Skip to main content
Log in

A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Multiscale simulation and homogenization of materials have become the major computational technology as well as engineering tools in material modeling and material design. However, the concurrent multiscale simulations require extensive computational resources, in which the CPU time increases exponentially as the spatial and temporal scale increase. In fact, with only a few exceptions, both hierarchical and concurrent multiscale modeling techniques have not been adopted in the industrial sector, primarily because of their computational cost. Recently, the rapid developments in artificial intelligence technology as well as the fast growth in computational resources and data have stimulated a widespread adoption of machine learning-based methodologies to enhance the computational efficiency and accuracy in multiscale simulations and their applications. Even though there is a great expectation of a revolution propelled by the artificial intelligence and machine learning technology in computational materials and computational mechanics, the machine learning-based multiscale modeling and simulation is still at its infant stage. In this paper, we aim at a state-of-the-art review on the machine learning-based multiscale modeling and simulation of materials, and its applications in composite homogenization, defect mechanics modeling, and material design, to provide an overview as well as perspectives on these innovative techniques, which may soon replace the conventional multiscale modeling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Horstemeyer FM (2009) Multiscale modeling: a review. In: Practical aspects of computational chemistry. Springer, Dordrecht, pp 87–135

    Chapter  Google Scholar 

  2. Meier-Schellersheim M, Fraser ID, Klauschen F (2009) Multiscale modeling for biologists. Wiley Interdiscip Rev: Syst Biol Med 1(1):4–14

    Google Scholar 

  3. Kwon YW, Allen DH, Talreja R (2008) Multiscale modeling and simulation of composite materials and structures, vol 47. Springer, New York

    Book  MATH  Google Scholar 

  4. Weinberg EJ, Shahmirzadi D, Mofrad MRK (2010) On the multiscale modeling of heart valve biomechanics in health and disease. Biomech Model Mechanobiol 9(4):373–387

    Article  Google Scholar 

  5. Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    Article  MathSciNet  Google Scholar 

  6. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864

    Article  MathSciNet  Google Scholar 

  7. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133

    Article  MathSciNet  Google Scholar 

  8. Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  MathSciNet  Google Scholar 

  9. Tsai C-W, Lai C-F, Chiang M-C, Yang LT (2013) Data mining for internet of things: a survey. IEEE Commun Surv Tutor 16(1):77–97

    Article  Google Scholar 

  10. Cambria E, White B (2014) Jumping NLP curves: a review of natural language processing research. IEEE Comput Intell Mag 9(2):48–57

    Article  Google Scholar 

  11. Silver D, Huang A, Maddison C, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  12. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  13. Nash W, Drummond T, Birbilis N (2018) A review of deep learning in the study of materials degradation. NPJ Mater Degrad 2(1):1–12

    Article  Google Scholar 

  14. Wei J, Chu X, Sun X-Y, Xu K, Deng H-X, Chen J, Wei Z, Lei M (2019) Machine learning in materials science. InfoMat 1(3):338–358

    Article  Google Scholar 

  15. Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques. Emerg Artif Intell Appl Comput Eng 160(1):3–24

    Google Scholar 

  16. Singh A, Thakur N, Sharma A (2016) A review of supervised machine learning algorithms. In: 2016 3rd international conference on computing for sustainable global development (INDIACom), IEEE, pp 1310–1315

  17. Bengio Y, Courville AC, Vincent P (2012) Unsupervised feature learning and deep learning: a review and new perspectives. Computing Research Repository (CoRR), abs/1206.5538 1, 2012

  18. Lloyd S, Mohseni M, Rebentrost P (2013) Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411

  19. Olaode A, Naghdy G, Todd C (2014) Unsupervised classification of images: a review. Int J Image Process 8(5):325–342

    Google Scholar 

  20. Zhu XJ (2005) Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences

  21. Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth Lect Artif Intell Mach Learn 3(1):1–130

    MATH  Google Scholar 

  22. Zhifei S, Joo EM (2012) A review of inverse reinforcement learning theory and recent advances. In: 2012 IEEE congress on evolutionary computation, IEEE, pp 1–8

  23. Levine S (2018) Reinforcement learning and control as probabilistic inference: tutorial and review. arXiv preprint arXiv:1805.00909

  24. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  25. Xuegong Z (2000) Introduction to statistical learning theory and support vector machines. Acta Autom Sin 26(1):32–42

    MathSciNet  Google Scholar 

  26. Warmuth MK, Liao J, Rätsch G, Mathieson M, Putta S, Lemmen C (2003) Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 43:667–673

    Article  Google Scholar 

  27. Serra JM, Baumes LA, Moliner M, Serna P, Corma A (2007) Zeolite synthesis modelling with support vector machines: a combinatorial approach. Comb Chem High Throughput Screen 10:13–24

    Article  Google Scholar 

  28. Rish I (2001) An empirical study of the Naive Bayes classifier. In: International Joint Conferences on Artificial Intelligence Organization (IJCAI) 2001 workshop on empirical methods in artificial intelligence, vol 3, pp 41–46

  29. Hand D, Yu K (2007) Idiot’s Bayes: not so stupid after all? Int Stat Rev 69:385–398. https://doi.org/10.1111/j.1751-5823.2001.tb00465.x

    Article  MATH  Google Scholar 

  30. Cramer G, Ford R, Hall R (1976) Estimation of toxic hazard-a decision tree approach. Food Cosmet Toxicol 16(3):255–276

    Article  Google Scholar 

  31. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    Article  MathSciNet  Google Scholar 

  32. Gehrke J, Ganti V, Ramakrishnan R, Loh W-Y (1999) BOAT–optimistic decision tree construction. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, pp 169–180

  33. Ericson BJ (2004) Decision tree data structure for use in case-based reasoning. Google Patents. US Patent 6,704,719

  34. Hassoun MH (1995) Fundamentals of Artificial neural networks. MIT press, Cambridge

    MATH  Google Scholar 

  35. Saikia P, Baruah RD, Singh SK, Chaudhuri PK (2020) Artificial neural networks in the domain of reservoir characterization: a review from shallow to deep models. Comput Geosci 135:104357

