Skip to main content
Log in

Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Artificial Intelligence (AI), machine learning (ML), and deep learning (DL) are emerging techniques capable of delivering elegant and affordable solutions which can surpass those obtained through traditional methods. Despite the recent and rapid advancements in developing next-gen AI-based techniques, we continue to lack a systemic understanding of how AI, ML, and DL can fundamentally be integrated into the structural engineering domain. To advocate for a smooth and expedite the adoption of AI techniques into our field, we present a state-of-the-art review that is specifically tailored to structural engineers. This review aims to serve three purposes: (1) introduce the art and science of AI, ML, and DL in terms of its commonly used algorithms and techniques with particular attention to those of high value to this domain, (2) map the current knowledge within this domain through a scientometrics analysis of more than 4000 scholarly works with a focus on those published in the last decade to identify best practices in terms of procedures, performance metrics, and dataset size etc., and (3) review past and recent efforts that applied AI derivatives into the various subfields within structural engineering. Special attention is given to the application of AI, ML, and DL in earthquake, wind, and fire engineering, as well as structural health monitoring, damage detection, and prediction of properties of structural materials as collected from over 200 sources. Finally, a discussion on trends, recommendations, best practices, and advanced topics towards the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. This survey primarily favored search via “keywords” and confined this search to the las decades – future efforts can apply other filters such as search by “document title”, “document abstract” etc. or for a different time span.

  2. It is worth noting that the analysis displayed herein is based primarily based on our observations and constraints of this work. We do believe that a more systematic examination by means of social trends, surveys, and peer practices etc. is warranted.

  3. Some works reported a practice of eliminating data points with up to a certain degree of deviation from the global trend of data [91].

Abbreviations

AI:

Artificial intelligence

ALD:

Applied load

ANFIS:

Adoptive neuro-fuzzy interface

ANN:

Artificial Neural Network

ARI:

Arias intensity

ASI:

Acceleration spectrum intensity

BA:

Bagging technique

BD:

Bracketed duration

BFGS:

Broyden–Fletcher–Goldfarb–Shanno

BP-ANN:

Back propagation-Artificial Neural Network

CFL:

Ceiling finish layer

CGB:

Powell–Beale conjugate gradient algorithm

CGF:

Fletcher–Powell conjugate gradient back propagation

CGP:

Polak–Ribiere conjugate gradient back propagation

CSA:

Coupled simulated annealing

CVA:

Cumulative absolute velocity

DT:

Decision tree

EPA:

Effective peak acceleration

FFNN:

Feed forward neural network

FMCDM:

Fuzzy multi-criteria decision analysis

GA:

Grid search/genetic algorithm

GANs:

Generative adversarial networks

GBRT:

Gradient boosting regression tree

GDA:

Gradient descent with adaptive linear back propagation gradient

GDM:

Gradient descent BP with momentum

GDX:

Gradient descent w/momentum and adaptive linear back propagation

GEP:

Gene expression programming

GMDH:

Group method of data handling

GP:

Genetic programming (linear-based GP, Cartesian GP, grammatical GP, stack GP)

GSA:

Grid search algorithm

HI:

Housner intensity

HSSB:

High strength steel bolt

IBS:

Interfacial bond strength

JTY:

Joist type

KNN:

K-nearest neighbor

LGP:

Linear genetic programming

LM:

Levenberg–Marquart (back propagation)

LOOCV:

Leave one out cross-validation

LSTM:

The long short-term memory

LWLS-SVMR:

Locally weighted least squares support vector machines for regression

MCDM:

Multi-criteria decision analysis

MCFT:

Modified compression field theory

MGGP:

Multigene genetic programming

ML:

Machine learning

MLS-SVMR:

Multi-output least-squares support vector machine for regression

MOE:

Module of elasticity

MOR:

Module of rupture

OSS:

One step secant back propagation

PCA:

Principal component analysis

PGA:

Peak ground acceleration

PGD:

Peak ground displacement

PGV:

Peak ground velocity

PP:

Predominant period

PRSC:

Perfobon rib shear connector

PSO:

Particle swarm optimization

RC:

Reinforced concrete

RF:

Random forest

RP:

Resilient back propagation

SCG:

Scaled conjugate gradient back propagation

SD:

Significant duration

SED:

Specific energy density

SVM:

Support vector machine

TCC:

Thermal conductivity of concrete

TGP:

Tree-based Genetic Programming

UD:

Uniform Duration

References

  1. Ziegel ER (2003) The elements of statistical learning. Technometrics. https://doi.org/10.1198/tech.2003.s770

    Article  MATH  Google Scholar 

  2. Russell S, Norvig P (2010) Artificial intelligence a modern approach, 3rd edn. Pearson Education Inc, London

    MATH  Google Scholar 

  3. Anderson J, Smith A (2014) AI, robotics, and the future of jobs. Technol Rev 6:51

    Google Scholar 

  4. Zhou G, Zhang C, Li Z, Ding K, Wang C (2020) Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int J Prod Res. https://doi.org/10.1080/00207543.2019.1607978

    Article  Google Scholar 

  5. Randhawa GS, Soltysiak MPM, El Roz H, de Souza CPE, Hill KA, Kari L (2020) Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLoS ONE. https://doi.org/10.1371/journal.pone.0232391

    Article  Google Scholar 

  6. Naser MZ (2021) Mechanistically informed machine learning and artificial intelligence in fire engineering and sciences. Fire Technol 57:1–44. https://doi.org/10.1007/s10694-020-01069-8

    Article  Google Scholar 

  7. Mills H, Treagust D (2003) Engineering education. Is problem-based or project-based learning the answer? Australas J Eng Educ 3:2–16

    Google Scholar 

  8. Stevens R, O’connor K, Garrison L, Jocuns A, Amos DM (2008) Becoming an engineer: toward a three dimensional view of engineering learning. J Eng Educ. https://doi.org/10.1002/j.2168-9830.2008.tb00984.x

    Article  Google Scholar 

  9. CSI, SAP2000 (2016) Analysis reference manual. Comput. Struct. INC. CSI Berkeley

  10. Behnood A, Golafshani EM (2020) Machine learning study of the mechanical properties of concretes containing waste foundry sand. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118152

    Article  Google Scholar 

  11. Zhu XQ, Law SS (2015) Structural health monitoring based on vehicle-bridge interaction: accomplishments and challenges. Adv Struct Eng. https://doi.org/10.1260/1369-4332.18.12.1999

    Article  Google Scholar 

  12. Naser MZ (2020) Enabling cognitive and autonomous infrastructure in extreme events through computer vision. Innov Infrastruct Solut 5:99. https://doi.org/10.1007/s41062-020-00351-6

    Article  Google Scholar 

  13. Sun H, Burton HV, Huang H (2021) Machine learning applications for building structural design and performance assessment: state-of-the-art review. J Build Eng 33:101816. https://doi.org/10.1016/j.jobe.2020.101816

    Article  Google Scholar 

  14. Xie Y, Ebad-Sichani M, Padgett JE, DesRoches R (2020) The promise of implementing machine learning in earthquake engineering: a state-of-the-art review. Earthq Spectra. https://doi.org/10.1177/8755293020919419

    Article  Google Scholar 

  15. Naser MZ (2020) Autonomous fire resistance evaluation. ASCE J Struct Eng 146:04020103. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002641

