Skip to main content
Log in

A Systematic Review on Generalized Fuzzy Numbers and Its Applications: Past, Present and Future

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Nowadays, the program’s mechanisms are becoming more dynamic. As a result, maintaining performance for a longer duration of time to increase the system’s long-term growth is tough. This is mostly because of the malfunction occurrence during the study, as the machine does not always have all details. In order to tackle this problem, the available data must be used to construct the problems. However, one of the most successful data theories is fuzzy set theory. The concept of fuzzy logic has recently grown in favour, and it plays an important role in engineering and management. Fuzzy arithmetic was very significant in research fields including decision-making problems, confidence analysis, optimization etc. as compare to others. Fuzzy numbers came into existence to perform operations on fuzzy observations. The distinction between generalised fuzzy and classic fuzzy arithmetic operations is that the former can handle both non-normal and normalised fuzzy, while the latter can only handle normalised fuzzy.

The goal of this research is to give a broad overview of current techniques in this field. The methodology reported in this article focuses on improving the arithmetic process in a fuzzy environment. The current arithmetic operations take into account the same degree of precision with specific fuzzy numbers, it is found that the lack of knowledge is responsible for incorrect performance. To avoid and maintain the uniformity of the fuzzy numbers, an improved operator like adding, scaling, subtracting, multiplication has been derived for generalized trapezoidal (triangular), sigmoidal and parabolic fuzzy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Banerjee S, Kumar Roy T (2012) arithmetic operations on generalized trapezoidal fuzzy number and its applications. Off J Turk Fuzzy Syst Assoc 3(1):1309

    Google Scholar 

  2. Prasad Mondal S, Kumar Roy T (2014) Non-linear arithmetic operation on generalized triangular intuitionistic fuzzy numbers. Notes on Intuitionistic Fuzzy Sets 20(1):9–19

    MATH  Google Scholar 

  3. Mondal SP, Goswami A, De Kumar S (2019) Nonlinear triangular intuitionistic fuzzy number and its application in linear integral equation. Adv Fuzzy Syst. https://doi.org/10.1155/2019/4142382

    Article  MathSciNet  MATH  Google Scholar 

  4. Goguen JA (1973) LA Zadeh Fuzzy sets Information and control, vol 8 (1965), pp 338–353 LA Zadeh Similarity relations and fuzzy orderings Information sciences, vol. 3 (1971), pp. 177–200. J Symb Logic 38(4):656–657. https://doi.org/10.2307/2272014

    Article  Google Scholar 

  5. Kosi´nski, WK, Prokopowicz P, Dominik´, D, Ezak, D. (n.d.) LNAI 3490—Calculus with Fuzzy Numbers.

  6. Nayagam VLG, Murugan J (2021) Hexagonal fuzzy approximation of fuzzy numbers and its applications in MCDM. Complex Intell Syst 7(3):1459–1487. https://doi.org/10.1007/s40747-020-00242-4

    Article  Google Scholar 

  7. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580. https://doi.org/10.1109/5.24143

    Article  Google Scholar 

  8. Kaufman, A, Gupta, M (1991). Introduction to fuzzy arithmetic. http://www.mtas.ru/search/search_results.php?publication_id=20021

  9. Cai K-Y, Wen C-Y, Zhang M-L (1993) Fuzzy states as a basis for a theory of fuzzy reliability. Microelectron Reliab 33(15):2253–2263

    Article  Google Scholar 

  10. Ferson S, Ginzburg L (1995) Hybrid arithmetic. Uncertainty Model Analys Int Symp On. https://doi.org/10.1109/ISUMA.1995.527766

    Article  Google Scholar 

  11. Klir GJ (1997) Fuzzy arithmetic with requisite constraints. Fuzzy Sets Syst 91(2):165–175. https://doi.org/10.1016/S0165-0114(97)00138-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Piegat A (2005) A new definition of the fuzzy set. Int J Appl Math Comput Sci 15(1):125–140

    MathSciNet  MATH  Google Scholar 

  13. Moore R, Lodwick W (2003) Interval analysis and fuzzy set theory. Fuzzy Sets Syst 135(1):5–9. https://doi.org/10.1016/S0165-0114(02)00246-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Piegat A (2005) Cardinality approach to fuzzy number arithmetic. IEEE Trans Fuzzy Syst 13(2):204–215. https://doi.org/10.1109/TFUZZ.2004.840098

    Article  MathSciNet  Google Scholar 

  15. Chang PT, Hung KC (2006) α-cut fuzzy arithmetic: simplifying rules and a fuzzy function optimization with a decision variable. IEEE Trans Fuzzy Syst 14(4):496–510. https://doi.org/10.1109/TFUZZ.2006.876743

    Article  Google Scholar 

  16. Deschrijver G (2007) Arithmetic operators in interval-valued fuzzy set theory. Inf Sci 177(14):2906–2924. https://doi.org/10.1016/j.ins.2007.02.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang G, Wen CL (2007) A new fuzzy arithmetic for discrete fuzzy numbers. Fuzzy Syst Knowl Discov Fourth Int Conf 1:52–56. https://doi.org/10.1109/FSKD.2007.75

    Article  Google Scholar 

  18. Fortin J, Dubois D, Fargier H (2008) Gradual numbers and their application to fuzzy interval analysis. IEEE Trans Fuzzy Syst 16(2):388–402. https://doi.org/10.1109/TFUZZ.2006.890680

    Article  Google Scholar 

  19. Guerra ML, Stefanini L (2016) Crisp profile symmetric decomposition of fuzzy numbers on fuzzy arithmetic operations: some properties and distributive approximations. Appl Math Sci. https://doi.org/10.12988/ams.2016.59598

    Article  Google Scholar 

  20. Xue F, Tang W, Zhao R (2008) The expected value of a function of a fuzzy variable with a continuous membership function. Comput Math Appl 55(6):1215–1224. https://doi.org/10.1016/j.camwa.2007.04.042

    Article  MathSciNet  MATH  Google Scholar 

  21. Sorini L, Stefanini L (2009) Some parametric forms for LR fuzzy numbers and LR fuzzy arithmetic. Intell Syst Design App Int Conf. https://doi.org/10.1109/ISDA.2009.229

    Article  Google Scholar 

  22. Kovalerchuk, B, Kreinovich, V (n.d.) Concepts of solutions of uncertain equations with intervals, probabilities and fuzzy sets for applied tasks.

  23. Melián B, Verdegay JL (2011) Using fuzzy numbers in network design optimization problems. IEEE Trans Fuzzy Syst 19(5):797–806. https://doi.org/10.1109/TFUZZ.2011.2140325

    Article  Google Scholar 

  24. Nguyen HT, Kreinovich V, Zuo Q (2011) Interval-valued degrees of belief: applications of interval computations to expert systems and intelligent control. Int. J. Unc. Fuzz. Knowl. Based Syst. 5(3):317–358. https://doi.org/10.1142/S0218488597000257

    Article  MathSciNet  MATH  Google Scholar 

  25. Garg H, Sharma SP (2013) Multi-objective reliability-redundancy allocation problem using particle swarm optimization. Comput Ind Eng 64(1):247–255. https://doi.org/10.1016/j.cie.2012.09.015

    Article  Google Scholar 

  26. Nikunj Agarwal HG (2015) Entropy based multi-criteria decision making method under fuzzy environment and unknown attribute weights. Global J Technol Optim. https://doi.org/10.4172/2229-8711.1000182

    Article  Google Scholar 

  27. Piegat A, Pluciński M (2015) Fuzzy number addition with the application of horizontal membership functions. Sci World J. https://doi.org/10.1155/2015/367214

    Article  MATH  Google Scholar 

  28. Article R, Raj AV, Karthik S (2016) International journal of mathematics and its applications application of pentagonal fuzzy number in neural network. Int J Math App 4(4):149–154

    Google Scholar 

  29. Kreinovich, V (n.d.) Solving equations (and systems of equations) under uncertainty: how different practical problems lead to different mathematical and computational formulations.

