Skip to main content
Log in

A Historical Review on the Computational Techniques for Mechanism Synthesis: Developments Up to 2022

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Mechanism synthesis has been used in various applications. Nevertheless, the approach to synthesize any mechanism becomes challenging due to large number of precision points and defect encountering during synthesis. Various studies have been conducted in the domain of mechanism synthesis for distinct applications using conventional and computational techniques. The use of computational techniques allowed the solution of complex problems with reduced computational effort. In the same context, this paper presents a thorough review of various mathematical models and computational techniques used in mechanism synthesis. The review has discussed all the categories of computational techniques, namely, traditional, metaphor-based, metaphor-less, and hybrid techniques which have been used in mechanism synthesis applications. This review can be considered as a repository of all the research carried out in the domain of mechanism synthesis using computational techniques. Besides various suggestions, and future research directions are also recommended in the concluding remarks section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hartenberg R, Danavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    Google Scholar 

  2. Singh R. Optimal Synthesis of Linkages for Knee Joint Supporting Devices. (Doctoral dissertation, MNIT Jaipur).

  3. Russell K, Shen Q, Sodhi RS (2013) Mechanism design: visual and programmable approaches. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Erdman AG, Sandor GN (1997) Mechanism design analysis and synthesis, vol 1. Prentice-Hall Inc, Hoboken

    Google Scholar 

  5. Singh R, Chaudhary H, Singh AK (2018) A novel gait-based synthesis procedure for the design of 4-bar exoskeleton with natural trajectories. J Orthop Transl 1(12):6–15

    Google Scholar 

  6. Norton RL (2009) Kinematics and dynamics of machinery. Mcgraw hill higher education, New York City

    Google Scholar 

  7. Stojanović I, Brajević I, Stanimirović PS, Kazakovtsev LA, Zdravev Z (2017) Application of heuristic and metaheuristic algorithms in solving constrained weber problem with feasible region bounded by arcs. Math Probl Eng 1:2017

    MathSciNet  MATH  Google Scholar 

  8. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 1(95):51–67

    Article  Google Scholar 

  9. Singh R, Chaudhary H, Singh AK (2017) A new hybrid teaching–learning particle swarm optimization algorithm for synthesis of linkages to generate path. Sādhanā 42(11):1851–1870

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, Amsterdam

    Book  Google Scholar 

  11. Cabrera JA, Simon A, Prado M (2002) Optimal synthesis of mechanisms with genetic algorithms. Mech Mach Theory 37(10):1165–1177

    Article  MATH  Google Scholar 

  12. Ullah I, Kota S (1997) Optimal synthesis of mechanisms for path generation using fourier descriptors and global search methods. J Mech Des 119:504–510

    Article  Google Scholar 

  13. Liu Y, Xiao R (2005) Optimal synthesis of mechanisms for path generation using refined numerical representation-based model and AIS based searching method. J Mech Des 127(4):688–691

    Article  Google Scholar 

  14. Cabrera JA, Castillo JJ, Nadal F, Ortiz A, Simon A (2009) Synthesis of mechanisms with evolutionary techniques. In: Proceedings of eucomes 08 2009. Springer, Dordrecht, pp. 167–174

  15. Etesami G, Felezi ME, Nariman-zadeh N (2020) Pareto optimal balancing of four-bar mechanisms using multi-objective differential evolution algorithm. J Comput Appli Mech 51(1):55–65

    Google Scholar 

  16. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 1(69):46–61

    Article  Google Scholar 

  17. Singh R, Chaudhary H, Singh AK (2019) A novel gait-inspired four-bar lower limb exoskeleton to guide the walking movement. J Mech Med Biol 19(04):1950020

    Article  Google Scholar 

  18. Acharyya SK, Mandal M (2009) Performance of EAs for four-bar linkage synthesis. Mech Mach Theory 44(9):1784–1794

    Article  MATH  Google Scholar 

  19. Singh R, Gaurav K, Pathak VK, Singh P, Chaudhary H. Best-Worst-Play (BWP) A metaphor-less optimization algorithm. In: Journal of Physics: Conference Series 2020 Feb 1 (Vol. 1455, No. 1, p. 012007). IOP Publishing.