    Article  Google Scholar 

  36. Cho K-H, No KT, Scheraga HA (2002) A polarizable force field for water using an artificial neural network. J Mol Struct 641(1):77–91

    Article  Google Scholar 

  37. Amato F, González-Hernández JL, Havel J (2012) Artificial neural networks combined with experimental design: a soft approach for chemical kinetics. Talanta 93:72–78

    Article  Google Scholar 

  38. Akbarpour H, Mohajeri M, Moradi M (2013) Investigation on the synthesis conditions at the interpore distance of nanoporous anodic aluminum oxide: a comparison of experimental study, artificial neural network, and multiple linear regression. Comput Mater Sci 79:75–81

    Article  Google Scholar 

  39. Butcher JB, Day C, Austin J, Haycock P, Verstraeten D, Schrauwen B (2014) Defect detection in reinforced concrete using random neural architectures. Comput-Aided Civil Infrastruct Eng 29(3):191–207

    Article  Google Scholar 

  40. Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387

    Article  MathSciNet  MATH  Google Scholar 

  41. Jha D, Ward L, Paul A, Liao W-K, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13

    Article  Google Scholar 

  42. Zhong B, Xing X, Love P, Wang X, Luo H (2019) Convolutional neural network: deep learning-based classification of building quality problems. Adv Eng Inform 40:46–57

    Article  Google Scholar 

  43. Yin C, Zhu Y, Fei J, He X (2017) A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5:21954–21961

    Article  Google Scholar 

  44. Xu L, Ren JS, Liu C, Jia J (2014) Deep convolutional neural network for image deconvolution. Adv Neural Inf Process Syst 27:1790–1798

    Google Scholar 

  45. Guo T, Dong J, Li H, Gao Y (2017) Simple convolutional neural network on image classification. In: 2017 IEEE 2nd international conference on big data analysis (ICBDA), IEEE, pp 721–724

  46. Chen F-C, Jahanshahi MR (2017) NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans Ind Electron 65(5):4392–4400

    Article  Google Scholar 

  47. Zhang L, Yang F, Zhang YD, Zhu YJ (2016) Road crack detection using deep convolutional neural network. In: 2016 IEEE international conference on image processing (ICIP), IEEE, pp 3708–3712

  48. Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y (2017) Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4):818

    Article  Google Scholar 

  49. Hao X, Zhang G, Ma S (2016) Deep learning. Int J Semant Comput 10(03):417–439

    Article  Google Scholar 

  50. Pascanu R, Gulcehre C, Cho K, Bengio Y (2013) How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026

  51. Gal Y, Ghahramani Z (2016) A theoretically grounded application of dropout in recurrent neural networks. Adv Neural Inf Process Syst 29:1019–1027

    Google Scholar 

  52. Sutskever I, Martens J, Hinton GE (2011) Generating text with recurrent neural networks. In: International Conference on Machine Learning (ICML)

  53. Choi E, Schuetz A, Stewart W, Sun J (2016) Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24:112. https://doi.org/10.1093/jamia/ocw112

    Article  Google Scholar 

  54. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF (2018) Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep 8(1):1–13

    Google Scholar 

  55. Güera D, Delp EJ (2018) Deepfake video detection using recurrent neural networks. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS), IEEE, pp 1–6

  56. Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) An efficient machine learning approach to establish structure-property linkages. Comput Mater Sci 156:17–25

    Article  Google Scholar 

  57. Sundararaghavan V (2014) Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes. Integr Mater Manuf Innov 3(1):19

    Article  Google Scholar 

  58. Mosser L, Dubrule O, Blunt MJ (2017) Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys Rev E 96(4):043309

    Article  Google Scholar 

  59. Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018) Material structure-property linkages using three-dimensional convolutional neural networks. Acta Mater 146:76–84

    Article  Google Scholar 

  60. Wang Z-L, Adachi Y (2019) Property prediction and properties-to-microstructure inverse analysis of steels by a machine-learning approach. Mater Sci Eng A 744:661–670

    Article  Google Scholar 

  61. Bangaru SS, Wang C, Hassan M, Jeon HW, Ayiluri T (2019) Estimation of the degree of hydration of concrete through automated machine learning based microstructure analysis-a study on effect of image magnification. Adv Eng Inform 42:100975

    Article  Google Scholar 

  62. Liu R, Kumar A, Chen Z, Agrawal A, Sundararaghavan V, Choudhary A (2015) A predictive machine learning approach for microstructure optimization and materials design. Sci Rep 5(1):1–12

    Google Scholar 

  63. Paul A, Acar P, Liao W-K, Choudhary A, Sundararaghavan V, Agrawal A (2019) Microstructure optimization with constrained design objectives using machine learning-based feedback-aware data-generation. Comput Mater Sci 160:334–351

    Article  Google Scholar 

  64. Kitahara AR, Holm EA (2018) Microstructure cluster analysis with transfer learning and unsupervised learning. Integr Mater Manuf Innov 7(3):148–156

    Article  Google Scholar 

  65. Azimi SM, Britz D, Engstler M, Fritz M, Mücklich F (2018) Advanced steel microstructural classification by deep learning methods. Sci Rep 8(1):1–14

    Article  Google Scholar 

  66. Steinberger D, Song H, Sandfeld S (2019) Machine learning-based classification of dislocation microstructures. Front Mater 6:141

    Article  Google Scholar 

  67. Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P, Petzold L, Kuhl E (2019) Integrating machine learning and multiscale modeling perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit Med 2(1):1–11

    Article  Google Scholar 

  68. Peng GC, Alber M, Tepole AB, Cannon WR, De S, Dura-Bernal S, Garikipati K, Karniadakis G, Lytton WW, Perdikaris P, Kuhl E (2021) Multiscale modeling meets machine learning: what can we learn? Arch Comput Methods Eng 28(3):1017–1037