  30. Liu H, Gegov A, Cocea M (2016) Rule-based systems: a granular computing perspective. Granular Comput 1(4):259–274. https://doi.org/10.1007/s41066-016-0021-6

    Article  Google Scholar 

  31. Garg H (2017) Some arithmetic operations on the generalized sigmoidal fuzzy numbers and its application. Granular Comput 3(1):9–25. https://doi.org/10.1007/S41066-017-0052-7

    Article  Google Scholar 

  32. Ban AI, Coroianu L (2016) Symmetric triangular approximations of fuzzy numbers under a general condition and properties. Soft Comput 20(4):1249–1261. https://doi.org/10.1007/s00500-015-1849-4

    Article  MATH  Google Scholar 

  33. Garg H (2018) Analysis of an industrial system under uncertain environment by using different types of fuzzy numbers. Int J Syst Assurance Eng Manage 9(2):525–538. https://doi.org/10.1007/S13198-018-0699-8

    Article  Google Scholar 

  34. GeramiSeresht N, Fayek AR (2019) Computational method for fuzzy arithmetic operations on triangular fuzzy numbers by extension principle. Int J Approx Reason 106:172–193. https://doi.org/10.1016/J.IJAR.2019.01.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Khairuddin SH, Hasan MH, Hashmani MA, Azam MH (2021) Generating clustering-based interval fuzzy type-2 triangular and trapezoidal membership functions: a structured literature review. Symmetry 13(2):1–25. https://doi.org/10.3390/sym13020239

    Article  Google Scholar 

  36. van Hop N (2022) Ranking fuzzy numbers based on relative positions and shape characteristics. Expert Syst Appl 191:116312. https://doi.org/10.1016/J.ESWA.2021.116312

    Article  Google Scholar 

  37. SID.ir | Operations On Fuzzy Numbers With Function Principal. (n.d.). Retrieved March 7, 2022, from https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=304150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof—Assume P and Q are two generalised fuzzified values with varying levels of confidence, such that \(\varepsilon_{P} { < }\varepsilon_{Q}\). Take \(\varepsilon = \min \left( {\varepsilon_{P} ,\varepsilon_{Q} } \right)\) i.e. ε = εP then α− cut of P and Q are.

$$P_{\alpha } = \left[ {p_{1} + \alpha \left( {\frac{{p_{2 } - p_{1 } }}{{\varepsilon_{P} }}} \right), p_{4} - \alpha \left( {\frac{{p_{4 } - p_{3 } }}{{\varepsilon_{P} }}} \right)} \right] \, ; \, \forall_{\alpha } \in \left[ {0, \varepsilon_{P} } \right] s.t. 0 \le \varepsilon_{P} \le 1$$
$$Q_{\alpha } = \left[ {q_{1} + \alpha \left( {\frac{{q_{2}^{*} - q_{1} }}{\varepsilon }} \right), q_{4} - \alpha \left( {\frac{{q_{4 } - q_{3}^{*} }}{\varepsilon }} \right)} \right] \, ; \, \forall_{\alpha } \in \left[ {0, \varepsilon } \right] s.t. 0 \le \varepsilon \le 1$$

Let, R=P+Q={x | x ∈ Rα} for all α ∈ [0, ε]. Here Rα=[RL(α), RU(α)] be its α− cuts such that, \({\text{R}}^{{\text{L}}} \, \, \left( { \, \alpha \, } \right) = {\text{P}}^{{\text{L}}} \left( { \, \alpha \, } \right) + {\text{Q}}^{{\text{L}}} \left( { \, \alpha \, } \right){\text{, and R}}^{{\text{U}}} \left( { \, \alpha \, } \right) = {\text{P}}^{{\text{U}}} \left( { \, \alpha \, } \right) + {\text{Q}}^{{\text{U}}} \left( { \, \alpha \, } \right)\) i.e.

$$R_{\alpha } = \left[ { P^{L} \left( \alpha \right) + Q^{L} \left( \alpha \right), P^{U} \left( \alpha \right) + Q^{U} \left( \alpha \right)} \right]$$
(57)
$$= \left[ {p_{1} + \alpha \left( {\frac{{p_{2 } - p_{1 } }}{{\varepsilon_{P} }}} \right) + q_{1} + \alpha \left( {\frac{{q_{2}^{*} - q_{1} }}{\varepsilon }} \right), p_{4} - \alpha \left( {\frac{{p_{4 } - p_{3 } }}{{\varepsilon_{P} }}} \right) + q_{4} - \alpha \left( {\frac{{q_{4 } - q_{3}^{*} }}{\varepsilon }} \right)} \right]$$
$$= \left[ { p_{1} + q_{1} + \alpha \left( {\frac{{p_{2 } - p_{1 } }}{{\varepsilon_{P} }} + \frac{{q_{2}^{*} - q_{1} }}{\varepsilon }} \right), p_{4} + q_{4} - \alpha \left( {\frac{{p_{4 } - p_{3 } }}{{\varepsilon_{P} }} + \frac{{q_{4 } - q_{3}^{*} }}{\varepsilon }} \right)} \right]$$

Now,

\(p_{1} + q_{1} + \alpha \left( {\frac{{p_{2 } - p_{1 } }}{{\varepsilon_{P} }} + \frac{{q_{2}^{*} - q_{1} }}{\varepsilon }} \right) - x = 0\) and

$$p_{4} + q_{4} - \alpha \left( {\frac{{p_{4 } - p_{3 } }}{{\varepsilon_{P} }} + \frac{{q_{4} - q_{3}^{*} }}{\varepsilon }} \right) - x = 0$$

As a result, R’s left and right membership functions are.

$${\text{f}}\frac{{\text{L}}}{{\text{R}}}\left( {\text{x}} \right) = \frac{{{\text{x}} - {\text{ p}}_{{1{ }}} - {\text{ q}}_{{1{ }}} { }}}{{\frac{{{\text{p}}_{{2{ }}} { } - {\text{ p}}_{{1{ }}} }}{{{\upvarepsilon }_{{\text{P}}} }}{ } - { }\frac{{{\text{q}}_{2}^{*} { } - {\text{q}}_{1} }}{{\upvarepsilon }}}}$$
(58)
$${\text{f}}\frac{{\text{L}}}{{\text{R}}}\left( {\text{x}} \right) = \frac{{{\text{p}}_{{4}} + { }_{{4}} - {\text{x}}}}{{\frac{{{\text{p}}_{{4 }} - {\text{p}}_{{3 }} }}{{{\upvarepsilon }_{{\text{P}}} }} + { }\frac{{{\text{q}}_{{4 }} - {\text{q}}_{{3}}^{*} }}{{\upvarepsilon }}}}$$
(59)

Since \(\varepsilon = \varepsilon_{P}\) and \(q_{2}^{*} = q_{1} + \varepsilon \left( {\frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }}} \right)\) and \(q_{3}^{*} = q_{4} - \varepsilon \left( {\frac{{q_{4} - q_{3} }}{{\varepsilon_{Q} }}} \right)\), Thus, above \({\text{f}}_{{\text{R}}}^{{\text{L}}}\) and \({\text{f}}_{{\text{R}}}^{{\text{R}}}\) becomes,

$$f\frac{L}{R}\left( x \right) = \frac{{x - p_{1 } - q_{1 } }}{{\frac{{p_{2 } - p_{1 } }}{{\varepsilon_{P} }} - \frac{{q_{2}^{*} - q_{1} }}{\varepsilon }}}$$
$$= \varepsilon \left( {\frac{{x - p_{1} - q_{1 } }}{{p_{2 } - p_{1} - q_{1} + q_{2}^{*} }}} \right)$$
$$= \varepsilon \left( { \frac{{x - ( p_{1 } + q_{1} )}}{{p_{2 } + q_{1} + \varepsilon \left( { \frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }} } \right) - ( p_{1} + q_{1} )}} } \right)$$
(60)

For, \(p_{1} + q_{1} \le x\, \le \,p_{2} + q_{1} + \varepsilon \left( { \frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }} } \right)\)Similarly,

$$f_{R}^{R} \left( x \right) = \varepsilon \left( { \frac{{ ( p_{4} + q_{4} ) - x}}{{q_{4 } + p_{3} - \varepsilon \left( { \frac{{q_{2} - q_{3} }}{{\varepsilon_{Q} }} } \right) - ( p_{4} + q_{4} )}} } \right)$$
(61)

For, \(q_{4} + p_{3} - \varepsilon \left( { \frac{{q_{2} - q_{3} }}{{\varepsilon_{Q} }} } \right) \le x\, \le \,( p_{4} + q_{4} )\)