  20. Lee WT, Russell K (2018) Developments in quantitative dimensional synthesis (1970-present): four-bar motion generation. Inverse Probl Sci Eng 26(1):133–148

    Article  MathSciNet  MATH  Google Scholar 

  21. Mirth JA (1992) A complex number approach for absolute precision position synthesis for three precision positions. In: International design engineering technical conferences and computers and information in engineering conference 1992. American Society of Mechanical Engineers 9402: 43–48

  22. Midha A, Zhao ZL (1985) Synthesis of planar linkage via loop closure and nonlinear equations solution. Mech Mach Theory 20(6):491–502

    Article  Google Scholar 

  23. Mallik AK, Ghosh A, Dittrich G (1994) Kinematic analysis and synthesis of mechanisms. Crc Press, Boca Raton

    Google Scholar 

  24. Erdman AG (1981) Three and four precision point kinematic synthesis of planar linkages. Mech Mach Theory 16(3):227–245

    Article  Google Scholar 

  25. Waldron KJ, Strong RT (1978) Improved solutions of the branch and order problems of burmester linkage synthesis. Mech Mach Theory 13(2):199–207

    Article  Google Scholar 

  26. Filemon E, Béda G (1971) Marking points for crank-rocker linkage on the centerpoint curve. Period Polytech Mech Eng 15(3):287–292

    Google Scholar 

  27. Waldron KJ (1978) Location of Burmester synthesis solutions with fully rotatable cranks. Mech Mach Theory 13(2):125–137

    Article  Google Scholar 

  28. Luck K (1994) Computer-aided mechanism synthesis based on the Burmester theory. Mech Mach Theory 29(6):877–886

    Article  Google Scholar 

  29. Sardain P (1997) Linkage synthesis: Topology selection fixed by dimensional constraints, study of an example. Mech Mach Theory 32(1):91–102

    Article  MATH  Google Scholar 

  30. Mitchiner RG, Mabie HH. The displacement synthesis of four-bar straight-line mechanisms.

  31. Huston L, Kramer S (1982) Complex number synthesis of four-bar path generating mechanisms adjustable for multiple tangential circular arcs. J Mech Des 104(1):185–191

    Google Scholar 

  32. Lin CS, Erdman AG (1987) Dimensional synthesis of planar triads: motion generation with prescribed timing for six precision positions. Mech Mach Theory 22(5):411–419

    Article  Google Scholar 

  33. Farhang K, Midha A, Bajaj A (1987) A higher-order analysis of basic linkages for harmonic motion generation. J Mech Des. https://doi.org/10.1115/1.3258794

    Article  Google Scholar 

  34. Wang SJ, Sodhi RS (1996) Kinematic synthesis of adjustable moving pivot four-bar mechanisms for multi-phase motion generation. Mech Mach Theory 31(4):459–474

    Article  Google Scholar 

  35. Filemon E (1972) Useful ranges of centerpoint curves for design of crank-and-rocker linkages. Mech Mach Theory 7(1):47–53

    Article  Google Scholar 

  36. Waldron KJ (1976) Elimination of the branch problem in graphical Burmester mechanism synthesis for four finitely separated positions. ASME J Eng Ind 98(1):176–182. https://doi.org/10.1115/1.3438813

    Google Scholar 

  37. Bawab S, Li H (1997) A new circuit identification method in four-position four-bar linkages. J Mech Des 119(3):417–419

    Article  Google Scholar 

  38. Sardashti A, Daniali HM, Varedi SM (2013) Optimal free-defect synthesis of four-bar linkage with joint clearance using PSO algorithm. Meccanica 48(7):1681–1693

    Article  MATH  Google Scholar 

  39. Tari H, Su HJ, Li TY (2010) A constrained homotopy technique for excluding unwanted solutions from polynomial equations arising in kinematics problems. Mech Mach Theory 45(6):898–910

    Article  MATH  Google Scholar 

  40. Subbian T, Flugrad DR Jr (1994) Six and seven position triad synthesis using continuation methods. J Mech Des 10(1115/1):2919429

    Google Scholar 

  41. Subbian T, Flugrad DR Jr (1991) Four-bar path generation synthesis by a continuation method. J Mech Des 10(1115/1):2912752

    Google Scholar 

  42. Morgan AP, Wampler CW (1990) Solving a planar four-bar design problem using continuation. J Mech Des 10(1115/1):2912644

    Google Scholar 

  43. Wampler CW, Morgan AP, Sommese AJ (1992) Complete solution of the nine-point path synthesis problem for four-bar linkages. J Mech Des 10(1115/1):2916909