    Article  MathSciNet  Google Scholar 

  69. Chapman J, Ramprasad R (2020) Multiscale modeling of defect phenomena in platinum using machine learning of force fields. JOM 72(12):4346–4358

    Article  Google Scholar 

  70. Han C, Zhang P, Bluestein D, Cong G, Deng Y (2021) Artificial intelligence for accelerating time integrations in multiscale modeling. J Comput Phys 427:110053

    Article  MathSciNet  MATH  Google Scholar 

  71. Karapiperis K, Stainier L, Ortiz M, Andrade J (2021) Data-driven multiscale modeling in mechanics. J Mech Phys Solids 147:104239

    Article  MathSciNet  Google Scholar 

  72. Mortazavi B, Podryabinkin EV, Roche S, Rabczuk T, Zhuang X, Shapeev AV (2020) Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater Horiz 7(9):2359–2367

    Article  Google Scholar 

  73. Hambli R, Katerchi H, Benhamou C-L (2011) Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech Model Mechanobiol 10(1):133–145

    Article  Google Scholar 

  74. Xiao S, Hu R, Li Z, Attarian S, Björk K-M, Lendasse A (2020) A machine-learning-enhanced hierarchical multiscale method for bridging from molecular dynamics to continua. Neural Comput Appl 32(18):14359–14373

    Article  Google Scholar 

  75. Ingolfsson H, Neale C, Carpenter T, Shrestha R, Lopez C, Tran T, Oppelstrup T, Bhatia H, Stanton L, Zhang X, Sundram S, Natale FD, Agarwal A, Dharuman G, Schumacher SK, Turbyville T, Gulten G, Van Q, Goswami D, Jean-Francios F, Agamasu C, Chen D, Hettige J, Travers T, Sarkar S, Surh M, Yang Y, Moody A, Liu S, Essen BV, Voter A, Ramanathan A, Hengartner N, Simanshu D, Stephen A, Bremer P-T, Gnanakaran S, Glosli J, Lightstone F, McCormick F, Nissley D, Streitz F (2020) Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Res Sq. https://doi.org/10.21203/rs.3.rs-50842/v1

    Article  Google Scholar 

  76. Rupp M (2015) Special issue on machine learning and quantum mechanics. Int J Quantum Chem 115:1003–1004

    Article  Google Scholar 

  77. Rupp M, Von Lilienfeld OA, Burke K (2018) Guest editorial: Special topic on data-enabled theoretical chemistry. AIP Publishing LLC, Melville

    Google Scholar 

  78. Schneider W, Guo H (2018) Machine learning. J Phys Chem A 122:879

    Article  Google Scholar 

  79. Prezhdo O (2020) Advancing physical chemistry with machine learning. J Phys Chem Lett 11:9656–9658

    Article  Google Scholar 

  80. Tkatchenko A (2020) Machine learning for chemical discovery. Nat Commun 11:4125

    Article  Google Scholar 

  81. Kirkpatrick P, Ellis C (2004) Chemical space. Nature 432(7019):823–824

    Article  Google Scholar 

  82. Reymond J (2015) The chemical space project. Acc Chem Res 48(3):722–730

    Article  Google Scholar 

  83. Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401

    Article  Google Scholar 

  84. Behler J, Martonak R, Donadio D, Parrinello M (2008) Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys Rev Lett 100:185501

    Article  Google Scholar 

  85. Behler J (2017) First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed 56:12828–12840

    Article  Google Scholar 

  86. Smith J, Isayev O, Roitberg A (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8:3192–3203

    Article  Google Scholar 

  87. Faraji S, Ghasemi S, Rostami S, Rasoulkhani R, Schaefer B, Goedecker S, Amsler M (2017) High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride. Phys Rev B 95:104105

    Article  Google Scholar 

  88. Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) Schnet-a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722

    Article  Google Scholar 

  89. Unke O, Meuwly M (2018) A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information. J Chem Phys 148:241708

    Article  Google Scholar 

  90. Isayev O, Fourches D, Muratov EN, Oses C, Rasch K, Tropsha A, Curtarolo S (2015) Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater 27(3):735–743

    Article  Google Scholar 

  91. Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A (2017) Universal fragment descriptors for predicting properties of inorganic crystals. Nat Commun 8(1):1–12

    Article  Google Scholar 

  92. Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120(14):145301

    Article  Google Scholar 

  93. Xie T, Grossman JC (2018) Hierarchical visualization of materials space with graph convolutional neural networks. J Chem Phys 149(17):174111

    Article  Google Scholar 

  94. Gong S, Xie T, Zhu T, Wang S, Fadel ER, Li Y, Grossman JC (2019) Predicting charge density distribution of materials using a local-environment-based graph convolutional network. Phys Rev B 100(18):184103

    Article  Google Scholar 

  95. Lemm D, von Rudorff GF, von Lilienfeld OA (2021) Machine learning based energy-free structure predictions of molecules, transition states, and solids. Nat Commun 12(1):1–10

    Article  Google Scholar 

  96. Gao T, Li H, Li W, Li L, Fang C, Li H, Hu L, Lu Y, Su Z-M (2016) A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. J Cheminform 8(1):1–17

    Article  Google Scholar 

  97. Nagai R, Akashi R, Sasaki S, Tsuneyuki S (2018) Neural-network kohn-sham exchange-correlation potential and its out-of-training transferability. J Chem Phys 148(24):241737

    Article  Google Scholar 

  98. Allam O, Cho BW, Kim KC, Jang SS (2018) Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. RSC Adv 8(69):39414–39420

    Article  Google Scholar 

  99. Seino J, Kageyama R, Fujinami M, Ikabata Y, Nakai H (2018) Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density. J Chem Phys 148(24):241705

    Article  Google Scholar 

  100. Tovey S, Narayanan Krishnamoorthy A, Sivaraman G, Guo J, Benmore C, Heuer A, Holm C (2020) DFT accurate interatomic potential for molten NaCl from machine learning. J Phys Chem C 124(47):25760–25768