Thus, adding two generalized fuzzy values is another generalized fuzzy, whose membership function is explained as,

$$\mu_{R} \left( x \right) = \left\{ \begin{gathered} \varepsilon \left( { \frac{{x - ( p_{1 } + q_{1} )}}{{p_{2 } + q_{1} + \varepsilon \left( { \frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }} } \right) - ( p_{1} + q_{1} )}} } \right) ;\quad p_{1} + q_{1} \le x \le p_{2 } + q_{1} + \varepsilon \left( { \frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }} } \right) \hfill \\ \varepsilon ;\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad p_{2 } + q_{1} + \varepsilon \left( { \frac{{q_{2} - q_{1} }}{{\varepsilon_{Q} }} } \right) \le x \le q_{4 } + p_{3} - \varepsilon \left( { \frac{{q_{2} - q_{3} }}{{\varepsilon_{Q} }} } \right) \hfill \\ \varepsilon \left( { \frac{{ ( p_{4} + q_{4} ) - x}}{{q_{4 } + p_{3} - \varepsilon \left( { \frac{{q_{2} - q_{3} }}{{\varepsilon_{Q} }} } \right) - ( p_{4} + q_{4} )}} } \right) ;\quad q_{4 } + p_{3} - \varepsilon \left( { \frac{{q_{2} - q_{3} }}{{\varepsilon_{Q} }} } \right) \le x \le ( p_{4} + q_{4} ) \hfill \\ 0; \quad \quad \quad \quad \quad \quad {\text{otherwise}} \hfill \\ \end{gathered} \right.$$
(62)

To put in another way, that’s the addition of two generalised fuzzy numbers, given by:

R = P + Q = (\({\mathrm{r}}_{1}, {\mathrm{ r}}_{2}, {\mathrm{ r}}_{3},{\mathrm{ r}}_{4} ;\upvarepsilon )=\) min (\({\upvarepsilon }_{\mathrm{P}}\),\({\upvarepsilon }_{\mathrm{Q}}\)) is a generalized fuzzy number where,

$$r_{1} = p_{1} \, + \,q_{1}$$
$$r_{2} = q_{1} + p_{2} \, + \,\frac{{\varepsilon \left( {q_{2} - q_{1} } \right) }}{{\varepsilon_{Q} }}$$
$$r_{3} = q_{4} \, + \,p_{3} - \frac{{\varepsilon \left( {q_{4} - q_{3} } \right) }}{{\varepsilon_{Q} }}$$
$$r_{4} = p_{4} \, + \,q_{4}$$

Appendix B

Proof—When k > 0, the α − cut for P’s membership function is.

\({\text{P}}_{{\upalpha }} = [{\text{p}}_{1} +\)α(\(\frac{{{\text{p}}_{{2{ }}} { } - {\text{ p}}_{{1{ }}} }}{{{\upvarepsilon }_{{\text{P}}} }}\)), \({\text{p}}_{4} -\)α(\(\frac{{{\text{p}}_{{4{ }}} { } - {\text{ p}}_{{3{ }}} }}{{{\upvarepsilon }_{{\text{P}}} }}\))] ; \(\forall_{{\upalpha }}\) ∈ [0, \({\upvarepsilon }_{{\text{P}}}\)] s.t. 0 ≤ \({\upvarepsilon }_{{\text{P}}}\)  ≤ 1

This is,therefore,

$$x \in \left[ {p_{1} + \alpha \left( {\frac{{p_{2} - p_{1} }}{{\varepsilon_{p} }}} \right),p4 - \alpha \left( {\frac{{p_{4} - p_{3} }}{{\varepsilon_{p} }}} \right)} \right]$$
$$y = kx \in \left[ { kp_{1} + \alpha \left( { \frac{{kp_{2 } - kp_{1 } }}{{\varepsilon_{P} }} } \right), kp_{4} - \alpha \left( { \frac{{kp_{4} - kp_{3 } }}{{\varepsilon_{P} }} } \right) } \right]$$
(63)

As a conclusion, the scalar product’s membership function is:

$${\upmu }_{{{\text{kP}}}} \left( {\text{x}} \right) = \left\{ \begin{gathered} {\upvarepsilon }_{{\text{P }}} \left( {{ }\frac{{{\text{x}} - {\text{kp}}_{{1 }} }}{{{\text{kp}}_{{2 }} - {\text{kp}}_{{1 }} }}{ }} \right)\,{;}\quad {\text{if kp}}_{{1 }} \le {\text{x }} \le {\text{ kp}}_{{2 }} \hfill \\ {\upvarepsilon }_{{\text{P }}} ;\quad \quad \quad \quad \quad \quad \quad {\text{if kp}}_{{2 }} \le {\text{x}} \le {\text{kp}}_{{3 }} \hfill \\ {\upvarepsilon }_{{\text{P }}} \left( {{ }\frac{{{\text{kp}}_{{4 }} - {\text{x}}}}{{{\text{kp}}_{{4 }} - {\text{kp}}_{{3 }} }}{ }} \right){;}\quad {\text{if kp}}_{{3 }} \le {\text{x}} \le {\text{kp}}_{{4 }} \hfill \\ {0;}\quad \quad \quad \quad \quad \quad \quad \,{\text{otherwise}} \hfill \\ \end{gathered} \right.$$

Appendix C

Proof—Because there are two distinct fuzzy numbers with confidence levels, \({\upvarepsilon }_{\mathrm{P}}\) and \({\upvarepsilon }_{\mathrm{q}}\) defined as \({\upvarepsilon }_{\mathrm{P}}\)\({\upvarepsilon }_{\mathrm{q}}\). So, first of all we’ll turn the fuzzy Q into \({\text{Q*}} = {\text{Q}} = (q_{1} , q_{2}^{*} , q_{3}^{*} , q_{4} ; \varepsilon\), where.

\(q_{2}^{*} = q_{1} + \varepsilon \left( {\frac{{q_{2 } - q_{1 } }}{{\varepsilon_{Q} }}} \right){\text{and }}q_{3}^{*} = q_{4} - \varepsilon \left( {\frac{{q_{4 } - q_{3 } }}{{\varepsilon_{Q} }}} \right)\), Now the α − cuts that suit P and Q* are equivalent to.

$$P_{\alpha } = \left[ {p_{1} + \alpha \left( {\frac{{p_{2} - p_{1 } }}{{\varepsilon_{P} }}} \right), p_{4} - \alpha \left( {\frac{{p_{4} - p_{3 } }}{{\varepsilon_{P} }}} \right)} \right]\quad ;\quad \forall_{\alpha } \in \left[ {0, \, \varepsilon_{P} } \right] \, s.t. \, 0 \le \varepsilon_{P} \le 1$$
$$Q_{\alpha }^{*} = \left[ {q_{1} + \alpha \left( {\frac{{q_{2}^{*} - q_{1 } }}{\varepsilon }} \right), q_{4} - \alpha \left( {\frac{{q_{4} - q_{3}^{*} }}{\varepsilon }} \right)} \right]\quad ;\quad \forall_{\alpha } \in \left[ {0, \, \varepsilon_{P} } \right] \, s.t. \, 0 \le \varepsilon \le 1$$

Suppose \(R = P \times Q = \left\{ {x| x \in R_{\alpha } } \right\}\) for all \({\upalpha } \in \left[ {0, \, \varepsilon } \right]\). Here \(R_{\alpha } = \left[ {R_{\alpha }^{L} , R_{\alpha }^{U} } \right]\) be its α − cuts such that \(R_{\alpha }^{L} = P_{\alpha }^{L} Q_{\alpha }^{*L}\) and \(R_{\alpha }^{U} = P_{\alpha }^{U} Q_{\alpha }^{*U}\) i.e.

$$R_{\alpha } = \left[ {P_{\alpha }^{L} Q_{\alpha }^{*L} , P_{\alpha }^{U} Q_{\alpha }^{*U} } \right]$$
$$= \left[ {\left\{ {p_{1} + \alpha \left( {\frac{{p_{2} - p_{1 } }}{{\varepsilon_{P} }}} \right)} \right\}, \left\{ {q_{1} + \alpha \left( {\frac{{q_{2}^{*} - q_{1 } }}{\varepsilon }} \right)} \right\}, \left\{ {p_{4} - \alpha \left( {\frac{{p_{4 } - p_{3 } }}{{\varepsilon_{P} }}} \right)} \right\} \left\{ {q_{4} - \alpha \left( {\frac{{q_{4} - q_{3}^{*} }}{\varepsilon }} \right)} \right\}} \right]$$
$$= \left[ {p_{1 } q_{1} + \alpha \left( {\frac{{p_{1 } \left( {q_{2}^{*} - q_{1} } \right) + q_{1 } \left( {p_{2 } - p_{1} } \right)}}{\varepsilon }} \right) + \frac{{\alpha^{2} }}{{\varepsilon^{2} }} \left( {p_{2} - p_{1} } \right) \left( {q_{2}^{*} - q_{1} } \right)} \right]$$
$$\left[ {p_{4 } q_{4} + \alpha \left( {\frac{{p_{4 } \left( { q_{4} - q_{3}^{*} } \right) + q_{1 } \left( { p_{4} - p_{3 } } \right)}}{\varepsilon }} \right) + \frac{{\alpha^{2} }}{{\varepsilon^{2} }} \left( {p_{4} - p_{3} } \right)\left( {q_{4} - q_{3}^{*} } \right)} \right]$$