    Article  Google Scholar 

  16. Somvanshi M, Chavan P, Tambade S, Shinde SV (2017) A review of machine learning techniques using decision tree and support vector machine. In: Proc - 2nd Int Conf Comput Commun Control Autom. ICCUBEA 2016. https://doi.org/10.1109/ICCUBEA.2016.7860040

  17. Salehi H, Burgueño R (2018) Emerging artificial intelligence methods in structural engineering. Elsevier, Amsterdam

    Book  Google Scholar 

  18. Lu P, Chen S, Zheng Y (2012) Artificial intelligence in civil engineering. Math Probl Eng 2012:1–23. https://doi.org/10.1155/2012/145974

    Article  Google Scholar 

  19. Ullah Z, Al-Turjman F, Mostarda L, Gagliardi R (2020) Applications of artificial intelligence and machine learning in smart cities. Comput Commun. https://doi.org/10.1016/j.comcom.2020.02.069

    Article  Google Scholar 

  20. Shukla H, Piratla K (2020) Leakage detection in water pipelines using supervised classification of acceleration signals. Autom Constr. https://doi.org/10.1016/j.autcon.2020.103256

    Article  Google Scholar 

  21. Tran-Ngoc H, Khatir S, Le-Xuan T, De Roeck G, Bui-Tien T, Abdel Wahab M (2020) A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures. Int J Eng Sci 157:103376. https://doi.org/10.1016/j.ijengsci.2020.103376

    Article  MathSciNet  MATH  Google Scholar 

  22. Naser MZ, Zhou H (2021) Machine learning to derive unified material models for steel under fire conditions. In: Deo RC, Samui P, Kisi O, Yaseen ZM (eds) Intelligent data analytics for decision-support systems in hazard mitigation: theory and practice of hazard mitigation. Singapore, Springer, pp 213–225

    Chapter  Google Scholar 

  23. Naser MZZ, Thai S, Thai H-THT (2021) Evaluating structural response of concrete-filled steel tubular columns through machine learning. J. Build. Eng. 34:101888. https://doi.org/10.1016/j.jobe.2020.101888

    Article  Google Scholar 

  24. Flood I (1989) A neural network approach to the sequencing of construction tasks. In Proceedings of the 6th international symposium on automation and robotics in construction. https://doi.org/10.22260/isarc1989/0026

  25. Vanluchene RD, Sun R (1990) Neural networks in structural engineering. Comput Civ Infrastruct Eng. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x

    Article  Google Scholar 

  26. Adeli H (2001) Neural networks in civil engineering: 1989–2000. Comput Civ Infrastruct Eng 16:126–142. https://doi.org/10.1111/0885-9507.00219

    Article  Google Scholar 

  27. Zhang Q, Barri K, Jiao P, Salehi H, Alavi AH (2020) Genetic programming in civil engineering: advent, applications and future trends. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09894-7

    Article  Google Scholar 

  28. Mirrashid M, Naderpour H (2020) Recent trends in prediction of concrete elements behavior using soft computing (2010–2020). Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09500-7

    Article  Google Scholar 

  29. Penadés-Plà V, García-Segura T, Martí JV, Yepes V (2016) A review of multi-criteria decision-making methods applied to the sustainable bridge design. Sustainability 8:1295. https://doi.org/10.3390/su8121295

    Article  Google Scholar 

  30. Aldwaik M, Adeli H (2014) Advances in optimization of highrise building structures. Struct Multidiscip Optim 50:899–919. https://doi.org/10.1007/s00158-014-1148-1

    Article  Google Scholar 

  31. Burnwal AP, Das SK, Kumar A, Das B, Burnwal B (2013) On soft computing techniques in various areas. Comput Sci Inf Technol 3:59–68. https://doi.org/10.5121/csit.2013.3206

    Article  Google Scholar 

  32. Esmin AAA, Lambert-Torres G, Alvarenga GB (2006) Hybrid evolutionary algorithm based on PSO and GA mutation. In: Proceedings - Sixth Int Conf Hybrid Intell Syst Fourth Conf Neuro-Computing Evol Intell HIS-NCEI 2006 57. https://doi.org/10.1109/HIS.2006.264940

  33. Magdalena L (2010) What is soft computing? Revisiting possible answers. Int J Comput Intell Syst 3:148–159. https://doi.org/10.1080/18756891.2010.9727686

    Article  Google Scholar 

  34. Bohlin TP (2013) Practical grey-box process identification: theory and applications. Springer, New York

    MATH  Google Scholar 

  35. Zarringol M, Thai HT, Thai S, Patel V (2020) Application of ANN to the design of CFST columns. Structures. https://doi.org/10.1016/j.istruc.2020.10.048

    Article  Google Scholar 

  36. Bishop C (2007) Pattern recognition and machine learning. Technometrics. https://doi.org/10.1198/tech.2007.s518

    Article  MATH  Google Scholar 

  37. Murphy KP (2012) Machine learning: a probabilistic perspective (adaptive computation and machine learning series)

  38. Naser MZZ (2021) Observational analysis of fire-induced spalling of concrete through ensemble machine learning and surrogate modeling. J Mater Civ Eng 33:04020428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525

    Article  Google Scholar 

  39. Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: ACM Int Conf Proceeding Ser. ACM Press, New York, pp 161–168. https://doi.org/10.1145/1143844.1143865

  40. Iguyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res. https://doi.org/10.1162/153244303322753616

    Article  MATH  Google Scholar 

  41. Zheng A, Casari A (2018) Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media Inc, Newton

    Google Scholar 

  42. Unglert K, Radić V, Jellinek AM (2016) Principal component analysis vs. self-organizing maps combined with hierarchical clustering for pattern recognition in volcano seismic spectra. J Volcanol Geotherm Res 320:58–74. https://doi.org/10.1016/J.JVOLGEORES.2016.04.014

    Article  Google Scholar 

  43. Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H (2012) A new predictive model for compressive strength of HPC using gene expression programming. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2011.09.014

    Article  Google Scholar 

  44. Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. Wiley, Hoboken

    Book  Google Scholar 

  45. Pan L, Novák L, Lehký D, Novák D, Cao M (2021) Neural network ensemble-based sensitivity analysis in structural engineering: comparison of selected methods and the influence of statistical correlation. Comput Struct. https://doi.org/10.1016/j.compstruc.2020.106376

    Article  Google Scholar 

  46. Kodur VK, Naser MZ (2021) Classifying bridges for the risk of fire hazard via competitive machine learning. Adv Bridg Eng. https://doi.org/10.1186/s43251-020-00027-2

    Article  Google Scholar 

  47. Anguita D, Ghelardoni L, Ghio A, Oneto L, Ridella S (2012) The ‘K’ in K-fold cross validation. In: ESANN 2012 Proceedings, 20th Eur Symp Artif Neural Networks Comput. Intell Mach Learn

  48. Das SK (2013) Artificial neural networks in geotechnical engineering: modeling and application issues. In: Yang XS, Gandomi AH, Talatahari S, Alavi AH (eds) Metaheuristics in water, geotechnical and transport engineering. Elsevier, Amsterdam

    Google Scholar 

  49. Naser M, Abu-Lebdeh G, Hawileh R (2012) Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN. Constr Build Mater 37:301–309. https://doi.org/10.1016/j.conbuildmat.2012.07.001