    Article  Google Scholar 

  101. Lawler R, Liu Y-H, Majaya N, Allam O, Ju H, Kim JY, Jang SS (2021) DFT-machine learning approach for accurate prediction of \(pK_{a}\). J Phys Chem A 125(39):8712–8722

    Article  Google Scholar 

  102. Ribeiro JV, Bernardi RC, Rudack T, Stone JE, Phillips JC, Freddolino PL, Schulten K (2016) QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci Rep 6(1):1–14

    Article  Google Scholar 

  103. Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A (2018) An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MedChemComm 9(6):920–936

    Article  Google Scholar 

  104. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347(6294):631–639

    Article  Google Scholar 

  105. Binder K (1995) Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, Oxford

    Google Scholar 

  106. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta (BBA) - General Subjects 1850(5):872–877

    Article  Google Scholar 

  107. Hsu Y-C, Yu C-H, Buehler MJ (2020) Using deep learning to predict fracture patterns in crystalline solids. Matter 3(1):197–211

    Article  Google Scholar 

  108. Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) . Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28.

  109. Lew AJ, Yu C-H, Hsu Y-C, Buehler MJ (2021) Deep learning model to predict fracture mechanisms of graphene. NPJ 2D Mater Appl 5(1):1–8

    Article  Google Scholar 

  110. Kadupitiya J, Sun F, Fox G, Jadhao V (2020) Machine learning surrogates for molecular dynamics simulations of soft materials. J Comput Sci 42:101107

    Article  Google Scholar 

  111. Wang Y, Ribeiro JML, Tiwary P (2020) Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr Opin Struct Biol 61:139–145

    Article  Google Scholar 

  112. Ma A, Dinner AR (2005) Automatic method for identifying reaction coordinates in complex systems. J Phys Chem B 109(14):6769–6779

    Article  Google Scholar 

  113. Jung H, Covino R, Hummer G (2019) Artificial intelligence assists discovery of reaction coordinates and mechanisms from molecular dynamics simulations. arXiv preprint arXiv:1901.04595

  114. Muñoz-Gil G, Garcia-March MA, Manzo C, Martín-Guerrero JD, Lewenstein M (2020) Single trajectory characterization via machine learning. New J Phys 22(1):013010

    Article  MathSciNet  Google Scholar 

  115. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes CR, Wang L-P, Lane TJ, Pande VS (2015) Mdtraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109(8):1528–1532

    Article  Google Scholar 

  116. Doerr S, Majewski M, Pérez A, Kramer A, Clementi C, Noe F, Giorgino T, De Fabritiis G (2021) Torchmd: a deep learning framework for molecular simulations. J Chem Theory Comput 17(4):2355–2363

    Article  Google Scholar 

  117. Botu V, Batra R, Chapman J, Ramprasad R (2017) Machine learning force fields: construction, validation, and outlook. J Phys Chem C 121(1):511–522

    Article  Google Scholar 

  118. Huan TD, Batra R, Chapman J, Krishnan S, Chen L, Ramprasad R (2017) A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Comput Mater 3(1):1–8

    Article  Google Scholar 

  119. Botu V, Ramprasad R (2015) Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int J Quantum Chem 115(16):1074–1083

    Article  Google Scholar 

  120. Gkeka P, Stoltz G, Barati Farimani A, Belkacemi Z, Ceriotti M, Chodera JD, Dinner AR, Ferguson AL, Maillet J-B, Minoux H, Peter C, Pietrucci F, Silveira A, Tkatchenko A, Trstanova Z, Wiewiora R, Lelièvre T (2020) Machine learning force fields and coarse-grained variables in molecular dynamics: application to materials and biological systems. J Chem Theory Comput 16(8):4757–4775

    Article  Google Scholar 

  121. Han R, Luber S (2020) Trajectory-based machine learning method and its application to molecular dynamics. Mol Phys 118(19–20):1788189

    Article  Google Scholar 

  122. Zong H, Pilania G, Ding X, Ackland GJ, Lookman T (2018) Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning. NPJ Comput Mater 4(1):1–8

    Article  Google Scholar 

  123. Pattnaik P, Raghunathan S, Kalluri T, Bhimalapuram P, Jawahar CV, Priyakumar UD (2020) Machine learning for accurate force calculations in molecular dynamics simulations. J Phys Chem A 124(34):6954–6967

    Article  Google Scholar 

  124. Wang J, Olsson S, Wehmeyer C, Pérez A, Charron NE, De Fabritiis G, Noé F, Clementi C (2019) Machine learning of coarse-grained molecular dynamics force fields. ACS Cent Sci 5(5):755–767

    Article  Google Scholar 

  125. Betancourt M (2017) A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint, arXiv:1701.02434

  126. Girolami M, Calderhead B (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J R Stat Soc: B 73(2):123–214

    Article  MathSciNet  MATH  Google Scholar 

  127. Noé F, Olsson S, Köhler J, Wu H (2019) Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science. https://doi.org/10.1126/science.aaw1147

    Article  Google Scholar 

  128. Bhatia H, Carpenter TS, Ingólfsson HI, Dharuman G, Karande P, Liu S, Oppelstrup T, Neale C, Lightstone FC, Van Essen B, Glosli JN (2021) Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nat Mach Intell 3(5):401–409

    Article  Google Scholar 

  129. Oishi A, Yagawa G (2017) Computational mechanics enhanced by deep learning. Comput Methods Appl Mech Eng 327:327–351

    Article  MathSciNet  MATH  Google Scholar 

  130. Martínez-Martínez F, Rupérez-Moreno MJ, Martínez-Sober M, Solves-Llorens JA, Lorente D, Serrano-López A, Martínez-Sanchis S, Monserrat C, Martín-Guerrero JD (2017) A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Comput Biol Med 90:116–124

    Article  Google Scholar 

  131. Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B (2019) A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 6:110

    Article  Google Scholar 

  132. Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the fourth paradigm of science in materials science. Appl Mater 4(5):053208