Therefore,

$$p_{1 } q_{1} + \alpha \left( {\frac{{p_{1 } \left( { q_{2}^{*} - q_{1 } } \right) + q_{1 } \left( { p_{2 } - p_{1 } } \right)}}{\varepsilon }} \right) + \frac{{\alpha^{2} }}{{\varepsilon^{2} }} \left( {p_{2 } - p_{1} } \right)\left( {q_{2}^{*} - q_{1} } \right) - x = {\text{0, and}}$$

\(p_{4 } q_{4} + \alpha \left( {\frac{{p_{4 } \left( { q_{4 } - q_{3}^{*} } \right) + q_{1 } \left( { p_{4 } - p_{3 } } \right)}}{\varepsilon }} \right) + \frac{{\alpha^{2} }}{{\varepsilon^{2} }} \left( {p_{4} - p_{3} } \right)\left( {q_{4} - q_{3}^{*} } \right) - x = 0\)

Which are the quadratic functions in the α and therefore its roots give the left as well as right membership of R,

$$f_{R}^{L} \left( x \right) = \frac{{ - N_{1} + \sqrt {N_{1}^{2} + 4M_{1} \left( { x - J_{1} } \right)} }}{{2M_{1} }}; \, r_{1} \le x \le r_{2}$$
(64)
$$f_{R}^{U} \left( x \right) = \frac{{ - N_{2} + \sqrt {N_{2}^{2} + 4M_{2} \left( { x - J_{2} } \right)} }}{{2M_{2} }}; \, r_{3} \le x \le r_{4}$$
(65)

Where, \(N_{1} = \frac{{p_{1 } \left( { q_{2}^{*} - q_{1 } } \right) + q_{1 } \left( { p_{2 } - p_{1 } } \right)}}{\varepsilon }\), \(N_{2} = \frac{{p_{4 } \left( { q_{4 } - q_{3}^{*} } \right) + q_{1 } \left( { p_{4 } - p_{3 } } \right)}}{\varepsilon }\), \(M_{1} = \frac{{\left( { p_{2 } - p_{1 } } \right) \left( { q_{2}^{*} - q_{1 } } \right) }}{{\varepsilon^{2} }}\), \(M_{2} = \frac{{\left( { p_{4 } - p_{3 } } \right) \left( {q_{4 } - q_{3}^{*} } \right) }}{{\varepsilon^{2} }}\), \(J_{1} = p_{1 } q_{1} , J_{2} = p_{4 } q_{4}\)

By Substituting the value of \({\mathrm{q}}_{2}^{*}\) and \({\mathrm{q}}_{3}^{*}\), we get.

$$N_{1} = \frac{{\left( {p_{2} - p_{1 } } \right) \left( { q_{2} - q_{1 } } \right)}}{{\varepsilon \varepsilon_{Q} }} \, ; \, N_{2} = \frac{{\left( {p_{4} - p_{3 } } \right) \left( { q_{4} - q_{3 } } \right)}}{{\varepsilon \varepsilon_{Q} }}$$
(66)
$$M_{1} = \frac{{ p_{1 } \left( { q_{2} - q_{1 } } \right)}}{{\varepsilon_{Q} }} + \frac{{q_{1 } \left( { p_{2} - p_{1 } } \right) }}{\varepsilon } \, ; \, M_{2} = \frac{{ p_{4 } \left( { q_{4} - q_{3 } } \right)}}{{\varepsilon_{Q} }} + \frac{{q_{4 } \left( { p_{4} - p_{3 } } \right) }}{\varepsilon }$$
(67)

As an outcome, the product of two generalised fuzzy numbers is a fuzzy number with the membership,

$$\mu_{R} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\frac{{ - N_{1} + \sqrt {N_{1}^{2} + 4M_{1} \left( { x - J_{1} } \right)} }}{{2M_{1} }}\quad ;\quad r_{1 } \le x \le r_{2 } } \\ {\varepsilon \quad \quad \quad \quad \quad \quad \quad ; \quad r_{2 } \le x \le r_{3 } } \\ {\frac{{ - N_{2} + \sqrt {N_{2}^{2} + 4M_{2} \left( { x - J_{2} } \right)} }}{{2M_{2} }}\quad ; \quad r_{3 } \le x \le r_{4 } } \\ \end{array} } \right.$$
(68)

where,

$$r_{1} = p_{1} q_{1}$$
$$r_{2} = \frac{{\varepsilon \left( {p_{2} q_{2} - p_{2} q_{1} } \right) }}{{\varepsilon_{Q} }} + p_{2} q_{1}$$
$$r_{3} = \frac{{\varepsilon \left( {p_{3} q_{3} - p_{3} q_{4} } \right) }}{{\varepsilon_{Q} }} + p_{3} q_{4}$$
$$r_{4} = p_{4} q_{4}$$

Appendix D

Proof—Consider the membership of two parabolic fuzzy numbers, X and Y be.

$$\mu_{X} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( x \right){\text{; if }}p_{1 } \le x < p_{2,} } \\ {\varepsilon_{1} {\text{; if }}x = p_{2,} } \\ {\varepsilon_{1} R_{1} \left( x \right){\text{; if }}p_{2} \le x < p_{3} } \\ { \quad \quad 0{;}\quad {\text{if otherwise}}} \\ \end{array} } \right.$$

And,

$$\mu_{Y} \left( y \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( y \right){;}\quad {\text{if }}q_{1 } \le y < q_{2,} } \\ {\varepsilon_{1} {;}\quad {\text{if }}y = q_{2,} } \\ {\varepsilon_{1} R_{1} \left( y \right){;}\quad {\text{if }}q_{2} \le y < q_{3} } \\ { \quad 0{;}\quad \quad {\text{if otherwise}}} \\ \end{array} } \right.$$

To add the fuzzy numbers \({\text{X}}\) and \({\text{Y}}\), the next fuzzy number of them, \({\text{Z}} = {\text{X}} + {\text{Y}}\)

Implies \(Z = \left[ {p_{1} + q_{1} ,p_{2} + q_{2} ,p_{3} + q_{3} } \right]\)

As \(z = x + y\) at \(y = \varphi_{1} \left( {\text{x}} \right)\) and \(\varphi_{2} \left( {\text{x}} \right)\) we get,

\(z = x + \varphi_{1} \left( x \right)\) and \({\text{z}} = {\text{x}} + \varphi_{2} \left( {\text{x}} \right)\) respectively.that specifies that \(x = \varphi_{1} \left( z \right)\) and \(x = \varphi_{2} \left( z \right)\) where

$$x = \varphi_{1} \left( z \right) = \frac{{z - \frac{{p_{2} q_{1} }}{{p_{2} - p_{1} }} + \frac{{p_{1} q_{2} }}{{p_{2} - p_{1} }}}}{{1 + \frac{{ \left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}}}$$
(69)

Hence, \(\eta_{1} \left( z \right) = \left( {\frac{2}{{ (p_{2} - p_{1} )^{2} }}} \right)\left( {\frac{{z - p_{1} - q_{1} }}{{1 + \frac{{\left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}}}} \right)\), \(m_{1} \left( z \right) = 1 + \frac{{\left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}\)so, the left sided distribution function

$$\mathop \smallint \limits_{{p_{1} + q_{1} }}^{X} \eta_{1} \left( z \right)m_{1} \left( z \right)dz = \mathop \smallint \limits_{{p_{1} + q_{1} }}^{X} \left( {\frac{2}{{ (p_{2} - p_{1} )^{2} }}} \right) \left( {\frac{{z - p_{1} - q_{1} }}{{1 + \frac{{ \left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}}}} \right) \times \left( {\frac{1}{{1 + \frac{{ \left( {q_{2} - q_{1} } \right)1}}{{p_{2} - p_{1} }}}}} \right)dz$$
$$= \left( {\frac{2}{{ (p_{2} - p_{1} )^{2} }}} \right) \left( {\frac{1}{{1 + \frac{{ \left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}}})^{2} \times \mathop \smallint \limits_{{p_{1} + q_{1} }}^{X} (z - p_{1} - q_{1} } \right)dz = (\frac{1}{{p_{2} - p_{1} }})^{2} (\frac{{x - \left( {p_{1} + q_{1} } \right)}}{{1 + \frac{{\left( {q_{2} - q_{1} } \right)}}{{p_{2} - p_{1} }}}})^{2}$$
$$= (\frac{{x - \left( {p_{1} + q_{1} } \right)}}{{p_{2} + q_{2} - p_{1} - q_{1} }})^{2} \, ; \, p_{1} + q_{1} \le x < p_{2} + q_{2}$$