    Article  Google Scholar 

  50. Babanajad SK, Gandomi AH, Alavi AH (2017) New prediction models for concrete ultimate strength under true-triaxial stress states: an evolutionary approach. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2017.03.011

    Article  Google Scholar 

  51. Naser M, Alavi A (2020) Insights into performance fitness and error metrics for machine learning. Under Rev

  52. Botchkarev A (2019) A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdiscip J Inf Knowl Manag 14:045–076. https://doi.org/10.28945/4184

    Article  Google Scholar 

  53. Seyedzadeh S, Pour Rahimian F, Rastogi P, Glesk I (2019) Tuning machine learning models for prediction of building energy loads. Sustain Cities Soc 47:101484. https://doi.org/10.1016/j.scs.2019.101484

    Article  Google Scholar 

  54. Jollife IT, Cadima J (2016) Principal component analysis: A review and recent developments. Philos Trans R Soc A Math Phys Eng Sci 374:2065. https://doi.org/10.1098/rsta.2015.0202

    Article  MathSciNet  Google Scholar 

  55. Li J, Dackermann U, Xu Y-L, Samali B (2011) Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct Control Heal Monit 18:207–226. https://doi.org/10.1002/stc.369

    Article  Google Scholar 

  56. Scikit, sklearn.decomposition.PCA—scikit-learn 0.24.1 documentation (n.d.) https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html. Accessed 5 Apr 2021

  57. Boser BE, Guyon IM, Vapnik VN (1992) Training algorithm for optimal margin classifiers. In: Proc Fifth Annu ACM Work Comput Learn Theory. https://doi.org/10.1145/130385.130401

  58. Çevik A, Kurtoğlu AE, Bilgehan M, Gülşan ME, Albegmprli HM (2015) Support vector machines in structural engineering: a review. J Civ Eng Manag 21:261. https://doi.org/10.3846/13923730.2015.1005021

    Article  Google Scholar 

  59. Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. https://doi.org/10.1016/S0893-6080(03)00169-2

    Article  MATH  Google Scholar 

  60. Scikit 1.4. Support Vector Machines—scikit-learn 0.24.1 documentation (n.d.) https://scikit-learn.org/stable/modules/svm.html. Accessed 5 Apr 2021

  61. Rokach L, Maimon O (2005) Top-down induction of decision trees classifiers: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 35:476. https://doi.org/10.1109/TSMCC.2004.843247

    Article  Google Scholar 

  62. Huang H, Burton HV (2019) Classification of in-plane failure modes for reinforced concrete frames with infills using machine learning. J Build Eng. https://doi.org/10.1016/j.jobe.2019.100767

    Article  Google Scholar 

  63. Scikit sklearn.ensemble.RandomForestClassifier—scikit-learn 0.24.1 documentation (2020). https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html . Accessed 9 Feb 2021

  64. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  65. Scikit sklearn.ensemble.GradientBoostingRegressor — scikit-learn 0.24.1 documentation (2020) https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html. accessed 9 Feb 2021

  66. XGBoost Python Package, Python Package Introduction—xgboost 1.4.0-SNAPSHOT documentation (2020) https://xgboost.readthedocs.io/en/latest/python/python_intro.html#early-stopping . Accessed 10 Feb 2021

  67. Gradient boosted tree (GBT) (2019) https://software.intel.com/en-us/daal-programming-guide-details-24 . Accessed 9 Apr 2019

  68. Mangalathu S, Jeon JS (2018) Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques. Eng Struct. https://doi.org/10.1016/j.engstruct.2018.01.008

    Article  Google Scholar 

  69. Scikit sklearn.neighbors.NearestNeighbors—scikit-learn 0.24.1 documentation (2021) https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html?highlight=knearest#sklearn.neighbors.NearestNeighbors.kneighbors. Accessed 5 Apr 2021

  70. Koza JR (1992) A genetic approach to finding a controller to back up a tractor-trailer truck. In: Proc 1992 Am Control Conf

  71. Alavi AH, Gandomi AH, Sahab MG, Gandomi M (2010) Multi expression programming: a new approach to formulation of soil classification. Eng Comput 26:111–118. https://doi.org/10.1007/s00366-009-0140-7

    Article  Google Scholar 

  72. Seitlllari A, Naser MZZ (2019) Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns. Comput Concr 24:271–282. https://doi.org/10.12989/cac.2019.24.3.271

    Article  Google Scholar 

  73. Willis M-J (2005) Genetic programming: an introduction and survey of applications. https://doi.org/10.1049/cp:19971199

  74. Aslam F, Farooq F, Amin MN, Khan K, Waheed A, Akbar A, Javed MF, Alyousef R, Alabdulijabbar H (2020) Applications of gene expression programming for estimating compressive strength of high-strength concrete. Adv Civ Eng 2020:1–23. https://doi.org/10.1155/2020/8850535

    Article  Google Scholar 

  75. Langdon WB (2020) Big data driven genetic improvement for maintenance of legacy software systems. ACM SIGEVOlution. https://doi.org/10.1145/3381343.3381345

    Article  Google Scholar 

  76. Ferreira C (2002) Gene expression programming in problem solving. Soft Comput Ind. https://doi.org/10.1007/978-1-4471-0123-9_54

    Article  Google Scholar 

  77. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  78. Cobaner M, Unal B, Kisi O (2009) Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J Hydrol 367:52–61. https://doi.org/10.1016/J.JHYDROL.2008.12.024

    Article  Google Scholar 

  79. Dongmei H, Shiqing H, Xuhui H, Xue Z (2017) Prediction of wind loads on high-rise building using a BP neural network combined with POD. J Wind Eng Ind Aerodyn 170:1–17. https://doi.org/10.1016/j.jweia.2017.07.021

    Article  Google Scholar 

  80. Scikit 1.17. Neural network models (supervised)—scikit-learn 0.24.1 documentation (2021) https://scikit-learn.org/stable/modules/neural_networks_supervised.html . Accessed 5 Apr 2021

  81. Cha YJ, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O (2018) Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput Civ Infrastruct Eng 33:731–747. https://doi.org/10.1111/mice.12334

    Article  Google Scholar 

  82. Cha YJ, Choi W, Büyüköztürk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Comput Civ Infrastruct Eng. https://doi.org/10.1111/mice.12263

    Article  Google Scholar 

  83. Cireşan DC, Meier U, Masci J, Gambardella LM, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. IJCAI Int Jt Conf Artif Intell. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210

    Article  Google Scholar 

  84. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  85. Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F (2020) Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12:492. https://doi.org/10.3390/su12020492

    Article  Google Scholar 

  86. Dimensions, Dimensions.ai (2021) https://www.dimensions.ai/

  87. Thelwall M (2018) Dimensions: a competitor to scopus and the web of science? J Informetr. https://doi.org/10.1016/j.joi.2018.03.006

    Article  Google Scholar 

  88. Gao J, Koopialipoor M, Armaghani DJ, Ghabussi A, Baharom S, Morasaei A, Shariati A, Khorami M, Zhou J (2020) Evaluating the bond strength of FRP in concrete samples using machine learning methods. Smart Struct Syst. https://doi.org/10.12989/sss.2020.26.4.403

    Article  Google Scholar 

  89. Naser MZ (2020) Machine learning assessment of fiber-reinforced polymer-strengthened and reinforced concrete members. ACI Struct J. https://doi.org/10.14359/51728073

