Scholar 

  122. Yi TH, Li HN, Zhang XD (2015) Health monitoring sensor placement optimization for canton tower using immune monkey algorithm. Struct Control Health Monit 22(1):123–138. https://doi.org/10.1002/Stc.1664

    Article  Google Scholar 

  123. Ostachowicz W, Soman R, Malinowski P (2019) Optimization of sensor placement for structural health monitoring: a review. Struct Health Monit 18(3):963–988. https://doi.org/10.1177/1475921719825601

    Article  Google Scholar 

  124. Jahan S, Mojtahedi A, Mohammadyzadeh S, Hokmabady H (2020) A fuzzy Krill Herd approach for structural health monitoring of bridges using operational modal analysis. Iranian J Sci Technol Trans Civil Eng 45(2):1139–1157. https://doi.org/10.1007/S40996-020-00475-W

    Article  Google Scholar 

Download references

Acknowledgements

For this review, we are grateful for the resources provided by the Multiscale Simulation Research Center at Manipal University Jaipur.

Funding

The authors declare no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaneshwar Mishra.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumrate, C.S., Saini, D.K., Gupta, P. et al. Evolutionary Computation Modelling for Structural Health Monitoring of Critical Infrastructure. Arch Computat Methods Eng 30, 1479–1493 (2023). https://doi.org/10.1007/s11831-022-09845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09845-1

Navigation