    Article  Google Scholar 

  133. Schmidt J, Marques MR, Botti S, Marques MA (2019) Recent advances and applications of machine learning in solid-state materials science. NPJ Comput Mater 5(1):1–36

    Article  Google Scholar 

  134. Yang K, Xu X, Yang B, Cook B, Ramos H, Krishnan NA, Smedskjaer MM, Hoover C, Bauchy M (2019) Predicting the young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning. Sci Rep 9(1):1–11

    Google Scholar 

  135. Bishnoi S, Singh S, Ravinder R, Bauchy M, Gosvami NN, Kodamana H, Krishnan NA (2019) Predicting young’s modulus of oxide glasses with sparse datasets using machine learning. J Non-Cryst Solids 524:119643

    Article  Google Scholar 

  136. Moghadam PZ, Rogge SM, Li A, Chow C-M, Wieme J, Moharrami N, Aragones-Anglada M, Conduit G, Gomez-Gualdron DA, Van Speybroeck V, Fairen-Jimenez D (2019) Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1(1):219–234

    Article  Google Scholar 

  137. Huber N, Tsakmakis C (2001) A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comput Methods Appl Mech Eng 191(3–5):353–384

    Article  MATH  Google Scholar 

  138. Lefik M, Schrefler BA (2003) Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput Methods Appl Mech Eng 192(28–30):3265–3283

    Article  MATH  Google Scholar 

  139. Jung S, Ghaboussi J (2006) Characterizing rate-dependent material behaviors in self-learning simulation. Comput Methods Appl Mech Eng 196(1–3):608–619

    Article  MATH  Google Scholar 

  140. Bacic B (2006) Bridging the gap between biomechanics and artificial intelligence. In: ISBS-conference proceedings archive

  141. Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL (2018) Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities. J Biomech 81:1–11

    Article  Google Scholar 

  142. Bodduluri S, Newell JD Jr, Hoffman EA, Reinhardt JM (2013) Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad Radiol 20(5):527–536

    Article  Google Scholar 

  143. Kigka VI, Sakellarios AI, Tsompou P, Kyriakidis S, Siogkas P, Andrikos I, Michalis LK, Fotiadis DI (2019) Site specific prediction of atherosclerotic plaque progression using computational biomechanics and machine learning. In: 2019 41st annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 6998–7001

  144. Madani A, Bakhaty A, Kim J, Mubarak Y, Mofrad M (2019) Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. J Biomech Eng. https://doi.org/10.1115/1.4043290

    Article  Google Scholar 

  145. Khatibi S, Aghajanpour A (2020) Machine learning: a useful tool in geomechanical studies, a case study from an offshore gas field. Energies 13(14):3528

    Article  Google Scholar 

  146. Mohamadian N, Ghorbani H, Wood DA, Mehrad M, Davoodi S, Rashidi S, Soleimanian A, Shahvand AK (2020) A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning. J Pet Sci Eng 196:107811

    Article  Google Scholar 

  147. Mutalova R, Morozov A, Osiptsov AA, Vainshtein A, Burnaev EV, Shel E, Paderin G (2019) Machine learning on field data for hydraulic fracturing design optimization. arXiv preprint arXiv:1910.14499

  148. Wang LK, Sun AY (2020) Well spacing optimization for permian basin based on integrated hydraulic fracturing, reservoir simulation and machine learning study. In: Unconventional Resources Technology Conference (URTEC)

  149. Edwards, Jason, Glaser, Carrie, and Eric Romberg. "Using High Resolution Geomechanical Data and Machine Learning to Inform Drilling Decisions and Completions Operations in the Wolfcamp, Delaware Basin." Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019.

  150. Tran NL, Gupta I, Devegowda D, Jayaram V, Karami H, Rai C, Sondergeld CH (2020) Application of interpretable machine-learning workflows to identify brittle, fracturable, and producible rock in horizontal wells using surface drilling data. SPE Reserv Eval Eng 23(04):1328–1342

    Article  Google Scholar 

  151. Liu M, Liang L, Sun W (2019) Estimation of in vivo constitutive parameters of the aortic wall using a machine learning approach. Comput Methods Appl Mech Eng 347:201–217

    Article  MathSciNet  MATH  Google Scholar 

  152. Liang L, Liu M, Martin C, Elefteriades JA, Sun W (2017) A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomech Model Mechanobiol 16(5):1519–1533

    Article  Google Scholar 

  153. Liu M, Liang L, Sun W (2020) A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput Methods Appl Mech Eng 372:113402

    Article  MathSciNet  MATH  Google Scholar 

  154. Wang J, Li T, Cui F, Hui C-Y, Yeo J, Zehnder AT (2021) Metamodeling of constitutive model using gaussian process machine learning. J Mech Phys Solids 154:104532

    Article  MathSciNet  Google Scholar 

  155. Ibragimova O, Brahme A, Muhammad W, Lévesque J, Inal K (2021) A new ANN based crystal plasticity model for FCC materials and its application to non-monotonic strain paths. Int J Plast 144:103059

    Article  Google Scholar 

  156. Asaro RJ, Needleman A (1985) Overview no. 42 texture development and strain hardening in rate dependent polycrystals. Acta Metall 33(6):923–953

    Article  Google Scholar 

  157. Lin Y, Zhang J, Zhong J (2008) Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel. Comput Mater Sci 43(4):752–758

    Article  Google Scholar 

  158. Li H-Y, Hu J-D, Wei D-D, Wang X-F, Li Y-H (2012) Artificial neural network and constitutive equations to predict the hot deformation behavior of modified 2.25 Cr-1Mo steel. Mater Des 42:192–197

    Article  Google Scholar 

  159. Li X, Roth CC, Mohr D (2019) Machine-learning based temperature-and rate-dependent plasticity model: application to analysis of fracture experiments on DP steel. Int J Plast 118:320–344

    Article  Google Scholar 

  160. Jang DP, Fazily P, Yoon JW (2021) Machine learning-based constitutive model for J2-plasticity. Int J Plast 138:102919