    Article  Google Scholar 

  90. Marani A, Nehdi ML (2020) Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Constr Build Mater 265:120286. https://doi.org/10.1016/j.conbuildmat.2020.120286

    Article  Google Scholar 

  91. Javed MF, Amin MN, Shah MI, Khan K, Iftikhar B, Farooq F, Aslam F, Alyousef R, Alabduljabbar H (2020) Applications of gene expression programming and regression techniques for estimating compressive strength of bagasse ash based concrete. Crystals 10:1–17. https://doi.org/10.3390/cryst10090737

    Article  Google Scholar 

  92. Nguyen T, Kashani A, Ngo T, Bordas S (2019) Deep neural network with high-order neuron for the prediction of foamed concrete strength. Comput Civ Infrastruct Eng 34:316–332. https://doi.org/10.1111/mice.12422

    Article  Google Scholar 

  93. Jalal M, Grasley Z, Gurganus C, Bullard JW (2020) Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete. Constr Build Mater 256:119478. https://doi.org/10.1016/j.conbuildmat.2020.119478

    Article  Google Scholar 

  94. Sultana N, Zakir Hossain SM, Alam MS, Islam MS, Al Abtah MA (2020) Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete. Adv Eng Softw 149:102887. https://doi.org/10.1016/j.advengsoft.2020.102887

    Article  Google Scholar 

  95. Castelli M, Vanneschi L, Silva S (2013) Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2013.06.037

    Article  Google Scholar 

  96. Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, Nehdi ML (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  97. Ben Seghier MEA, Ouaer H, Ghriga MA, Menad NA, Thai DK (2020) Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel reinforcement and surrounding concrete. Neural Comput Appl 6:6905. https://doi.org/10.1007/s00521-020-05466-6

    Article  Google Scholar 

  98. Gorphade VG, Rao HS, Beulah M (2014) Development of genetic algorithm based neural network model for predicting workability and strength of high performance concrete. Int J Invent Eng Sci 2:2319–9598

    Google Scholar 

  99. Naseri H, Jahanbakhsh H, Hosseini P, Moghadas Nejad F (2020) Designing sustainable concrete mixture by developing a new machine learning technique. J Clean Prod 258:120578. https://doi.org/10.1016/j.jclepro.2020.120578

    Article  Google Scholar 

  100. Huang Y, Zhang J, Tze Ann F, Ma G (2020) Intelligent mixture design of steel fibre reinforced concrete using a support vector regression and firefly algorithm based multi-objective optimization model. Constr Build Mater 260:120457. https://doi.org/10.1016/j.conbuildmat.2020.120457

    Article  Google Scholar 

  101. Golafshani EM, Ashour A (2016) Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Autom Constr 64:7–19. https://doi.org/10.1016/j.autcon.2015.12.026

    Article  Google Scholar 

  102. Okazaki Y, Okazaki S, Asamoto S, Jo-Chun P (2020) Applicability of machine learning to a crack model in concrete bridges. Comput Civ Infrastruct Eng 35:775. https://doi.org/10.1111/mice.12532

    Article  Google Scholar 

  103. Kellouche Y, Boukhatem B, Ghrici M, Tagnit-Hamou A (2019) Exploring the major factors affecting fly-ash concrete carbonation using artificial neural network. Neural Comput Appl 31:969–988. https://doi.org/10.1007/s00521-017-3052-2

    Article  Google Scholar 

  104. Salami BA, Rahman SM, Oyehan TA, Maslehuddin M, Al-Dulaijan SU (2020) Ensemble machine learning model for corrosion initiation time estimation of embedded steel reinforced self-compacting concrete. Meas J Int Meas Conf 165:108141. https://doi.org/10.1016/j.measurement.2020.108141

    Article  Google Scholar 

  105. Ben Chaabene W, Flah M, Nehdi ML (2020) Machine learning prediction of mechanical properties of concrete: critical review. Constr Build Mater 260:119889. https://doi.org/10.1016/j.conbuildmat.2020.119889

    Article  Google Scholar 

  106. Guo S, Yu J, Liu X, Wang C, Jiang Q (2019) A predicting model for properties of steel using the industrial big data based on machine learning. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2018.12.056

    Article  Google Scholar 

  107. Chen CT, Gu GX (2019) Machine learning for composite materials. MRS Commun. https://doi.org/10.1557/mrc.2019.32

    Article  Google Scholar 

  108. Wei J, Chu X, Sun X, Xu K, Deng H, Chen J, Wei Z, Lei M (2019) Machine learning in materials science. InfoMat. https://doi.org/10.1002/inf2.12028

    Article  Google Scholar 

  109. Abdalla JA, Hawileh RA (2013) Artificial neural network predictions of fatigue life of steel bars based on hysteretic energy. J Comput Civ Eng. https://doi.org/10.1061/(asce)cp.1943-5487.0000185

    Article  MATH  Google Scholar 

  110. Fathi H, Nasir V, Kazemirad S (2020) Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Constr Build Mater 262:120848. https://doi.org/10.1016/j.conbuildmat.2020.120848

    Article  Google Scholar 

  111. Bal L, Buyle-Bodin F (2014) Artificial neural network for predicting creep of concrete. Neural Comput Appl 25:1359–1367. https://doi.org/10.1007/s00521-014-1623-z

    Article  Google Scholar 

  112. Ince R (2010) Artificial neural network-based analysis of effective crack model in concrete fracture. Fatigue Fract Eng Mater Struct 33:595–606. https://doi.org/10.1111/j.1460-2695.2010.01469.x

    Article  Google Scholar 

  113. Ahmad A, Kotsovou G, Cotsovos DM, Lagaros ND (2018) Assessing the accuracy of RC design code predictions through the use of artificial neural networks. Int J Adv Struct Eng 10:349–365. https://doi.org/10.1007/s40091-018-0202-4

    Article  Google Scholar 

  114. Kaloop MR, Kumar D, Samui P, Hu JW, Kim D (2020) Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr Build Mater 264:120198. https://doi.org/10.1016/j.conbuildmat.2020.120198

    Article  Google Scholar 

  115. Feng DC, Liu ZT, Wang XD, Jiang ZM, Liang SX (2020) Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm. Adv Eng Inform 45:101126. https://doi.org/10.1016/j.aei.2020.101126

    Article  Google Scholar 

  116. Chou JS, Tsai CF, Pham AD, Lu YH (2014) Machine learning in concrete strength simulations: multi-nation data analytics. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.09.054

    Article  Google Scholar 

  117. Thanh Duong H, Chi Phan H, Le TT, Duc Bui N (2020) Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model. Structures 28:757–765. https://doi.org/10.1016/j.istruc.2020.09.013

    Article  Google Scholar 

  118. Yan Y, Ren Q, Xia N, Shen L, Gu J (2015) Artificial neural network approach to predict the fracture parameters of the size effect model for concrete. Fatigue Fract Eng Mater Struct 38:1347–1358. https://doi.org/10.1111/ffe.12309

    Article  Google Scholar 

  119. Golafshani EM, Rahai A, Sebt MH, Akbarpour H (2012) Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic. Constr Build Mater 36:411–418. https://doi.org/10.1016/j.conbuildmat.2012.04.046