    Google Scholar 

  44. Tsai L-W, Jeong-Jang L (1990) Coupler-point-curve synthesis using homotopy methods. J Mech Des 10(1115/1):2912619

    Google Scholar 

  45. Howell LL, Midha A (1996) A loop-closure theory for the analysis and synthesis of compliant mechanisms. J Mech Des 10(1115/1):2826842

    Google Scholar 

  46. Huang X, Liao Q, Wei S, Xu Q (2008) Five precision point-path synthesis of planar four-bar linkage using algebraic method. Front Electr Electron Eng China 3(4):470–474

    Article  Google Scholar 

  47. Ceccarelli M, Vinciguerra A (2000) Approximate four-bar circle-tracing mechanisms: classical and new synthesis. Mech Mach Theory 35(11):1579–1599

    Article  MATH  Google Scholar 

  48. Luo Z, Dai JS (2007) Patterned bootstrap: a new method that gives efficiency for some precision position synthesis problems. J Mech Des. https://doi.org/10.1115/1.2406087

    Article  Google Scholar 

  49. McGovern JF, Sandor GN (1973) Kinematic synthesis of adjustable mechanisms—part 1: function generation. J Manuf Sci Eng 10(1115/1):3438171

    Google Scholar 

  50. Naik DP, Amarnath C (1989) Synthesis of adjustable four bar function generators through five bar loop closure equations. Mech Mach Theory 24(6):523–526

    Article  Google Scholar 

  51. Tso PL. The kinematic synthesis of toggle clamps.

  52. Lakshminarayana K, Raju KC (1985) Function-cognate mechanisms: general theory and application. Mech Mach Theory 20(5):389–397

    Article  Google Scholar 

  53. Simionescu PA, Smith MR (2001) Four-and six-bar function cognates and overconstrained mechanisms. Mech Mach Theory 36(8):913–924

    Article  MATH  Google Scholar 

  54. Akcali ID, Dittrich G (1989) Function generation by Galerkin’s method. Mech Mach Theory 24(1):39–43

    Article  Google Scholar 

  55. Kinzel EC, Schmiedeler JP, Pennock GR (2006) Function generation with finitely-separated precision points using geometric constraint programming. In: International design engineering technical conferences and computers and information in engineering conference 2006 (Vol. 42568, pp. 381–390).

  56. Kim BS, Yoo HH (2012) Unified synthesis of a planar four-bar mechanism for function generation using a spring-connected arbitrarily sized block model. Mech Mach Theory 1(49):141–156

    Article  Google Scholar 

  57. Chen FC, Huang HH (2005) Application of Taguchi method on the tolerance design of a four-bar function generation mechanism. In: International design engineering technical conferences and computers and information in engineering conference (Vol. 47446, pp. 727–733).

  58. Huang X, Zhang Y (2010) Robust tolerance design for function generation mechanisms with joint clearances. Mech Mach Theory 45(9):1286–1297

    Article  MATH  Google Scholar 

  59. Lin S, Wang H, Liu J, Zhang Y (2018) Geometric method of spatial linkages synthesis for function generation with three finite positions. J Mech Des 140(8):082303

    Article  Google Scholar 

  60. Alizade RI, Kilit Ö (2005) Analytical synthesis of function generating spherical four-bar mechanism for the five precision points. Mech Mach Theory 40(7):863–878

    Article  MATH  Google Scholar 

  61. Li X, Wei S, Liao Q, Zhang Y (2016) A novel analytical method for function generation synthesis of planar four-bar linkages. Mech Mach Theory 1(101):222–235

    Google Scholar 

  62. Zhang C, Norton PR, Hammonds T (1984) Optimization of parameters for specified path generation using an atlas of coupler curves of geared five-bar linkages. Mech Mach Theory 19(6):459–466

    Article  Google Scholar 

  63. Kay FJ, Haws RE (1975) Adjustable mechanisms for exact path generation. J Eng Ind. https://doi.org/10.1115/1.3438635

    Article  Google Scholar 

  64. Alizade RA, Freudenstein F, Pamidi PR (1976) Optimum path generation by means of the skew four-bar linkage. Mech Mach Theory 11(4):295–302

    Article  Google Scholar 

  65. Zhou H, Cheung EH (2001) Optimal synthesis of crank–rocker linkages for path generation using the orientation structural error of the fixed link. Mech Mach Theory 36(8):973–982

    Article  MATH  Google Scholar 

  66. Ravani B, Roth B (1983) Motion synthesis using kinematic mappings. J Mech, Transm, Autom Des. https://doi.org/10.1115/1.3267382

    Article  Google Scholar 

  67. Paradis MJ, Willmert KD (1983) Optimal mechanism design using the Gauss constrained method. J Mech, Transm, Autom Des 105:187–196

    Article  Google Scholar 

  68. Fiacco AV, McCormick GP. Programming under nonlinear constraints by unconstrained minimization: a primal-dual method. Res Anal Aorp Mclean Va; 1963 Sep 1.