    Article  Google Scholar 

  161. Muravleva E, Oseledets I, Koroteev D (2018) Application of machine learning to viscoplastic flow modeling. Phys Fluids 30(10):103102

    Article  Google Scholar 

  162. Abueidda DW, Koric S, Sobh NA, Sehitoglu H (2021) Deep learning for plasticity and thermo-viscoplasticity. Int J Plast 136:102852

    Article  Google Scholar 

  163. Xu C, Wang C, Ji F, Yuan X (2012) Finite-element neural network-based solving 3-D differential equations in MFL. IEEE Trans Magn 48(12):4747–4756

    Article  Google Scholar 

  164. Hashash Y, Jung S, Ghaboussi J (2004) Numerical implementation of a neural network based material model in finite element analysis. Int J Numer Methods Eng 59(7):989–1005

    Article  MATH  Google Scholar 

  165. Ramuhalli P, Udpa L, Udpa SS (2005) Finite-element neural networks for solving differential equations. IEEE Trans Neural Netw 16(6):1381–1392

    Article  Google Scholar 

  166. Vurtur Badarinath P, Chierichetti M, Davoudi Kakhki F (2021) A machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systems. Sensors 21(5):1654

    Article  Google Scholar 

  167. Liang L, Liu M, Martin C, Sun W (2018) A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis. J R Soc Interface 15(138):20170844

    Article  Google Scholar 

  168. Liang L, Liu M, Martin C, Sun W (2018) A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta. Int J Numer Methods Biomed Eng 34(8):3103

    Article  Google Scholar 

  169. Chierichetti M, Davoudi F, Huang D, Vurturbadarinath P, Linzmeyer M (2021) Surrogated finite element models using machine learning. In: AIAA Scitech 2021 Forum, p 0309

  170. Battaglia PW, Pascanu R, Lai M, Rezende D, Kavukcuoglu K (2016) Interaction networks for learning about objects, relations and physics. arXiv preprint arXiv:1612.00222

  171. Chang MB, Ullman T, Torralba A, Tenenbaum JB (2016) A compositional object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341

  172. Sanchez-Gonzalez A, Heess N, Springenberg JT, Merel J, Riedmiller M, Hadsell R, Battaglia P (2018) Graph networks as learnable physics engines for inference and control. In: International conference on machine learning, PMLR, pp 4470–4479

  173. Mrowca D, Zhuang C, Wang E, Haber N, Fei-Fei L, Tenenbaum JB, Yamins DL (2018) Flexible neural representation for physics prediction. arXiv preprint arXiv:1806.08047

  174. Li Y, Wu J, Zhu J-Y, Tenenbaum JB, Torralba A, Tedrake R (2019) Propagation networks for model-based control under partial observation. In: 2019 international conference on robotics and automation (ICRA), IEEE, pp 1205–1211

  175. Pfaff T, Fortunato M, Sanchez-Gonzalez A, Battaglia PW (2020) Learning mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409

  176. Lino M, Cantwell C, Bharath AA, Fotiadis S (2021) Simulating continuum mechanics with multi-scale graph neural networks. arXiv preprint arXiv:2106.04900

  177. Sun C-T, Vaidya RS (1996) Prediction of composite properties from a representative volume element. Compos Sci Technol 56(2):171–179

    Article  Google Scholar 

  178. Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, Hirosawa S (2007) Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos Sci Technol 67(9):1870–1891

    Article  Google Scholar 

  179. Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    Article  MathSciNet  MATH  Google Scholar 

  180. Fish J, Yu Q, Shek K (1999) Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45(11):1657–1679

    Article  MATH  Google Scholar 

  181. Yu W (2016) A unified theory for constitutive modeling of composites. J Mech Mater Struct 11(4):379–411

    Article  MathSciNet  Google Scholar 

  182. Liu X, Rouf K, Peng B, Yu W (2017) Two-step homogenization of textile composites using mechanics of structure genome. Compos Struct 171:252–262

    Article  Google Scholar 

  183. Liu X, Yu W, Gasco F, Goodsell J (2019) A unified approach for thermoelastic constitutive modeling of composite structures. Compos B 172:649–659

    Article  Google Scholar 

  184. Aboudi J (2004) The generalized method of cells and high-fidelity generalized method of cells micromechanical models—a review. Mech Adv Mater Struct 11(4–5):329–366

    Article  Google Scholar 

  185. Aboudi J, Arnold SM, Bednarcyk BA (2013) Micromechanics of composite materials: a generalized multiscale analysis approach. Butterworth-Heinemann, Oxford

    Google Scholar 

  186. Feyel F, Chaboche J-L (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  187. Lefik M, Boso D, Schrefler B (2009) Artificial neural networks in numerical modelling of composites. Comput Methods Appl Mech Eng 198(21–26):1785–1804

    Article  MATH  Google Scholar 

  188. Unger JF, Könke C (2009) Neural networks as material models within a multiscale approach. Comput Struct 87(19–20):1177–1186

    Article  Google Scholar 

  189. Le B, Yvonnet J, He Q-C (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Methods Eng 104(12):1061–1084

    Article  MathSciNet  MATH  Google Scholar 

  190. Lu X, Giovanis DG, Yvonnet J, Papadopoulos V, Detrez F, Bai J (2019) A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput Mech 64(2):307–321

    Article  MathSciNet  MATH  Google Scholar 

  191. Wang K, Sun W (2018) A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput Methods Appl Mech Eng 334:337–380

    Article  MathSciNet  MATH  Google Scholar 

  192. Wang K, Sun W (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216–241

    Article  MathSciNet  MATH  Google Scholar 

  193. Wang K, Sun W, Du Q (2019) A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. Comput Mech 64(2):467–499

    Article  MathSciNet  MATH  Google Scholar 

  194. Vlassis NN, Ma R, Sun W (2020) Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity. Comput Methods Appl Mech Eng 371:113299

    Article  MathSciNet  MATH  Google Scholar 

  195. Koeppe A, Bamer F, Markert B (2020) An intelligent nonlinear meta element for elastoplastic continua: deep learning using a new time-distributed residual u-net architecture. Comput Methods Appl Mech Eng 366:113088