    Article  Google Scholar 

  120. Naik U, Kute S (2013) Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model. Int J Adv Struct Eng 5:1–12. https://doi.org/10.1186/2008-6695-5-29

    Article  Google Scholar 

  121. Hoang ND, Tran XL, Nguyen H (2020) Predicting ultimate bond strength of corroded reinforcement and surrounding concrete using a metaheuristic optimized least squares support vector regression model. Neural Comput Appl 32:7289–7309. https://doi.org/10.1007/s00521-019-04258-x

    Article  Google Scholar 

  122. Akin OO, Abejide OS (2019) Modelling of concrete compressive strength admixed with GGBFS using gene expression programming. J Soft Comput Civ Eng 3:43–53

    Google Scholar 

  123. Khademi F, Akbari M, Jamal SM, Nikoo M (2017) Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng 11:90–99. https://doi.org/10.1007/s11709-016-0363-9

    Article  Google Scholar 

  124. Qi P, He M, Li M, Zheng X, Li Z, Liu C, Zeng X, Tao D, Qi X, Ma Z (2020) Machine learning-based modeling for the duration of load effect in wood structural members under long-term sustained load. IEEE Access 8:17903–17915. https://doi.org/10.1109/ACCESS.2020.2966883

    Article  Google Scholar 

  125. Abuodeh OR, Abdalla JA, Hawileh RA (2020) Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2020.106552

    Article  Google Scholar 

  126. Abdalla JA, Hawileh RA (2021) Assessment of effect of strain amplitude and strain ratio on energy dissipation using machine learning. Lect Notes Civ Eng. https://doi.org/10.1007/978-3-030-51295-8_9

    Article  Google Scholar 

  127. Asim KM, Martínez-Álvarez F, Basit A, Iqbal T (2017) Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat Hazards. https://doi.org/10.1007/s11069-016-2579-3

    Article  Google Scholar 

  128. Arslan MH (2010) An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks. Eng Struct 32:1888–1898. https://doi.org/10.1016/j.engstruct.2010.03.010

    Article  Google Scholar 

  129. Mangalathu S, Burton HV (2019) Deep learning-based classification of earthquake-impacted buildings using textual damage descriptions. Int J Disaster Risk Reduct 36:101111. https://doi.org/10.1016/j.ijdrr.2019.101111

    Article  Google Scholar 

  130. Zhang Y, Burton HV, Sun H, Shokrabadi M (2018) A machine learning framework for assessing post-earthquake structural safety. Struct Saf. https://doi.org/10.1016/j.strusafe.2017.12.001

    Article  Google Scholar 

  131. Hwang SH, Mangalathu S, Shin J, Jeon JS (2020) Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames. J Build Eng 34:101905. https://doi.org/10.1016/j.jobe.2020.101905

    Article  Google Scholar 

  132. Morfidis K, Kostinakis K (2018) Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Eng Struct 165:120–141. https://doi.org/10.1016/j.engstruct.2018.03.028

    Article  Google Scholar 

  133. Luo H, Paal SG (2019) A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments. Comput Civ Infrastruct Eng 34:935–950. https://doi.org/10.1111/mice.12456

    Article  Google Scholar 

  134. Oh BK, Park Y, Park HS (2020) Seismic response prediction method for building structures using convolutional neural network. Struct Control Heal Monit 27:1–17. https://doi.org/10.1002/stc.2519

    Article  Google Scholar 

  135. Asteris PG, Nikoo M (2019) Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput Appl 31:4837–4847. https://doi.org/10.1007/s00521-018-03965-1

    Article  Google Scholar 

  136. Su L, He HJ (2019) Decision tree–based seismic damage prediction for reinforcement concrete frame buildings considering structural micro-characteristics. Adv Struct Eng 22:2097–2109. https://doi.org/10.1177/1369433219832508

    Article  Google Scholar 

  137. Liu Z, Zhang Z (2018) Artificial neural network based method for seismic fragility analysis of steel frames. KSCE J Civ Eng 22:708–717. https://doi.org/10.1007/s12205-017-1329-8

    Article  Google Scholar 

  138. Kareem A (2020) Emerging frontiers in wind engineering: computing, stochastics, machine learning and beyond. J Wind Eng Ind Aerodyn. https://doi.org/10.1016/j.jweia.2020.104320

    Article  Google Scholar 

  139. Hu G, Liu L, Tao D, Song J, Tse KT, Kwok KCS (2020) Deep learning-based investigation of wind pressures on tall building under interference effects. J Wind Eng Ind Aerodyn 201:104138. https://doi.org/10.1016/j.jweia.2020.104138

    Article  Google Scholar 

  140. Payán-Serrano O, Bojórquez E, Bojórquez J, Chávez R, Reyes-Salazar A, Barraza M, López-Barraza A, Rodríguez-Lozoya H, Corona E (2017) Prediction of maximum story drift of MDOF structures under simulated wind loads using artificial neural networks. Appl Sci 7:563. https://doi.org/10.3390/app7060563

    Article  Google Scholar 

  141. Nikose TJ, Sonparote RS (2020) Computing dynamic across-wind response of tall buildings using artificial neural network. J Supercomput 76:3788–3813. https://doi.org/10.1007/s11227-018-2708-8

    Article  Google Scholar 

  142. Paul R, Dalui SK (2020) Prognosis of wind-tempted mean pressure coefficients of cross-shaped tall buildings using artificial neural network, period. Polytech Civ Eng 64:1124–1143. https://doi.org/10.3311/PPci.16311

    Article  Google Scholar 

  143. Oh BK, Glisic B, Kim Y, Park HS (2019) Convolutional neural network-based wind-induced response estimation model for tall buildings. Comput Civ Infrastruct Eng 34:843–858. https://doi.org/10.1111/mice.12476

    Article  Google Scholar 

  144. Gavalda X, Ferrer-Gener J, Kopp GA, Giralt F (2011) Interpolation of pressure coefficients for low-rise buildings of different plan dimensions and roof slopes using artificial neural networks. J Wind Eng Ind Aerodyn 99:658–664. https://doi.org/10.1016/j.jweia.2011.02.008

    Article  Google Scholar 

  145. Bairagi AK, Dalui SK (2020) Forecasting of wind induced pressure on setback building using artificial neural network, period. Polytech Civ Eng 64:751–763. https://doi.org/10.3311/PPci.15769

    Article  Google Scholar 

  146. Abbas T, Kavrakov I, Morgenthal G, Lahmer T (2020) Prediction of aeroelastic response of bridge decks using artificial neural networks. Comput Struct 231:106198. https://doi.org/10.1016/j.compstruc.2020.106198

    Article  Google Scholar 

  147. Le V, Caracoglia L (2020) A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads. Comput Struct 231:106208. https://doi.org/10.1016/j.compstruc.2020.106208

    Article  Google Scholar 

  148. Buchanan AH, Abu AK (2016) Fire safety in buildings. Taylor & Francis, Milton Park

    Book  Google Scholar 

  149. Kodur V, Naser MZM (2020) Structural fire engineering, 1st edn. McGraw Hill Professional, New York

    Google Scholar 

  150. Dexters A, Leisted RR, Van Coile R, Welch S, Jomaas G (2019) Testing for knowledge: maximising information obtained from fire tests by using machine learning techniques. In: Interflam 2019. http://hdl.handle.net/1854/LU-8622485