  69. Sleesongsom S, Bureerat S (2018) Optimal synthesis of four-bar linkage path generation through evolutionary computation with a novel constraint handling technique. Comput Intell Neurosci 1:2018

    Google Scholar 

  70. Smaili A, Diab N (2007) Optimum synthesis of hybrid-task mechanisms using ant-gradient search method. Mech Mach Theory 42(1):115–130

    Article  MathSciNet  MATH  Google Scholar 

  71. Bulatović RR, Đorđević SR (2004) Optimal synthesis of a four-bar linkage by method of controlled deviation. Theoret Appl Mech 31(3–4):265–280

    Article  MATH  Google Scholar 

  72. Singh R, Chaudhary H, Singh AK (2017) Defect-free optimal synthesis of crank-rocker linkage using nature-inspired optimization algorithms. Mech Mach Theory 1(116):105–122

    Article  Google Scholar 

  73. Damangir S, Jafarijashemi G, Mamduhi M, Zohoor H. Optimum synthesis of mechanisms for path generation using a new curvature based–deflection based objective function. In: Proceedings of the 6th WSEAS International Conference on Simulation, Modeling and Optimization, Lisbon, Portugal, September 2006 Sep 22 (pp. 22–24).

  74. Vucina D, Freudenstein F (1991) An application of graph theory and nonlinear programming to the kinematic synthesis of mechanisms. Mech Mach Theory 26(6):553–563

    Article  Google Scholar 

  75. Nariman-Zadeh N, Felezi M, Jamali A, Ganji M (2009) Pareto optimal synthesis of four-bar mechanisms for path generation. Mech Mach Theory 44(1):180–191

    Article  MATH  Google Scholar 

  76. Gogate GR, Matekar SB (2012) Optimum synthesis of motion generating four-bar mechanisms using alternate error functions. Mech Mach Theory 1(54):41–61

    Article  Google Scholar 

  77. Ettefagh MM, Javash MS (2014) Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms. J Mech Sci Technol 28(6):2351–2362

    Article  Google Scholar 

  78. Mohamed N, Alateyah AI, El-Garaihy WH (2021) Defect free optimization of a polycentric prosthetic knee design using imperialist competition-inspired optimization method. J Eng Res. https://doi.org/10.36909/jer.13063

    Article  Google Scholar 

  79. Simionescu PA, Beale D (2002) Optimum synthesis of the four-bar function generator in its symmetric embodiment: the Ackermann steering linkage. Mech Mach Theory 37(12):1487–1504

    Article  MATH  Google Scholar 

  80. Zhou H, Cheung EH (2002) Analysis and optimal synthesis of adjustable linkages for path generation. Mechatronics 12(7):949–961

    Article  Google Scholar 

  81. Rao AC (1980) A slotted-crank mechanism with a flexibly attached slider for path generation and its dynamic synthesis. Mech Mach Theory 15(4):233–243

    Article  Google Scholar 

  82. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168

    Article  MathSciNet  MATH  Google Scholar 

  83. Lewis DW, Gyory CK (1967) Kinematic synthesis of plane curves. J Eng Ind 89:173

    Article  Google Scholar 

  84. Saxena A (2005) Synthesis of compliant mechanisms for path generation using genetic algorithm. J Mech Des. https://doi.org/10.1115/11899178

    Article  Google Scholar 

  85. Mundo D, Gatti G, Dooner DB (2009) Optimized five-bar linkages with non-circular gears for exact path generation. Mech Mach Theory 44(4):751–760

    Article  MATH  Google Scholar 

  86. Mundo D, Liu J-Y, Yan H-S (2006) Optimal synthesis of cam-linkage mechanisms for precise path generation. J Mech Des 128:1253–1260

    Article  Google Scholar 

  87. Sardashti A, Daniali HM, Varedi-Koulaei SM (2021) Geometrical similarity error function-innovative adaptive algorithm methodology in path generation synthesis of the four-bar mechanism using metaheuristic algorithms. Proc Inst Mech Eng C J Mech Eng Sci 3:09544062211015787