    Article  MathSciNet  MATH  Google Scholar 

  196. Li B, Zhuang X (2020) Multiscale computation on feedforward neural network and recurrent neural network. Front Struct Civil Eng 14(6):1285–1298

    Article  Google Scholar 

  197. Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comp Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  MATH  Google Scholar 

  198. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667

    Article  MathSciNet  MATH  Google Scholar 

  199. Li H, Kafka OL, Gao J, Yu C, Nie Y, Zhang L, Tajdari M, Tang S, Guo X, Li G, Tang S, Cheng G, Liu W-K (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64(2):281–305

    Article  MathSciNet  MATH  Google Scholar 

  200. Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61(5):521–541

    Article  MATH  Google Scholar 

  201. Liu Z, Wu C, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput Methods Appl Mech Eng 345:1138–1168

    Article  MathSciNet  MATH  Google Scholar 

  202. Liu Z, Wu C (2019) Exploring the 3D architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids 127:20–46

    Article  MathSciNet  MATH  Google Scholar 

  203. Liu Z, Wu C, Koishi M (2019) Transfer learning of deep material network for seamless structure-property predictions. Comput Mech 64(2):451–465

    Article  MathSciNet  MATH  Google Scholar 

  204. Nguyen-Thanh VM, Zhuang X, Rabczuk T (2020) A deep energy method for finite deformation hyperelasticity. Eur J Mech A 80:103874

    Article  MathSciNet  MATH  Google Scholar 

  205. Yang H, Guo X, Tang S, Liu WK (2019) Derivation of heterogeneous material laws via data-driven principal component expansions. Comput Mech 64(2):365–379

    Article  MathSciNet  MATH  Google Scholar 

  206. Sagiyama K, Garikipati K (2019) Machine learning materials physics: deep neural networks trained on elastic free energy data from martensitic microstructures predict homogenized stress fields with high accuracy. arXiv preprint arXiv:1901.00524

  207. Fritzen F, Kunc O (2018) Two-stage data-driven homogenization for nonlinear solids using a reduced order model. Eur J Mech A 69:201–220

    Article  MathSciNet  MATH  Google Scholar 

  208. Im S, Kim H, Kim W, Cho M (2021) Neural network constitutive model for crystal structures. Comput Mech 67(1):185–206

    Article  MATH  Google Scholar 

  209. Wu L, Zulueta K, Major Z, Arriaga A, Noels L (2020) Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput Methods Appl Mech Eng 360:112693

    Article  MathSciNet  MATH  Google Scholar 

  210. Rocha I, Kerfriden P, van der Meer F (2020) Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. Eur J Mech A 82:103995

    Article  MathSciNet  MATH  Google Scholar 

  211. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa M (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116(52):26414–26420

    Article  Google Scholar 

  212. Yuan M, Paradiso S, Meredig B, Niezgoda SR (2018) Machine learning-based reduce order crystal plasticity modeling for ICME applications. Integr Mater Manuf Innov 7(4):214–230

    Article  Google Scholar 

  213. Chung I, Im S, Cho M (2021) A neural network constitutive model for hyperelasticity based on molecular dynamics simulations. Int J Numer Methods Eng 122(1):5–24

    Article  MathSciNet  Google Scholar 

  214. Rahman A, Deshpande P, Radue MS, Odegard GM, Gowtham S, Ghosh S, Spear AD (2021) A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Compos Sci Technol 207:108627

    Article  Google Scholar 

  215. Capuano G, Rimoli JJ (2019) Smart finite elements: a novel machine learning application. Comput Methods Appl Mech Eng 345:363–381

    Article  MathSciNet  MATH  Google Scholar 

  216. Wei H, Zhao S, Rong Q, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916

    Article  Google Scholar 

  217. Rong Q, Wei H, Huang X, Bao H (2019) Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods. Compos Sci Technol 184:107861

    Article  Google Scholar 

  218. Liu X, Peng B, Yu W (2021) Multiscale modeling of the effective thermal conductivity of 2D woven composites by mechanics of structure genome and neural networks. Int J Heat Mass Transf 179:121673

    Article  Google Scholar 

  219. Mosavi A, Rabczuk T, Varkonyi-Koczy AR (2017) Reviewing the novel machine learning tools for materials design. International conference on global research and education. Springer, Cham, pp 50–58

    Google Scholar 

  220. Gubernatis J, Lookman T (2018) Machine learning in materials design and discovery: examples from the present and suggestions for the future. Phys Rev Mater 2(12):120301

    Article  Google Scholar 

  221. Gu GX, Chen C-T, Buehler MJ (2018) De novo composite design based on machine learning algorithm. Extreme Mech Lett 18:19–28

    Article  Google Scholar 

  222. Gu GX, Chen C-T, Richmond DJ, Buehler MJ (2018) Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 5(5):939–945

    Article  Google Scholar 

  223. Yu C-H, Qin Z, Buehler MJ (2019) Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano Futures 3(3):035001

    Article  Google Scholar 

  224. Yu Y, Hur T, Jung J, Jang IG (2019) Deep learning for determining a near-optimal topological design without any iteration. Struct Multidiscip Optim 59(3):787–799

    Article  Google Scholar 

  225. Sosnovik I, Oseledets I (2019) Neural networks for topology optimization. Russ J Numer Anal Math Model 34(4):215–223

    Article  MathSciNet  MATH  Google Scholar 

  226. Abueidda DW, Koric S, Sobh NA (2020) Topology optimization of 2D structures with nonlinearities using deep learning. Comput Struct 237:106283

    Article  Google Scholar 

  227. Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-driven real-time topology optimization under moving morphable component-based framework. J Appl Mech 86(1):011004

    Article  Google Scholar 

  228. Hamel CM, Roach DJ, Long KN, Demoly F, Dunn ML, Qi HJ (2019) Machine-learning based design of active composite structures for 4D printing. Smart Mater Struct 28(6):065005