Similarly, if \({\text{y}} = \phi_{2} { }\left( {\text{x}} \right)\) then \({\text{z}} = {\text{x}} + {\text{y}}\) becomes \({\text{x}} = \varphi_{2} { }\left( {\text{z}} \right)\) where

$$\varphi_{2} \left( x \right) = \frac{{z + \frac{{ - p_{2} q_{3} }}{{p_{3} - p_{2} }} + \frac{{p_{3} q_{2} }}{{p_{3} - p_{2} }}}}{{1 + \frac{{q_{3} - q_{2} }}{{p_{3} - p_{2} }}}}$$
(70)

Here, in this case

$$\eta_{2} \left( x \right) = \left( {\frac{ - 2}{{ (p_{3} - p_{2} )^{2} }}} \right) \left( {\frac{{p_{3} + q_{3} - z}}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}}} \right)$$
(71)

so, the right sided distribution function,

$$\mathop \smallint \limits_{{p_{3} + q_{3} }}^{X} \eta_{2} \left( z \right)m_{2} \left( z \right)dz = \mathop \smallint \limits_{{p_{3} + q_{3} }}^{X} \left( {\frac{ - 2}{{ (p_{3} - p_{2} )^{2} }}} \right) \left( {\frac{{p_{3} + q_{3} - z}}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}}} \right) \times \left( {\frac{1}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}}} \right)dz$$
(72)
$$= \left( {\frac{ - 2}{{ (p_{3} - p_{2} )^{2} }}} \right) \left( {\frac{1}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}})^{2} \times \mathop \smallint \limits_{{p_{3} + q_{3} }}^{X} (p_{3} + q_{3} - z} \right)dz$$
$$= \left( {\frac{ - 2}{{ (p_{3} - p_{2} )^{2} }}} \right) (\frac{1}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}})^{2} \times \frac{{ (p_{3} + q_{3} - x)^{2} }}{ - 2}$$
$$= (\frac{1}{{p_{3} - p_{2} }})^{2} (\frac{{ \left( {p_{3} + q_{3} } \right) - x}}{{1 + \frac{{ \left( {q_{3} - q_{2} } \right)}}{{p_{3} - p_{2} }}}})^{2}$$
$$= (\frac{{ \left( {p_{3} + q_{3} } \right) - x}}{{p_{3} - p_{2} + q_{3} - q_{2} }})^{2} ; p_{2} + q_{2} \le x < p_{3} + q_{3}$$
(73)

so, the membership functions of the fuzzy variable \({\text{Z}} = {\text{X}} + {\text{Y}}\) is,

$$\mu_{Z} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon (\frac{{x - \left( {p_{1} + q_{1} } \right)}}{{p_{2} - p_{1} + q_{2} - q_{1} }})^{2} } \hfill & {;\quad p_{1} + q_{1} \le x < p_{2} + q_{2} } \hfill \\ \varepsilon \hfill & {;\quad x = p_{2} + q_{2} } \hfill \\ {\varepsilon (\frac{{ \left( {p_{3} + q_{3} } \right) - x}}{{p_{3} - p_{2} + q_{3} - q_{2} }})^{2} } \hfill & {;\quad p_{2} + q_{2} \le x < p_{3} + q_{3} } \hfill \\ 0 \hfill & {;\quad otherwise} \hfill \\ \end{array} } \right.$$
(74)

where \(\upvarepsilon =\mathrm{ min }({\upvarepsilon }_{1}, {\upvarepsilon }_{2})\)

Appendix E

Proof—Using the change z = kx, we receive x = z/k as well as x = z/k and thus \(\varphi { }\left( {\text{z}} \right) = \frac{{\text{z}}}{{\text{k}}}\)

so, \(\left| {\frac{dx}{{dz}}} \right| = \frac{1}{k} = m \left( z \right)\).

Therefore,

$$\mathop \smallint \limits_{{kp_{1} }}^{X} \eta_{1} \left( z \right)m \left( z \right)dz = \mathop \smallint \limits_{{kp_{1} }}^{X} (\frac{{2 \left( {z - kp_{1} } \right)}}{{k (p_{2} - p_{1} )^{2} }}) \left( \frac{1}{k} \right)dz = (\frac{{x - kp_{1} }}{{kp_{2} - kp_{1} }})^{2}$$
(75)
$$\mathop \smallint \limits_{{kp_{3} }}^{X} \eta_{2} \left( z \right)m \left( z \right)dz = \mathop \smallint \limits_{{kp_{3} }}^{X} (\frac{{ - 2 \left( {kp_{3} - z} \right)}}{{k (p_{3} - p_{2} )^{2} }}) \left( \frac{1}{k} \right)dz = (\frac{{kp_{3} - x}}{{kp_{3} - kp_{2} }})^{2}$$

Therefore, \(\mathrm{at}\) \(\mathrm{k}>0\) is

$$\mu_{kX} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon_{1} (\frac{{x - kp_{1} }}{{kp_{2} - kp_{1} }})^{2} } \hfill & {;\quad kp_{1} \le x < kp_{2} } \hfill \\ {\varepsilon_{1} } \hfill & {;\quad x = kp_{2} } \hfill \\ {\varepsilon_{1} (\frac{{kp_{3} - x}}{{kp_{3} - kp_{2} }})^{2} } \hfill & {;\quad kp_{2} \le x < kp_{3} } \hfill \\ 0 \hfill & {;\quad otherwise} \hfill \\ \end{array} } \right.$$
(76)

Also, at \({\text{k}} < 0\) is

$$\mu_{kX} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon_{1} (\frac{{x - kp_{3} }}{{kp_{2} - kp_{3} }})^{2} } \hfill & {;\quad kp_{3} \le x < kp_{2} } \hfill \\ {\varepsilon_{1} } \hfill & {;\quad x = kp_{2} } \hfill \\ {\varepsilon_{1} (\frac{{kp_{1} - x}}{{kp_{1} - kp_{2} }})^{2} } \hfill & {;\quad kp_{2} \le x < kp_{1} } \hfill \\ 0 \hfill & {;\quad otherwise} \hfill \\ \end{array} } \right.$$
(77)

Appendix F

Proof—Because X and Y have a parabolic membership,

$$\mu_{x} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( x \right)\quad ;\quad if \, p_{1 } \le x < p_{2,} } \\ {\varepsilon_{1} \quad ;\quad if \, x = p_{2.} } \\ {\varepsilon_{1} R_{1} \left( x \right)\quad ;\quad if \, p_{2} \le x < p_{3} } \\ { 0\quad \quad \quad ;\quad if \, otherwise} \\ \end{array} } \right.$$

And,

$$\mu_{Y} \left( y \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( y \right) \quad ;\quad if\quad q_{1 } \le y < q_{2,} } \\ {\varepsilon_{1} ; \quad if\quad y = q_{2,} } \\ {\varepsilon_{1} R_{1} \left( y \right)\quad ; \quad if\quad q_{2} \le y < q_{3} } \\ { 0\quad \quad \quad ;\quad if\quad otherwise} \\ \end{array} } \right.$$

Therefore, to find the membership functions\({\text{Z}} = {\text{XY}}\)

at \({\text{y}} = \emptyset_{1} { }\left( {\text{x}} \right),\) \({\text{z}} = {\text{xy}}\) gives

$$x = \frac{{ \left( {p_{1} q_{2} - p_{2} q_{1} } \right) \pm \sqrt { (p_{1} q_{2} - p_{2} q_{1} )^{2} + 4 \left( {q_{2} - q_{1} } \right) \left( {p_{2} - p_{1} } \right)z} }}{{2 \left( {q_{2} - q_{1} } \right)}} = \varphi_{1} \left( z \right)$$
(78)

Take,

$$P_{1} = \left( {p_{2} - p_{1} } \right) \left( {q_{2} - q_{1} } \right)$$
$$Q_{1} = p_{1} \left( {q_{2} - q_{1} } \right) + q_{1} \left( {p_{2} - p_{1} } \right)$$
$$R_{1} = p_{1} q_{1}$$