    Google Scholar 

  88. Pugh JT (1984) Synthesis of Pareto optimal four-bar function generators with optimum structural error and optimum transmission angles. J Mech Des. https://doi.org/10.1115/1.3258591

    Article  Google Scholar 

  89. Rao SS, Hati SK (1979) Game theory approach in multicriteria optimization of function generating mechanisms. J Mech Des. https://doi.org/10.1115/1.3454072

    Article  Google Scholar 

  90. Rhyu JH, Kwak BM (1988) Optimal stochastic design of four-bar mechanisms for tolerance and clearance. J Mech Des. https://doi.org/10.1115/1.3267455

    Article  Google Scholar 

  91. Sandgren E (1990) A multi-objective design tree approach for the optimization of mechanisms. Mech Mach Theory 25(3):257–272

    Article  Google Scholar 

  92. Affi Z, Badreddine EL, Romdhane L (2007) Advanced mechatronic design using a multi-objective genetic algorithm optimization of a motor-driven four-bar system. Mechatronics 17(9):489–500

    Article  Google Scholar 

  93. Khorshidi M, Soheilypour M, Peyro M, Atai A, Panahi MS (2011) Optimal design of four-bar mechanisms using a hybrid multi-objective GA with adaptive local search. Mech Mach Theory 46(10):1453–1465

    Article  MATH  Google Scholar 

  94. Deb K, Tiwari S (2005) Multi-objective optimization of a leg mechanism using genetic algorithms. Eng Optim 37(4):325–350

    Article  Google Scholar 

  95. Bulatović RR, Dordević SR (2009) On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations. Mech Mach Theory 44(1):235–246

    Article  MATH  Google Scholar 

  96. Ebrahimi S, Payvandy P (2015) Efficient constrained synthesis of path generating four-bar mechanisms based on the heuristic optimization algorithms. Mech Mach Theory 1(85):189–204

    Article  Google Scholar 

  97. Asker A, Xie S, Dehghani-Sanij AA. Multi-objective optimization of force transmission quality and joint misalignment of a 5-bar knee exoskeleton. In: 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2021 Jul 12 (pp. 122–127). IEEE.

  98. Balli SS, Chand S (2002) Defects in link mechanisms and solution rectification. Mech Mach Theory 37(9):851–876

    Article  MathSciNet  MATH  Google Scholar 

  99. Filemon E (1971) Marking points for crank–rocker linkage on the center point curve. Period Polytech, Mech Eng 15(3):287–292

    Google Scholar 

  100. E. Filemon (1971)) In addition to the Burmester theory. In: Proceedings of Third World Congress for Theory of Machine and Mechanisms, Kupari, Yugoslavia, vol. D, pp. 63–78.

  101. Prasad KN, Bagci C (1974) Minimum error synthesis of multiloop plane mechanisms for rigid body guidance. J Manuf Sci Eng. https://doi.org/10.1115/1.3438283

    Article  Google Scholar 

  102. Chase TR, Mirth JA (1993) Circuits and branches of single-degree-of-freedom planar linkages. J Mech Des. https://doi.org/10.1115/1.2919181

    Article  Google Scholar 

  103. Krishnamurty S, Turcic DA (1988) A general method of determining and eliminating branching in planar multiloop mechanisms. J Mech, Transm, Autom Des. https://doi.org/10.1115/1.3258938

    Article  Google Scholar 

  104. Ting KL, Dou X (1996) Classification and branch identification of Stephenson six-bar chains. Mech Mach Theory 31(3):283–295

    Article  Google Scholar 

  105. Singh R, Chaudhary H, Singh AK (2019) A loop-by-loop defect rectification procedure for optimal synthesis of Stephenson III path generators. Meccanica 54(11):1869–1888

    Article  MathSciNet  Google Scholar 

  106. Gupta KC, Tinubu SO (1983) Synthesis of bimodal function generating mechanisms without branch defect. J Mech Des. https://doi.org/10.1115/1.3258528

    Article  Google Scholar 

  107. Tinubu, S. O., and K. C. Gupta (1984) Optimal synthesis of function generators without the branch defect. J. Mech. Des. https://doi.org/10.1115/1.3267418

  108. Nokleby SB, Podhorodeski RP (2000) Optimization-based synthesis of a deep-digging tillage mechanism. Trans Can Soc Mech Eng 24(1A):61–78

    Article  Google Scholar 

  109. Guj G, Dong ZY, Di Giacinto M (1981) Dimensional synthesis of four bar linkage for function generation with velocity and acceleration constraints. Meccanica 16(4):210–219