  151. Bilgehan M, Kurtoğlu AE (2016) ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire. Neural Comput Appl 27:869–881. https://doi.org/10.1007/s00521-015-1902-3

    Article  Google Scholar 

  152. Fu F (2020) Fire induced progressive collapse potential assessment of steel framed buildings using machine learning. J Constr Steel Res. https://doi.org/10.1016/j.jcsr.2019.105918

    Article  Google Scholar 

  153. Naser MZ (2019) Can past failures help identify vulnerable bridges to extreme events? A biomimetical machine learning approach. Eng Comput. https://doi.org/10.1007/s00366-019-00874-2

    Article  Google Scholar 

  154. Panev Y, Kotsovinos P, Deeny S, Flint G (2021) The use of machine learning for the prediction of fire resistance of composite shallow floor systems. Fire Technol. https://doi.org/10.1007/s10694-021-01108-y

    Article  Google Scholar 

  155. Lazarevska M, Gavriloska AT, Laban M, Knezevic M, Cvetkovska M (2018) Determination of fire resistance of eccentrically loaded reinforced concrete columns using fuzzy neural networks. Complexity 2018:1–12. https://doi.org/10.1155/2018/8204568

    Article  Google Scholar 

  156. Ketabdari H, Saedi-Daryan A, Hassani N (2019) Predicting post-fire mechanical properties of grade 8.8 and 10.9 steel bolts. J Constr Steel Res 162:105735. https://doi.org/10.1016/j.jcsr.2019.105735

    Article  Google Scholar 

  157. Lee JHJ, Lee JHJ, Cho BS (2012) Effective prediction of thermal conductivity of concrete using neural network method. Int J Concr Struct Mater 6:177–186. https://doi.org/10.1007/s40069-012-0016-x

    Article  Google Scholar 

  158. Naser MZ, Uppala VA (2020) Properties and material models for construction materials post exposure to elevated temperatures. Mech Mater 142:103293. https://doi.org/10.1016/j.mechmat.2019.103293

    Article  Google Scholar 

  159. Naser MZ (2019) Heuristic machine cognition to predict fire-induced spalling and fire resistance of concrete structures. Autom Constr 106:102916. https://doi.org/10.1016/J.AUTCON.2019.102916

    Article  Google Scholar 

  160. Naser MZ (2019) Properties and material models for modern construction materials at elevated temperatures. Comput Mater Sci 160:16–29. https://doi.org/10.1016/J.COMMATSCI.2018.12.055

    Article  Google Scholar 

  161. Naser MZ (2019) Properties and material models for common construction materials at elevated temperatures. Constr Build Mater 10:192–206. https://doi.org/10.1016/j.conbuildmat.2019.04.182

    Article  Google Scholar 

  162. McKinney J, Ali F (2014) Artificial neural networks for the spalling classification & failure prediction times of high strength concrete columns. J Struct Fire Eng. https://doi.org/10.1260/2040-2317.5.3.203

    Article  Google Scholar 

  163. Naser MZZ, Seitllari A (2019) Concrete under fire: an assessment through intelligent pattern recognition. Eng Comput 36:1–14. https://doi.org/10.1007/s00366-019-00805-1

    Article  Google Scholar 

  164. Liu JC, Zhang Z (2020) A machine learning approach to predict explosive spalling of heated concrete. Arch Civ Mech Eng. https://doi.org/10.1007/s43452-020-00135-w

    Article  Google Scholar 

  165. Cachim PB (2011) Using artificial neural networks for calculation of temperatures in timber under fire loading. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.04.054

    Article  Google Scholar 

  166. Naser MZ (2019) Fire resistance evaluation through artificial intelligence: a case for timber structures. Fire Saf J 105:1–18. https://doi.org/10.1016/j.firesaf.2019.02.002

    Article  Google Scholar 

  167. Tasdemir SS, Altin M, Pehlivan GF, Saritas I, Didem S, Erkis B, Tasdemir SS (2015) Determining fire resistance of wooden construction elements through experimental studies and artificial neural network. J Int Mater Metal Eng 9:209–213

    Google Scholar 

  168. Cachim P (2019) ANN prediction of fire temperature in timber. J Struct Fire Eng 10:233–244. https://doi.org/10.1108/JSFE-06-2018-0012

    Article  Google Scholar 

  169. Tung PT, Hung PT (2020) Predicting fire resistance ratings of timber structures using artificial neural networks. J Sci Technol Civ Eng - NUCE 14:28–39. https://doi.org/10.31814/stce.nuce2020-14(2)-03

    Article  Google Scholar 

  170. Liu JC, Zhang Z (2020) Neural network models to predict explosive spalling of PP fiber reinforced concrete under heating. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101472

    Article  Google Scholar 

  171. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans R Soc A Math Phys Eng Sci 365:303. https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  172. Wu RT, Jahanshahi MR (2020) Data fusion approaches for structural health monitoring and system identification: past, present, and future. Struct Heal Monit. https://doi.org/10.1177/1475921718798769

    Article  Google Scholar 

  173. Jo-Chun P, Ujike I, Mishima K, Kusumoto M, Okazaki S (2020) Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr Build Mater 253:119238. https://doi.org/10.1016/j.conbuildmat.2020.119238

    Article  Google Scholar 

  174. Diez A, Khoa NLD, Makki Alamdari M, Wang Y, Chen F, Runcie P (2016) A clustering approach for structural health monitoring on bridges. J Civ Struct Health Monit 6:429–445. https://doi.org/10.1007/s13349-016-0160-0

    Article  Google Scholar 

  175. Kurian B, Liyanapathirana R (2020) Machine Learning Techniques for Structural Health Monitoring. Lect Notes Mech Eng. https://doi.org/10.1007/978-981-13-8331-1_1

    Article  Google Scholar 

  176. Athanasiou A, Ebrahimkhanlou A, Zaborac J, Hrynyk T, Salamone S (2020) A machine learning approach based on multifractal features for crack assessment of reinforced concrete shells. Comput Civ Infrastruct Eng 35:565–578. https://doi.org/10.1111/mice.12509

    Article  Google Scholar 

  177. Chen C, Fu J, Lu N, Chu Y, Hu J, Guo B, Zhao X (2019) Knowledge-based identification and damage detection of bridges spanning water via high-spatial-resolution optical remotely sensed imagery. J Indian Soc Remote Sens. https://doi.org/10.1007/s12524-019-01036-z

    Article  Google Scholar 

  178. Nguyen DT, Ofli F, Imran M, Mitra P (2017) Damage assessment from social media imagery data during disasters. In: Proc 2017 IEEE/ACM Int Conf Adv Soc Networks Anal Mining, ASONAM 2017. https://doi.org/10.1145/3110025.3110109

  179. Noh Y, Koo D, Kang YM, Park DG, Lee DH (2017) Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering. In: Proc 2017 IEEE Int Conf Appl Syst Innov Appl Syst Innov Mod Technol ICASI 2017, pp 877–880. https://doi.org/10.1109/ICASI.2017.7988574

  180. Xu Y, Wei S, Bao Y, Li H (2019) Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network. Struct Control Heal Monit 26:1–22. https://doi.org/10.1002/stc.2313