Hence,

$$\eta_{1} \left( z \right) = \frac{2}{{ (p_{2} - p_{1} )^{2} }} \times \left[ {\frac{{ - p_{1} q_{2} - p_{2} q_{1} + 2p_{1} q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2 \left( {q_{2} - q_{1} } \right)}}\left] { = \frac{1}{{p_{2} - p_{1} }}} \right[\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{P_{1} }}} \right]$$
$$m \left( z \right) = \left| {\frac{dx}{{dz}}} \right| = \frac{{p_{2} - p_{1} }}{{\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}$$
(79)

therefore,

$$\mathop \smallint \limits_{{p_{1} b_{1} }}^{X} \eta_{1} \left( z \right)m_{1} \left( z \right)dz = \mathop \smallint \limits_{{p_{1} b_{1} }}^{X} \frac{1}{{p_{2} - p_{1} }}\left[ {\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{P_{1} }}} \right] \times \frac{{p_{2} - p_{1} }}{{\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}dz = \mathop \smallint \limits_{{p_{1} b_{1} }}^{X} \frac{1}{{P_{1} }}\left[ {\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} }}} \right]dz$$
$$= \mathop \smallint \limits_{{p_{1} b_{1} }}^{X} \frac{1}{{P_{1} }}\left[ {\frac{{ - Q_{1} }}{{\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }} + 1\left] {dz = \frac{1}{{P_{1} }}} \right[\frac{{ ( - Q_{1} )^{2} - Q_{1} \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} + 2P_{1} x - 2P_{1} R_{1} }}{{2P_{1} }}} \right]$$
$$= [\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} }}{{2P_{1} }}]^{2} \, ; \, p_{1} q_{1} \le x < p_{2} q_{2}$$
(80)

Similarly, by taking.

$$P_{2} = \left( {p_{3} - p_{2} } \right) \left( {q_{3} - q_{2} } \right)$$
$$Q_{2} = - p_{3} \left( {q_{3} - q_{2} } \right) - q_{3} \left( {p_{3} - p_{2} } \right)$$
$$R_{2} = p_{3} q_{3}$$

the membership function for the corresponding dispersal functions as.

$$\mathop \smallint \limits_{{p_{3} q_{3} }}^{X} \eta_{1} \left( z \right)m_{1} \left( z \right)dz = [\frac{{ - Q_{2} + \sqrt {Q_{2}^{2} - 4P_{2} \left( {R_{2} - x} \right)} }}{{2P_{2} }}]^{2} ; p_{2} q_{2} \le x < p_{3} q_{3}$$
(81)

As a result, the fuzzy variable Z’s membership is given by:

$$\mu_{XY} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon (\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} }}{{2P_{1} }})^{2} } \hfill & {p_{1} q_{1} \le x < p_{2} q_{2} } \hfill \\ \varepsilon \hfill & {x = p_{2} q_{2} } \hfill \\ {\varepsilon (\frac{{ - Q_{2} + \sqrt {Q_{2}^{2} - 4P_{2} \left( {R_{2} - x} \right)} }}{{2P_{2} }})^{2} } \hfill & {p_{2} q_{2} \le x < p_{3} q_{3} } \hfill \\ 0 \hfill & {otherwise} \hfill \\ \end{array} } \right.$$
(82)

where, Z = XY.

Appendix G

Proof—let a fuzzy inconstant be \(X = \left[ {p_{1} , p_{2} , p_{3} , \varepsilon_{1} } \right]\) whose membership is given in.

$$\mu_{x} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( x \right) ;\quad if\quad p_{1 } \le x < p_{2,} } \\ {\varepsilon_{1} ; \quad if\quad x = p_{2,} } \\ {\varepsilon_{1} R_{1} \left( x \right) ; \quad if\quad p_{2} \le x < p_{3} } \\ { \quad 0\quad ; \quad if\quad otherwise} \\ \end{array} } \right.$$

Then let \({\text{z}} = \frac{1}{{\text{X}}}\) so that \(\left| {\frac{{{\text{dx}}}}{{{\text{dz}}}}} \right| = \frac{1}{{{\text{z}}^{2} }}\). So, for \({\text{X}}^{ - 1}\)

$$\mathop \smallint \limits_{X}^{{p_{1}^{ - 1} }} \eta_{1} \left( z \right)m \left( z \right)dz = \mathop \smallint \limits_{X}^{{p_{1}^{ - 1} }} (\frac{2}{{ (p_{2} - p_{1} )^{2} }} \left( {\frac{1}{z} - p_{1} } \right)) \left( {\frac{1}{{z^{2} }}} \right)dz = (\frac{{1 - p_{{1^{X} }} }}{{x \left( {p_{2} - p_{1} } \right)}})^{2}$$

And,

$$\mathop \smallint \limits_{{p_{3}^{ - 1} }}^{X} \eta_{2} \left( z \right)m \left( z \right)dz = \mathop \smallint \limits_{{p_{3}^{ - 1} }}^{X} (\frac{2}{{ (p_{3} - p_{2} )^{2} }} \left( {\frac{1}{z} - p_{3} } \right)) \left( {\frac{1}{{z^{2} }}} \right)dx = (\frac{{xp_{3} - 1}}{{x \left( {p_{3} - p_{2} } \right)}})^{2}$$

So, constructed on the distribution, fuzzy membership of \({\text{X}}^{ - 1}\) is

$$\mu_{{X^{ - 1} }} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon_{1} (\frac{{xp_{3} - 1}}{{x \left( {p_{3} - p_{2} } \right)}})^{2} } \hfill & {if\quad p_{3}^{ - 1} \le x < p_{2}^{ - 1} } \hfill \\ {\varepsilon_{1} } \hfill & {if\quad x = p_{2}^{ - 1} } \hfill \\ {\varepsilon_{1} (\frac{{1 - p_{{1^{X} }} }}{{x \left( {p_{2} - p_{1} } \right)}})^{2} } \hfill & {if\quad p_{2}^{ - 1} \le x < p_{1}^{ - 1} } \hfill \\ 0 \hfill & {otherwise} \hfill \\ \end{array} } \right.$$
(83)

Appendix H

Proof—Deliberate two fuzzy Sigmoid numbers X and Y having membership function as,

$$\mu_{X} \left( x \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( x \right) ; \quad if\quad p_{1 } \le x < p_{2,} } \\ {\varepsilon_{1} ;\quad if\quad x = p_{2,} } \\ {\varepsilon_{1} R_{1} \left( x \right) ; \quad if\quad p_{2} \le x < p_{3} } \\ { \quad 0 ;\quad if\quad otherwise} \\ \end{array} } \right.$$

And,

$$\mu_{Y} \left( y \right) = \left\{ {\begin{array}{*{20}c} {\varepsilon_{1} L_{1} \left( y \right) ;\quad if\quad q_{1 } \le y < q_{2,} } \\ {\varepsilon_{1} ;\quad if\quad y = q_{2,} } \\ {\varepsilon_{1} R_{1} \left( y \right) ; \quad if\quad q_{2} \le y < q_{3} } \\ { 0 ;\quad if\quad otherwise} \\ \end{array} } \right.$$

We have Z = X + Y = \(\left( {{\text{p}}_{1} + {\text{ q}}_{{1{ }}} ,{\text{ p}}_{2} + {\text{ q}}_{{2{ }}} ,{\text{ p}}_{3} + {\text{ q}}_{3} } \right)\) as the result of combining these fuzzy sigmoid numbers, and if we let z = x + y, we obtain z = x + \({\mathrm{\varnothing }}_{1}\) (x) and z = x + \({\mathrm{\varnothing }}_{2}\) (x) which means x = \({\upxi }_{1}\) (z) and x = \({\upxi }_{2}\) (z) where,

$${\text{x}} = {\upxi }_{1} { }\left( {\text{z}} \right) = \frac{{({\text{ p}}_{2} - {\text{ p}}_{1} ){\text{ z }} - { }\left( {{\text{q}}_{{1{ }}} {\text{p}}_{2} { } - {\text{ p}}_{1} {\text{ q}}_{{2{ }}} } \right){ }}}{{{\text{p}}_{2} + {\text{ q}}_{{2{ }}} - {\text{ p}}_{1} - {\text{ q}}_{1} }}$$

hence,

$${\text{m}}_{1} \left( {\text{z}} \right) = \frac{{\text{d}}}{{{\text{dz}}}}{ }\left( {{\upxi }_{1} { }\left( {\text{z}} \right)} \right) = \frac{{({\text{ p}}_{2} - {\text{ p}}_{1} )}}{{{ }({\text{ p}}_{2} - {\text{ p}}_{1} + {\text{ q}}_{{2{ }}} - {\text{ q}}_{{1{ }}} )}}$$

As in addition,

$$n_{1} \left( z \right) = \frac{d}{dz} \left( {L_{1} } \right) {\text{ at }} x = \xi_{1} \left( z \right)$$
$$= \frac{10}{{ \left( {p_{2} - p_{1} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}} \left[ {\varphi \left( { x - \frac{{p_{1 } + p_{2} }}{2} } \right) \left( { \frac{10}{{p_{2} - p_{1} }} } \right)} \right]$$
$$\times \left[ {1 - \varphi \left( { x - \frac{{p_{1 } + p_{2} }}{2} } \right) \left( { \frac{10}{{p_{2} - p_{1} }} } \right)} \right]_{{x = \xi_{1} \left( z \right)}}$$