    Article  MATH  Google Scholar 

  110. Alizade RI, Novruzbekov IG, Sandor GN (1975) Optimization of four-bar function generating mechanisms using penalty functions with inequality and equality constraints. Mech Mach Theory 10(4):327–336

    Article  Google Scholar 

  111. Alizade RI, Mohan Rao AV, Sandor GN (1975) Optimum synthesis of four-bar and offset slider-crank planar and spatial mechanisms using the penalty function approach with inequality and equality constraints. J Manuf Sci Eng. https://doi.org/10.1115/1.3438678

    Article  Google Scholar 

  112. Rigelman GA, Kramer SN (1988) A computer-aided design technique for the synthesis of planar four bar mechanisms satisfying specified kinematic and dynamic conditions. J Mech Des 110:263–268

    Google Scholar 

  113. Blechschmidt JL, Uicker JJ Jr (1986) Linkage synthesis using algebraic curves. J Mech Des 108:543–548

    Google Scholar 

  114. Sun W (1982) Optimum design method for four-bar function generators. J Optim Theory Appl 38(2):287–293

    Article  MathSciNet  MATH  Google Scholar 

  115. Rhyu JH, Kwak BM (1988) Optimal stochastic design of four-bar mechanisms for tolerance and clearance. J Mech Des. https://doi.org/10.1115/1.3267455

    Article  Google Scholar 

  116. Angeles J, Callejas M (1984) An algebraic formulation of grashof’s mobility criteria with application to linkage optimization using gradient-dependent methods. J Mech Des 106:327–332

    Google Scholar 

  117. Da Lio M, Cossalter V, Lot R (2000) On the use of natural coordinates in optimal synthesis of mechanisms. Mech Mach Theory 35(10):1367–1389

    Article  MathSciNet  MATH  Google Scholar 

  118. Hetrick JA, Kota S (1999) An energy formulation for parametric size and shape optimization of compliant mechanisms. J Mech Des 121:229–234

    Article  Google Scholar 

  119. Posa M, Cantu C, Tedrake R (2014) A direct method for trajectory optimization of rigid bodies through contact. Int J Robot Res 33(1):69–81

    Article  Google Scholar 

  120. Smaili A, Diab N (2007) A new approach to shape optimization for closed path synthesis of planar mechanisms. J Mech Des. https://doi.org/10.1115/1.2753164

    Article  MATH  Google Scholar 

  121. Tsuge BY, Plecnik MM, Michael MJ (2016) Homotopy directed optimization to design a six-bar linkage for a lower limb with a natural ankle trajectory. J Mech Robot 8(6):061009

    Article  Google Scholar 

  122. Starns GK. Optimal synthesis of a planar four-bar mechanism with prescribed timing using generalized reduced gradient, simulated annealing and genetic algorithms (Doctoral dissertation, Iowa State University).

  123. Connor AM, Douglas SS, Gilmartin MJ. The kinematic synthesis of path generating mechanisms using genetic algorithms.

  124. Prebil I, Krašna S, Ciglarič I (2002) Synthesis of four-bar mechanism in a hydraulic support using a global optimization algorithm. Struct Multidiscip Optim 24(3):246–251

    Article  MATH  Google Scholar 

  125. Shiakolas PS, Koladiya D, Kebrle J (2005) On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique. Mech Mach Theory 40(3):319–335

    Article  MATH  Google Scholar 

  126. Koladiya D, Shiakolas PS, Kebrle J (20003) Evolutionary based optimal synthesis of four-bar mechanisms. In: ASME International Mechanical Engineering Congress and Exposition 37130: 539–544.

  127. Matekar SB, Gogate GR (2012) Optimum synthesis of path generating four-bar mechanisms using differential evolution and a modified error function. Mech Mach Theory 1(52):158–179

    Article  Google Scholar 

  128. Ekárt A, Márkus A (2003) Using genetic programming and decision trees for generating structural descriptions of four bar mechanisms. AI EDAM 17(3):205–220

    Google Scholar 

  129. Zhou H, Cheung EH (2004) Adjustable four-bar linkages for multi-phase motion generation. Mech Mach Theory 39(3):261–279

    Article  MATH  Google Scholar 

  130. McDougall R, Nokleby S (2008) Synthesis of Grashof four-bar mechanisms using particle swarm optimization. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 43260: 1471–1475.