    Article  Google Scholar 

  229. Wu S, Hamel CM, Ze Q, Yang F, Qi HJ, Zhao R (2020) Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Adv Intell Syst 2(8):2000060

    Article  Google Scholar 

  230. Tao R, Ji L, Li Y, Wan Z, Hu W, Wu W, Liao B, Ma L, Fang D (2020) 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. Composites B 201:108344

    Article  Google Scholar 

  231. Osman MM, Shazly M, El-Danaf EA, Jamshidi P, Attallah MM (2020) Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications. Composites B 184:107715

    Article  Google Scholar 

  232. Wu L, Liu L, Wang Y, Zhai Z, Zhuang H, Krishnaraju D, Wang Q, Jiang H (2020) A machine learning-based method to design modular metamaterials. Extreme Mech Lett 36:100657

    Article  Google Scholar 

  233. Kumar S, Tan S, Zheng L, Kochmann DM (2020) Inverse-designed spinodoid metamaterials. NPJ Comput Mater 6(1):1–10

    Article  Google Scholar 

  234. Bessa MA, Glowacki P, Houlder M (2019) Bayesian machine learning in metamaterial design: fragile becomes supercompressible. Adv Mater 31(48):1904845

    Article  Google Scholar 

  235. Chen C-T, Gu GX (2020) Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv Sci 7(5):1902607

    Article  Google Scholar 

  236. Oh S, Jung Y, Lee I, Kang N (2018) Design automation by integrating generative adversarial networks and topology optimization. In: International design engineering technical conferences and computers and information in engineering conference, vol 51753, American Society of Mechanical Engineers, pp 02–03008

  237. Oh S, Jung Y, Kim S, Lee I, Kang N (2019) Deep generative design: integration of topology optimization and generative models. J Mech Des. https://doi.org/10.1115/1.4044229

    Article  Google Scholar 

  238. Sharpe C, Seepersad CC (2019) Topology design with conditional generative adversarial networks. In: International design engineering technical conferences and computers and information in engineering conference, vol 59186, American Society of Mechanical Engineers, pp 02–03062

  239. Qian J, Li S (2011) Application of multiscale cohesive zone model to simulate fracture in polycrystalline solids. J Eng Mater Technol. https://doi.org/10.1115/1.4002647

    Article  Google Scholar 

  240. Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199(9):547–556

    Article  MATH  Google Scholar 

  241. Lyu D, Li S (2017) Multiscale crystal defect dynamics: a coarse-grained lattice defect model based on crystal microstructure. J Mech Phys Solids 107:379–410

    Article  MathSciNet  MATH  Google Scholar 

  242. Zhang L-W, Xie Y, Lyu D, Li S (2019) Multiscale modeling of dislocation patterns and simulation of nanoscale plasticity in body-centered cubic (BCC) single crystals. J Mech Phys Solids 130:297–319

    Article  MathSciNet  MATH  Google Scholar 

  243. Lyu D, Li S (2019) A multiscale dislocation pattern dynamics: towards an atomistic-informed crystal plasticity theory. J Mech Phys Solids 122:613–632

    Article  MathSciNet  Google Scholar 

  244. Zheng B, Gu GX (2020) Machine learning-based detection of graphene defects with atomic precision. Nano-Micro Lett. 12(1):1–13

    Article  MathSciNet  Google Scholar 

  245. Liu Z, Wei H, Huang T, Wu C (2020) Intelligent multiscale simulation based on process-guided composite database. arXiv preprint arXiv:2003.09491

  246. Mozaffar M, Liao S, Xie X, Saha S, Park C, Cao J, Liu WK, Gan Z (2021) Mechanistic artificial intelligence (Mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J Mater Process Technol 302:117485

    Article  Google Scholar 

  247. Liu WK (2021) Mechanistic data science for STEM education and applications. Springer, Cham

    Book  Google Scholar 

  248. Mojumder S, Tao L, Li Y, Liu WK (2021) Mechanistic data science for modeling and design of aerospace composite materials. arXiv preprint arXiv:2112.00968

  249. Zhang L, Cheng L, Li H, Gao J, Yu C, Domel R, Yang Y, Tang S, Liu WK (2021) Hierarchical deep-learning neural networks: finite elements and beyond. Comput Mech 67(1):207–230

    Article  MathSciNet  MATH  Google Scholar 

  250. Saha S, Gan Z, Cheng L, Gao J, Kafka OL, Xie X, Li H, Tajdari M, Kim HA, Liu WK (2021) Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering. Comput Methods Appl Mech Eng 373:113452

    Article  MathSciNet  MATH  Google Scholar 

  251. Zhang L, Lu Y, Tang S, Liu WK (2022) HiDeNN-TD: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414

    Article  MathSciNet  MATH  Google Scholar 

  252. Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging. Addit Manuf 21:517–528

    Google Scholar 

  253. Baturynska I, Semeniuta O, Martinsen K (2018) Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: a conceptual framework. Procedia Cirp 67:227–232

    Article  Google Scholar 

  254. Baumgartl H, Tomas J, Buettner R, Merkel M (2020) A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Progress Addit Manuf 5:277–285

    Article  Google Scholar 

  255. Du Y, Mukherjee T, DebRoy T (2021) Physics-informed machine learning and mechanistic modeling of additive manufacturing to reduce defects. Appl Mater Today 24:101123

    Article  Google Scholar 

  256. Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J (2021) Material-structure-performance integrated laser-metal additive manufacturing. Science 372(6545):eabg1487

    Article  Google Scholar 

  257. Zhang Z, Zhang Z, Di Caprio F, Gu GX (2022) Machine learning for accelerating the design process of double-double composite structures. Compos Struct 285:115233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishara, D., Xie, Y., Liu, W.K. et al. A State-of-the-Art Review on Machine Learning-Based Multiscale Modeling, Simulation, Homogenization and Design of Materials. Arch Computat Methods Eng 30, 191–222 (2023). https://doi.org/10.1007/s11831-022-09795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09795-8

Navigation