By solving above equation by part

$$\varphi \left( {x - \frac{{p_{1} + p_{2} }}{2}} \right)\left( {\frac{10}{{p_{2} - p_{1} }}} \right) = \varphi \left( { \frac{{ (p_{2} - p_{1} ) z - \left( {q_{1 } p_{2} - p_{1} q_{2 } } \right) }}{{p_{2} + q_{2} - p_{1} - q_{1 } }} - \frac{{p_{1} + p_{2} }}{2}} \right)\left( { \frac{10}{{p_{2} - p_{1} }}} \right)$$
$$= \varphi \left( {\frac{{2( p_{2} - p_{1} ) z - 2 \left( {q_{1 } p_{2} - p_{1} q_{2 } } \right) - \left( {p_{1} + p_{2} } \right) \left( {p_{2} + q_{2} - p_{1 } + q_{1} } \right) }}{{2 \left( {p_{2} + q_{2 } - p_{1} - q_{1 } } \right)}} - \frac{{p_{1 } + p_{2} }}{2}} \right)\left( { \frac{10}{{p_{2} - p_{1} }}} \right)$$
$$= \varphi \left( {\frac{{2(p_{2} - p_{1} )z + (p_{1} + p_{2} )(p_{1} - p_{2} ) + q_{2} (\left( {p_{1} - p_{2} } \right) + q_{1} ((p_{1} - p_{2} ))}}{{2(p_{2} + q_{2} - p_{1} - q_{1} )}} - \frac{{p_{1} + p_{2} }}{2}} \right)\left( {\frac{10}{{p_{2} - p_{1} }}} \right)$$
$$= \varphi \left( {\frac{{2z - (p_{1} + p_{2} + q_{1} + q_{2} )}}{{2(p_{2} + q_{2} - p_{1} - q_{1} )}}} \right)$$
$$= \varphi \left( {z - \frac{{\left( {p_{1} + p_{2} + q_{1} + q_{2} } \right)}}{2}} \right)\left( {\frac{10}{{\left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right)$$

Thus,

$$n_{1} \left( z \right) = \frac{10}{{ \left( {p_{2} - p_{1} } \right)\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}} \times \varphi \left( {z - \frac{{ \left( {p_{1} + p_{2} + q_{1} + q_{2 } } \right)}}{2}} \right)\left( {\frac{10}{{ \left( {p_{2} + q_{2 } - p_{1} - q_{1 } } \right)}}} \right)$$
$$\times \left[ {1 - \varphi \left( {z - \frac{{ \left( {p_{1} + p_{2} + q_{1} + q_{2 } } \right) }}{2}} \right) \left( {\frac{10}{{ \left( {p_{2} + q_{2 } - p_{1} - q_{1 } } \right)}} } \right)} \right]_{{x = \xi_{1} \left( z \right)}}$$

Therefore,

$$L_{1} \left( x \right) = \mathop \smallint \limits_{{p_{1} + q_{1} }}^{X} m_{1} \left( z \right)\eta_{1} \left( z \right)dz$$
$$= \mathop \smallint \limits_{{p_{1} + q_{1} }}^{X} \frac{{10 \left( {p_{2} - p_{1} } \right)}}{{ \left( {p_{2} - p_{1} + q_{2} - q_{1} } \right)\left( {p_{2} - p_{1} } \right)\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( \cdot \right)\left( {1 - \varphi \left( \cdot \right)} \right)} \right]dz$$

where \(\varphi \left( \cdot \right) = \varphi \left( {z - \frac{{ \left( {p_{1} + p_{2} + q_{1} + q_{2 } } \right) }}{2}} \right) \left( {\frac{10}{{ \left( {p_{2} + q_{2 } - p_{1} - q_{1 } } \right)}}} \right)\)

$$= \frac{1}{{ \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {\left\{ {z - \frac{{p_{1} + p_{2} + q_{1} + q_{2} }}{2}} \right\}\frac{10}{{ \left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right)} \right]_{{p_{1} + q_{1} }}^{X}$$
$$= \frac{1}{{ \left( {\varphi \left( 5 \right) - \psi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} + q_{1} + q_{2} }}{2}} \right\}\frac{10}{{ \left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right)} \right.$$
$$- \left. {\varphi \left( {\left\{ {p_{1} + q_{1} - \frac{{p_{1} + p_{2} + q_{1} + q_{2} }}{2}} \right\}\frac{10}{{ \left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right)} \right]$$
$$= \frac{1}{{ \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} + q_{1} + q_{2} }}{2}} \right\}\frac{10}{{ \left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right) - \varphi \left( { - 5} \right)} \right]$$

So, the distribution function of left side fuzzy number Z = X + Y is;

$$L_{1} \left( z \right) = \frac{{\varphi \left( {\left\{ {z - \frac{{p_{1} + p_{2} + q_{1} + q_{2} }}{2}} \right\}\frac{10}{{\left( {p_{2} + q_{2} - p_{1} - q_{1} } \right)}}} \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}$$

Likewise, if \(y = \varphi_{2} \left( x \right)\), then \({\text{x}} = {\text{x}} + {\text{y}}\) becomes \({\text{x}} = {\upxi }_{2} { }\left( {\text{z}} \right)\), where

$$\xi_{2} \left( z \right) = \frac{{ \left( {p_{3} - p_{2} } \right)z - \left( {q_{2} p_{3} - p_{2} q_{3} } \right)}}{{ \left( {p_{3} - p_{2} } \right) + \left( {q_{3} - q_{2} } \right)}}$$

Thus, \(m_{2} \left( z \right) = \frac{{d \left( {\xi_{2} \left( z \right)} \right)}}{dx} = \frac{{p_{3} - p_{2} }}{{ \left( {p_{3} - p_{2} } \right) + \left( {q_{3} - q_{2} } \right)}}\)

and,

$$\eta_{2} \left( x \right) = \frac{d}{dx} \left( {R_{1} \left( x \right)} \right) at x = \xi_{2} \left( z \right)$$
$$= \frac{ - 10}{{ \left( {p_{3} - p_{2} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\varphi \times \left( {\left\{ {x - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right) \times \left( {1 - \varphi \left( {\left\{ {x - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right)} \right)$$

At \(x = \xi_{2} \left( z \right) = \frac{{\left( {p_{3} - p_{2} } \right)z - \left( {q_{2} p_{3} - p_{2} q_{3} } \right)}}{{\left( {p_{3} - p_{2} } \right) + \left( {q_{3} - q_{2} } \right)}}, {\text{we have}}\)

By solving above equation by part

$$\varphi \left( {\left\{ {x - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right) = \varphi \left( {\left\{ {\frac{{ \left( {p_{3} - p_{2} } \right)x - \left( {q_{2} p_{3} - p_{2} q_{3} } \right)}}{{ \left( {p_{3} - p_{2} } \right) + \left( {q_{3} - q_{2} } \right)}} - \frac{{p_{2} + p_{3} }}{2}} \right\} \times \frac{10}{{p_{3} - p_{2} }}} \right)$$
$$= \varphi \left( {\frac{{2 \left( {p_{3} - p_{2} } \right)x - 2 \left( {q_{2} p_{3} - p_{2} q_{3} } \right) - \left( {p_{2} + p_{3} } \right) \left( {p_{3} + q_{3} - p_{2} - q_{2} } \right)}}{{2 \left( {p_{3} + q_{3} - p_{2} - q_{2} } \right)}} \times \frac{10}{{p_{3} - p_{2} }}} \right)$$
$$= \varphi \left( {\frac{{2 \left( {p_{3} - p_{2} } \right)x + \left( {p_{2} + p_{3} } \right) \left( {p_{2} - p_{3} } \right) + q_{2} \left( {p_{2} - p_{3} } \right) + q_{3} \left( {p_{2} - p_{3} } \right)}}{{2 \left( {p_{3} + q_{3} - p_{2} - q_{2} } \right)}} \times \frac{10}{{p_{3} - p_{2} }}} \right)$$
$$= \varphi \left( {\left\{ {\frac{{2x - \left( {p_{2} + p_{3} + q_{2} + q_{3} } \right)}}{{2 \left( {p_{3} + q_{3} - p_{2} - q_{2} } \right)}}} \right\} \times 10} \right)$$
$$= \varphi \left( {\left\{ {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)$$
$$\begin{gathered} \eta_{2} { }\left( z \right) = \frac{10}{{{ }\left( {p_{3} - p_{2} } \right){ }\left( {\varphi { }\left( 5 \right) - \varphi { }\left( { - 5} \right)} \right)}}\varphi { }\left( {\left\{ {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right) \hfill \\ \times \left[ {1 - \varphi { }\left( {\left\{ {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)} \right] \hfill \\ \end{gathered}$$