  131. Cabrera JA, Ortiz A, Nadal F, Castillo JJ (2011) An evolutionary algorithm for path synthesis of mechanisms. Mech Mach Theory 46(2):127–141

    Article  MATH  Google Scholar 

  132. Lin WY, Hsiao KM (2017) A new differential evolution algorithm with a combined mutation strategy for optimum synthesis of path-generating four-bar mechanisms. Proc Inst Mech Eng C J Mech Eng Sci 231(14):2690–2705

    Article  Google Scholar 

  133. Sleesongsom S, Bureerat S (2015) Optimal synthesis of four-bar linkage path generation through evolutionary computation. J Res Appl Mech Eng 3(2):46–53

    Google Scholar 

  134. Kafash SH, Nahvi A (2017) Optimal synthesis of four-bar path generator linkages using circular proximity function. Mech Mach Theory 1(115):18–34

    Article  Google Scholar 

  135. Phukaokaew W, Sleesongsom S, Panagant N, Bureerat S (2019) Synthesis of four-bar linkage motion generation using optimization algorithms. Adv Comput Des 4(3):197–210

    Google Scholar 

  136. Rao R (2016) Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis Sci Lett 5(1):1–30

    MathSciNet  Google Scholar 

  137. Abirami M, Ganesan S, Subramanian S, Anandhakumar R (2014) Source and transmission line maintenance outage scheduling in a power system using teaching learning based optimization algorithm. Appl Soft Comput 1(21):72–83

    Article  Google Scholar 

  138. Majeed Alneamy JS, Hameed Alnaish RA (2014) Heart disease diagnosis utilizing hybrid fuzzy wavelet neural network and teaching learning based optimization algorithm. Adv Artif Neural Syst 17:2014

    Google Scholar 

  139. Nee Dey SH (2014) Teaching learning based optimization for different economic dispatch problems. Sci Iran 21(3):870–884

    Google Scholar 

  140. Dixit G, Mishra SK (2014) Comparison of teaching learning-based optimization method and Taguchi method by analysing force in turning by single point cutting tool. Int J Sci Res Dev 2(10):712–716

    Google Scholar 

  141. Chaudhary K, Chaudhary H (2015) Optimal design of planar slider-crank mechanism using teaching-learning-based optimization algorithm. J Mech Sci Technol 29(12):5189–5198

    Article  Google Scholar 

  142. Chakraborty D, Rathi A, Singh R, Pathak VK, Chaudhary K, Chaudhary H (2021) Design of a Stephenson III six-bar path generating mechanism for index finger rehabilitation device using nature-inspired algorithms. Neural Comput Appl 33(24):17315–17329

    Article  Google Scholar 

  143. Sleesongsom S, Bureerat S (2017) Four-bar linkage path generation through self-adaptive population size teaching-learning based optimization. Knowl-Based Syst 1(135):180–191

    Article  Google Scholar 

  144. Bulatović RR, Miodragović G, Bošković MS (2016) Modified Krill Herd (MKH) algorithm and its application in dimensional synthesis of a four-bar linkage. Mech Mach Theory 1(95):1–21

    Article  Google Scholar 

  145. Abderazek H, Yildiz AR, Mirjalili S (2020) Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl-Based Syst 5(191):105237

    Article  Google Scholar 

  146. Bataller A, Cabrera JA, Clavijo M, Castillo JJ (2016) Evolutionary synthesis of mechanisms applied to the design of an exoskeleton for finger rehabilitation. Mech Mach Theory 1(105):31–43

    Article  Google Scholar 

  147. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  148. Birbil Şİ, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3):263–282

    Article  MathSciNet  MATH  Google Scholar 

  149. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491

    Article  Google Scholar 

  150. Rabanal P, Rodríguez I, Rubio F (2008) Solving dynamic TSP by using river formation dynamics. In: 2008 Fourth International Conference on Natural Computation 1: 246–250. IEEE.

  151. Shah-Hosseini H (2009) Optimization with the nature-inspired intelligent water drops algorithm. Evol Comput 57(2):297–320

    Google Scholar 

  152. Qaiyum A, Mohammad A (2022) A novel approach for optimal synthesis of path generator four-bar planar mechanism using improved harmony search algorithm. Aust J Mech Eng 29:1–4

    Article  Google Scholar 

  153. Moosavian N, Roodsari BK (2013) Soccer league competition algorithm, a new method for solving systems of nonlinear equations. Int J Intell Sci 4(01):7

    Article  Google Scholar 

  154. Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 1(19):177–187

    Article  Google Scholar 

  155. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  156. Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: 2009 international conference of soft computing and pattern recognition pp. 43–48. IEEE.