    Article  Google Scholar 

  181. Dung CV, Anh LD (2019) Autonomous concrete crack detection using deep fully convolutional neural network. Autom Constr. https://doi.org/10.1016/j.autcon.2018.11.028

    Article  Google Scholar 

  182. Li S, Zhao X (2019) Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv Civ Eng 2019:1–12. https://doi.org/10.1155/2019/6520620

    Article  Google Scholar 

  183. Rashidi A, Sigari MH, Maghiar M, Citrin D (2016) An analogy between various machine-learning techniques for detecting construction materials in digital images. KSCE J Civ Eng 20:1178–1188. https://doi.org/10.1007/s12205-015-0726-0

    Article  Google Scholar 

  184. Anay R, Soltangharaei V, Assi L, DeVol T, Ziehl P (2018) Identification of damage mechanisms in cement paste based on acoustic emission. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.12.207

    Article  Google Scholar 

  185. Hasni H, Alavi AH, Lajnef N, Abdelbarr M, Masri SF, Chakrabartty S (2017) Self-powered piezo-floating-gate sensors for health monitoring of steel plates. Eng Struct. https://doi.org/10.1016/j.engstruct.2017.06.063

    Article  Google Scholar 

  186. Chang CMCW, Lin TK, Chang CMCW (2018) Applications of neural network models for structural health monitoring based on derived modal properties. Meas J Int Meas Confed 129:457–470. https://doi.org/10.1016/j.measurement.2018.07.051

    Article  Google Scholar 

  187. Kurian B, Liyanapathirana R (2018) Proceedings of the international conference on e-learning, ICEL. Springer Singapore. https://doi.org/10.1007/978-981-13-8331-1

  188. Hoang ND, Nguyen QL (2020) A novel approach for automatic detection of concrete surface voids using image texture analysis and history-based adaptive differential evolution optimized support vector machine. Adv Civ Eng 2020:1–15. https://doi.org/10.1155/2020/4190682

    Article  Google Scholar 

  189. Liu H, Zhang Y (2019) Image-driven structural steel damage condition assessment method using deep learning algorithm. Meas J Int Meas Confed 133:168–181. https://doi.org/10.1016/j.measurement.2018.09.081

    Article  Google Scholar 

  190. Satpal SB, Guha A, Banerjee S (2015) Damage identification in aluminum beams using support vector machine: numerical and experimental studies. Struct Control Heal Monit. https://doi.org/10.1002/stc.1773

    Article  Google Scholar 

  191. Mariniello G, Pastore T, Menna C, Festa P, Asprone D (2020) Structural damage detection and localization using decision tree ensemble and vibration data. Comput Civ Infrastruct Eng 2020:1–21. https://doi.org/10.1111/mice.12633

    Article  Google Scholar 

  192. Mangalathu S, Jang H, Hwang SH, Jeon JS (2020) Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.110331

    Article  Google Scholar 

  193. Chen XL, Fu JP, Yao JL, Gan JF (2018) Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Eng Comput 34:367–383. https://doi.org/10.1007/s00366-017-0547-5

    Article  Google Scholar 

  194. Ketabdari H, Karimi F, Rasouli M (2020) Shear strength prediction of short circular reinforced-concrete columns using soft computing methods. Adv Struct Eng 23:3048–3061. https://doi.org/10.1177/1369433220927270

    Article  Google Scholar 

  195. Ly HB, Le TT, Thi-Vu HL, Tran VQ, Le LM, Pham BT (2020) Erratum: Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams. Sustainability 12:2709. https://doi.org/10.3390/su12177029

    Article  Google Scholar 

  196. Ababneh A, Alhassan M, Abu-Haifa M (2020) Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks. Case Stud Constr Mater 13:e00414. https://doi.org/10.1016/j.cscm.2020.e00414

    Article  Google Scholar 

  197. Solhmirzaei R, Salehi H, Kodur V, Naser MZ (2020) Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams. Eng Struct. https://doi.org/10.1016/j.engstruct.2020.111221

    Article  Google Scholar 

  198. Bai C, Nguyen H, Asteris PG, Nguyen-Thoi T, Zhou J (2020) A refreshing view of soft computing models for predicting the deflection of reinforced concrete beams. Appl Soft Comput J 97:106831. https://doi.org/10.1016/j.asoc.2020.106831

    Article  Google Scholar 

  199. Lee S, Lee C (2014) Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks. Eng Struct 61:99–112. https://doi.org/10.1016/j.engstruct.2014.01.001

    Article  Google Scholar 

  200. Abuodeh OR, Abdalla JA, Hawileh RA (2020) Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques. Compos Struct 234:111698. https://doi.org/10.1016/j.compstruct.2019.111698

    Article  Google Scholar 

  201. Fardis MN, Khalili HH (1982) FRP-encased concrete as a structural material. Magn Concr Res. https://doi.org/10.1680/macr.1982.34.121.191

    Article  Google Scholar 

  202. Ritchie PA, Thomas DA, Lu LW, Connelly GM (1991) External reinforcement of concrete beams using fiber reinforced plastics. ACI Struct J. https://doi.org/10.14359/2723

    Article  Google Scholar 

  203. Naser MZ, Hawileh RA, Abdalla JA (2019) Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Eng Struct 198:109542

    Article  Google Scholar 

  204. Naderpour H, Haji M, Mirrashid M (2020) Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence. Structures 28:321–328. https://doi.org/10.1016/j.istruc.2020.08.076

    Article  Google Scholar 

  205. Mansouri I, Ozbakkaloglu T, Kisi O, Xie T (2016) Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Mater Struct Constr 49:4319–4334. https://doi.org/10.1617/s11527-015-0790-4

    Article  Google Scholar 

  206. Nguyen TT, Pham Duy H, Pham Thanh T, Vu HH (2020) Compressive strength evaluation of fiber-reinforced high-strength self-compacting concrete with artificial intelligence. Adv Civ Eng 2020:1–12. https://doi.org/10.1155/2020/3012139

    Article  Google Scholar 

  207. Naderpour H, Poursaeidi O, Ahmadi M (2018) Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks. Meas J Int Meas Confed 126:299–308. https://doi.org/10.1016/j.measurement.2018.05.051

    Article  Google Scholar 

  208. Su M, Zhong Q, Peng H, Li S (2020) Selected machine learning approaches for predicting the interfacial bond strength between FRPs and concrete. Constr Build Mater 270:121456. https://doi.org/10.1016/j.conbuildmat.2020.121456

    Article  Google Scholar 

  209. Köroglu MA (2019) Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci Eng Compos Mater 26:12–29. https://doi.org/10.1515/secm-2017-0155

    Article  Google Scholar 

  210. Abdalla JA, Elsanosi A, Abdelwahab A (2007) Modeling and simulation of shear resistance of R/C beams using artificial neural network. J Franklin Inst. https://doi.org/10.1016/j.jfranklin.2005.12.005

    Article  MATH  Google Scholar 

  211. Ma CK, Lee YH, Awang AZ, Omar W, Mohammad S, Liang M (2019) Artificial neural network models for FRP-repaired concrete subjected to pre-damaged effects. Neural Comput Appl 31:711–717. https://doi.org/10.1007/s00521-017-3104-7

    Article  Google Scholar 

  212. Vu DT, Hoang ND (2016) Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2015.1086386

    Article  Google Scholar 

  213. Feng DC, Fu B (2020) Shear strength of internal reinforced concrete beam-column joints: intelligent modeling approach and sensitivity analysis. Adv Civ Eng 2020:1–19. https://doi.org/10.1155/2020/8850417