  157. Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Article  MathSciNet  MATH  Google Scholar 

  158. Rao R (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput 11(1):107–130

    Google Scholar 

  159. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    MathSciNet  Google Scholar 

  160. Singh R, Pathak VK (2020) Mechanical design of a slider-crank mechanism for a knee orthotic device using the jaya algorithm. Applied mechatronics and mechanics. Apple Academic Press, New Jersey, pp 209–222

    Chapter  Google Scholar 

  161. Yogesh CK, Hariharan M, Ngadiran R, Adom AH, Yaacob S, Berkai C, Polat K (2017) A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal. Expert Syst Appl 1(69):149–158

    Google Scholar 

  162. De A, Kumar SK, Gunasekaran A, Tiwari MK (2017) Sustainable maritime inventory routing problem with time window constraints. Eng Appl Artif Intell 1(61):77–95

    Article  Google Scholar 

  163. Pathak VK, Singh AK, Singh R, Chaudhary H (2017) A modified algorithm of particle swarm optimization for form error evaluation. Technisches Messen 84(4):272–92

    Article  Google Scholar 

  164. Gao H, Xu W (2011) Particle swarm algorithm with hybrid mutation strategy. Appl Soft Comput 11(8):5129–5142

    Article  Google Scholar 

  165. Santra D, Mukherjee A, Sarker K, Chatterjee D (2016) Hybrid PSO-ACO algorithm to solve economic load dispatch problem with transmission loss for small scale power system. In: 2016 international conference on intelligent control power and instrumentation (ICICPI). IEEE, pp. 226–230

  166. Alexandridis A, Chondrodima E, Sarimveis H (2016) Cooperative learning for radial basis function networks using particle swarm optimization. Appl Soft Comput 1(49):485–497

    Article  Google Scholar 

  167. El-Mihoub TA, Hopgood AA, Nolle L, Battersby A (2006) Hybrid genetic algorithms: a review. Eng Lett 13(2):124–137

    Google Scholar 

  168. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  169. Ram DJ, Sreenivas TH, Subramaniam KG (1996) Parallel simulated annealing algorithms. J Parallel Distrib Comput 37(2):207–212

    Article  Google Scholar 

  170. Kim JW, Jeong S, Kim J, Seo T (2016) Numerical hybrid Taguchi-random coordinate search algorithm for path synthesis. Mech Mach Theory 1(102):203–216

    Article  Google Scholar 

  171. Lin WY (2010) A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar linkage. Mech Mach Theory 45(8):1096–1107

    Article  MATH  Google Scholar 

  172. Hosseini H, Farzad A, Majeed F, Hensel O, Nasirahmadi A (2022) Multi-objective optimal design and development of a four-bar mechanism for weed control. Machines 10(3):198

    Article  Google Scholar 

  173. Nguyen-Van S, Lieu QX, Xuan-Mung N, Nguyen TT (2022) A new study on optimization of four-bar mechanisms based on a hybrid-combined differential evolution and Jaya algorithm. Symmetry 14(2):381

    Article  Google Scholar 

  174. Schröcker HP, Husty ML, McCarthy JM (2007) Kinematic mapping based assembly mode evaluation of planar four-bar mechanisms. J Mech Des. https://doi.org/10.1115/1.2747635

    Article  Google Scholar 

  175. Perez A, McCarthy JM (2005) Clifford algebra exponentials and planar linkage synthesis equations. J Mech Des. https://doi.org/10.1115/1.1904047

    Article  Google Scholar 

  176. Baskar A, Bandyopadhyay S (2019) A homotopy-based method for the synthesis of defect-free mechanisms satisfying secondary design considerations. Mech Mach Theory 1(133):395–416

    Article  Google Scholar 

  177. McCarthy JM, Soh GS (2010) Geometric design of linkages. Springer Science & Business Media, New York

    MATH  Google Scholar 

  178. Sundram J, Larochelle P (2015) Using optimization for the mixed exact-approximate synthesis of planar mechanisms. In: International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers. 57137: V05BT08A081

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanpreet Singh.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, V.K., Singh, R., Sharma, A. et al. A Historical Review on the Computational Techniques for Mechanism Synthesis: Developments Up to 2022. Arch Computat Methods Eng 30, 1131–1156 (2023). https://doi.org/10.1007/s11831-022-09829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09829-1

Navigation