    Article  Google Scholar 

  214. Allahyari H, Nikbin IM, Rahimi S, Heidarpour A (2018) A new approach to determine strength of Perfobond rib shear connector in steel-concrete composite structures by employing neural network. Eng Struct 157:235–249. https://doi.org/10.1016/j.engstruct.2017.12.007

    Article  Google Scholar 

  215. Mirrashid M (2017) Comparison study of soft computing approaches for estimation of the non-ductile RC joint shear strength. J Soft Comput Civ Eng 1:9–25. https://doi.org/10.22115/scce.2017.46318

    Article  Google Scholar 

  216. Alwanas AAH, Al-Musawi AA, Salih SQ, Tao H, Ali M, Yaseen ZM (2019) Load-carrying capacity and mode failure simulation of beam-column joint connection: application of self-tuning machine learning model. Eng Struct. https://doi.org/10.1016/j.engstruct.2019.05.048

    Article  Google Scholar 

  217. Degtyarev VV (2021) Neural networks for predicting shear strength of CFS channels with slotted webs. J Constr Steel Res. https://doi.org/10.1016/j.jcsr.2020.106443

    Article  Google Scholar 

  218. Le TT (2020) Practical machine learning-based prediction model for axial capacity of square CFST columns. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1839608

    Article  Google Scholar 

  219. Nguyen HQ, Ly HB, Tran VQ, Nguyen TA, Le TT, Pham BT (2020) Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression. Materials (Basel) 13:1205. https://doi.org/10.3390/MA13051205

    Article  Google Scholar 

  220. Thai S, Thai HT, Uy B, Ngo T (2019) Concrete-filled steel tubular columns: test database, design and calibration. J Constr Steel Res. https://doi.org/10.1016/j.jcsr.2019.02.024

    Article  Google Scholar 

  221. Thai S, Thai H, Uy B, Ngo T, Naser M (2019) Test database on concrete-filled steel tubular columns. https://doi.org/10.17632/3XKNB3SDB5.1

  222. Shariati M, Mafipour MS, Mehrabi P, Bahadori A, Zandi Y, Salih MNA, Nguyen H, Dou J, Song X, Poi-Ngian S (2019) Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Appl Sci 9:5534. https://doi.org/10.3390/app9245534

    Article  Google Scholar 

  223. Shariati M, Mafipour MS, Mehrabi P, Shariati A, Toghroli A, Trung NT, Salih MNA (2020) A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Eng Comput. https://doi.org/10.1007/s00366-019-00930-x

    Article  Google Scholar 

  224. Kotsovou GM, Cotsovos DM, Lagaros ND (2017) Assessment of RC exterior beam-column Joints based on artificial neural networks and other methods. Eng Struct 144:1–18. https://doi.org/10.1016/j.engstruct.2017.04.048

    Article  Google Scholar 

  225. Razavi SV, Jumaat MZ, Ei-Shafie AH, Mohammadi P (2011) General regression neural network (GRNN) for the first crack analysis prediction of strengthened RC one-way slab by CFRP. Int J Phys Sci 6:2439–2446. https://doi.org/10.5897/IJPS10.578

    Article  Google Scholar 

  226. Naderpour H, Mirrashid M, Nagai K (2020) An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro–fuzzy inference system. Eng Comput 36:1083–1100. https://doi.org/10.1007/s00366-019-00751-y

    Article  Google Scholar 

  227. Yaseen ZM, Afan HA, Tran MT (2018) Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm. IOP Conf Ser Earth Environ Sci 143:012025. https://doi.org/10.1088/1755-1315/143/1/012025

    Article  Google Scholar 

  228. Luo H, Paal SG (2018) Machine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversals. J Comput Civ Eng 32:04018042. https://doi.org/10.1061/(asce)cp.1943-5487.0000787

    Article  Google Scholar 

  229. Yogatama D, Mann G (2014) Efficient transfer learning method for automatic hyperparameter tuning. J Mach Learn Res

  230. Arel I, Rose D, Coop R (2009) DeSTIN: a scalable deep learning architecture with application to high-dimensional robust pattern recognition. In: AAAI Fall Symp. - Tech. Rep

  231. Krishnamoorthy K (2020) Wilcoxon signed-rank test. Handb Stat Distrib Appl. https://doi.org/10.1201/9781420011371-34

    Article  Google Scholar 

  232. Anaene Oyeka IC, Ebuh GU (2012) Modified wilcoxon signed-rank test. Open J Stat 2:172. https://doi.org/10.4236/ojs.2012.22019

    Article  MathSciNet  Google Scholar 

  233. Bouckaert RR, Frank E (2004) Evaluating the replicability of significance tests for comparing learning algorithms. In: Lect Notes Comput Sci (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). https://doi.org/10.1007/978-3-540-24775-3_3

  234. Kim S, Lee W (2017) Does McNemar’s test compare the sensitivities and specificities of two diagnostic tests? Stat Methods Med Res. https://doi.org/10.1177/0962280214541852

    Article  MathSciNet  Google Scholar 

  235. Bundy A (2017) Preparing for the future of artificial intelligence. AI Soc. https://doi.org/10.1007/s00146-016-0685-0

    Article  Google Scholar 

  236. Kim K, Park Y (2017) A development and application of the teaching and learning model of artificial intelligence education for elementary students. J Korean Assoc Inf Educ. https://doi.org/10.14352/jkaie.2017.21.1.139

    Article  Google Scholar 

  237. Jones DT (2019) Setting the standards for machine learning in biology. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-019-0176-5

    Article  Google Scholar 

  238. Loyola-Gonzalez O (2019) Black-box vs White-Box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7:154096. https://doi.org/10.1109/ACCESS.2019.2949286

    Article  Google Scholar 

  239. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques. Google eBook

  240. Yin M, Vaughan JW, Wallach H (2019) Understanding the effect of accuracy on trust in machine learning models. In: Conf Hum Factors Comput Syst—Proc. https://doi.org/10.1145/3290605.3300509

  241. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ (2020) A systematic review on supervised and unsupervised machine learning algorithms for data science. Springer, Cham

    Book  Google Scholar 

  242. Sutton RS, Barto AG (2017) Reinforcement learning : an introduction 2nd (19 June, 2017), Neural Networks IEEE Trans

  243. Naser MZ (2022) Causality, causal discovery, and causal inference in structural engineering. https://doi.org/10.48550/arxiv.2204.01543

  244. Naser MZ (2021) Demystifying ten big ideas and rules every fire scientist & engineer should know about blackbox, whitebox & causal artificial intelligence. https://arxiv.org/abs/2111.13756v1 . Accessed 26 Jan 2022

  245. Naser M (2022) A faculty’s perspective into infusing artificial intelligence to civil engineering education. J Civ Eng Educ. https://doi.org/10.1061/(ASCE)EI.2643-9115.0000065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Naser.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapeh, A.T.G., Naser, M.Z. Artificial Intelligence, Machine Learning, and Deep Learning in Structural Engineering: A Scientometrics Review of Trends and Best Practices. Arch Computat Methods Eng 30, 115–159 (2023). https://doi.org/10.1007/s11831-022-09793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09793-w

Navigation