Therefore,

$$R_{1} { }\left( x \right) = \mathop \smallint \limits_{x}^{{p_{3} + q_{3} }} \eta_{2} { }\left( z \right)m_{2} { }\left( z \right)dz$$
$$= \mathop \smallint \limits_{x}^{{p_{3} + q_{3} }} \frac{{10 \left( {p_{3} - p_{2} } \right)}}{{ \left( {p_{3} - p_{2} + q_{3} - q_{2} } \right)\left( {p_{3} - p_{2} } \right)\left( {\psi \left( 5 \right) - \psi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( \cdot \right)\left( {1 - \varphi \left( \cdot \right)} \right)} \right]dz$$

where

$$\varphi \left( \cdot \right) = \varphi \left( {\left\{ {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)$$
$$= \frac{1}{{\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {{ }\left( {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right)\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)} \right]_{x}^{{p_{3} + q_{3} }}$$
$$= \frac{1}{{\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {{ }\left( {p_{3} + q_{3} - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right)\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)} \right.$$
$$\left. { - \varphi \left( {\left( {x - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right)\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)} \right]$$
$$= \frac{{\varphi { }\left( 5 \right) - \varphi { }\left( {\left\{ {x - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)}}{{\varphi { }\left( 5 \right) - \varphi { }\left( { - 5} \right)}}$$

As a result, the right-side fuzzy number (Z = X + Y)’s distribution function is;

Similarly, the non-complementary function \({R}_{1} (z)\), gives.

$$R_{1} { }\left( z \right) = \frac{{\varphi \left( 5 \right) - \varphi \left( {\left\{ {z - \frac{{p_{3} + p_{2} + q_{2} + q_{3} }}{2}} \right\}\frac{10}{{p_{3} + q_{3} - p_{2} - q_{2} }}} \right)}}{{\varphi \left( 5 \right) - \varphi { }\left( { - 5} \right)}}$$

As a result, the fuzzy variable Z = X + Y membership is given by

$$\mu_{z} { }\left( {\text{Z}} \right) = \left\{ \begin{gathered} \varepsilon { }\frac{{\varphi { }\left[ {{ }\left( {{ }z{ } - { }\frac{{p_{{1{ }}} + { }p_{2} + { }q_{{1{ }}} + { }q_{2} }}{2}{ }} \right){ }\left( {{ }\frac{10}{{p_{2} { } + { }q_{2} { } - { }p_{1} - { }q_{{1{ }}} }}{ }} \right){ }} \right]{ } - { }\varphi { }\left( { - 5} \right){ }}}{{{ }\varphi { }\left( 5 \right){ } - { }\varphi { }\left( { - 5} \right)}}\quad \quad ;\quad if\quad p_{1} + { }q_{{1{ }}} \le z < p_{2} + { }q_{{2{ }}} \hfill \\ \varepsilon { }\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ;\quad if\quad z{ } = { }p_{{\begin{array}{*{20}c} {2 } \\ \\ \end{array} }} + { }q_{2} \hfill \\ \varepsilon { }\frac{{\varphi { }\left( 5 \right){ } - { }\varphi { }\left[ {{ }\left( {{ }z{ } - { }\frac{{p_{{2{ }}} + { }p_{3} { } + { }q_{{2{ }}} + { }q_{3} }}{2}{ }} \right){ }\left( {{ }\frac{10}{{p_{3} { } + { }q_{3} { } - { }p_{2} - { }q_{2} { }}}{ }} \right){ }} \right]{ }}}{{{ }\varphi { }\left( 5 \right){ } - { }\varphi { }\left( { - 5} \right)}}\quad \, ;\quad if\quad p_{2} + { }q_{{2{ }}} { } \le z < p_{3} + { }q_{3} \hfill \\ 0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ;\quad \quad otherwise \hfill \\ \end{gathered} \right.$$
(84)

Appendix I

Proof—By the use of transformation given by z = kx, we get x = \(\frac{\mathrm{z}}{\mathrm{k}}\), which can be written as \(\upxi (\mathrm{z})\)

so, \(\left| {\frac{{{\text{dx}}}}{{{\text{dz}}}}} \right| = \frac{1}{{\text{k}}} = {\text{m }}\left( {\text{z}} \right)\). Then, at \({\text{x}} = {\xi }\left( {\text{z}} \right)\)

$$\varphi \left( z \right) = \varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{ \left( {p_{2} - p_{1} } \right)}}} \right)$$

In addition, we have.

$${\upeta }_{1} { }\left( {\text{z}} \right) = \frac{{\text{d}}}{{{\text{dx}}}}{ }\left( {{\text{L}}_{1} } \right){\text{ at x}} = {\upxi }_{1} { }\left( {\text{z}} \right) = \frac{{\text{z}}}{{\text{k}}}$$
$$= \frac{10}{{ \left( {p_{2} - p_{1} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}} \times \left( {\varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right) \times \left( {1 - \varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right)$$

Hence,

$$L_{1} \left( x \right) = \mathop \smallint \limits_{{kp_{1} }}^{x} \eta_{1} \left( z \right)m \left( z \right)dz$$
$$= \mathop \smallint \limits_{{kp_{1} }}^{x} \left[ \begin{gathered} \frac{10}{{k \left( {p_{2} - p_{1} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}} \left( {\varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right) \hfill \\ \times \left( {1 - \varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right) \hfill \\ \end{gathered} \right]dz$$
$$= \frac{{\varphi \left( {\left\{ {x - \frac{{kp_{1} + kp_{2} }}{2}} \right\}\frac{10}{{ \left( {kp_{2} - kp_{1} } \right)}}} \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}$$
(85)

\(\eta_{2} \left( z \right) = \frac{d}{dx} \left( {R_{1} \left( x \right)} \right)\) at \(x = \xi \left( z \right) = \frac{z}{k}\)

$$= \frac{10}{{ \left( {p_{3} - p_{2} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right) \times \left( {1 - \varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right)} \right)$$

And therefore,

$$R_{1} \left( x \right) = \mathop \smallint \limits_{X}^{{kp_{3} }} \eta_{2} \left( z \right)m \left( z \right)dx$$
$$= \mathop \smallint \limits_{X}^{{kp_{3} }} \left[ {\frac{10}{{ \left( {p_{3} - p_{2} } \right) \left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}} \times \left( {\varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right)} \right) \times \left( {1 - \varphi \left( {\left\{ {\frac{z}{k} - \frac{{p_{2} + p_{3} }}{2}} \right\}\frac{10}{{p_{3} - p_{2} }}} \right)} \right)} \right]dz$$
$$= \frac{{\varphi \left( 5 \right) - \varphi \left( {\left\{ {x - \frac{{kp_{2} + kp_{3} }}{2}} \right\}\frac{10}{{ \left( {kp_{3} - kp_{2} } \right)}}} \right)}}{{\varphi \left( 5 \right) - \psi \left( { - 5} \right)}}$$

The membership for the fuzzy number \({\text{kX}}\) at \({\text{k}} > 0\) is:

$$\mu_{kX} \left( x \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon_{1} \frac{{\varphi \left( {\left\{ {x - \frac{{kp_{1} + kp_{2} }}{2}} \right\}\frac{10}{{ \left( {kp_{2} - kp_{1} } \right)}}} \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}};} \hfill & {kp_{1} \le x < kp_{2} } \hfill \\ {\varepsilon_{1} ;} \hfill & {x = kp_{2} } \hfill \\ {\varepsilon_{1} \frac{{\varphi \left( 5 \right) - \varphi \left( {\left\{ {x - \frac{{kp_{2} + kp_{3} }}{2}} \right\}\frac{10}{{ \left( {kp_{3} - kp_{2} } \right)}}} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}};} \hfill & {kp_{2} \le x < kp_{3} .} \hfill \\ \end{array} } \right.$$

Likewise, the membership for the fuzzy number kX at k < 0, is:

$$\mu_{kX} \left( x \right) = \left\{ \begin{gathered} \varepsilon_{1} \frac{{\varphi \left( {\left\{ {x - \frac{{kp_{2} + kp_{3} }}{2}} \right\}\frac{10}{{ \left( {kp_{2} - kp_{3} } \right)}}} \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}};\quad kp_{3} \le x < kp_{2} \hfill \\ \varepsilon_{1} ; \quad \quad \quad \quad \quad \quad \quad \quad x = kp_{2} \hfill \\ \varepsilon_{1} \frac{{\varphi \left( 5 \right) - \varphi \left( {\left\{ {x - \frac{{kp_{1} + kp_{2} }}{2}} \right\}\frac{10}{{ \left( {kp_{1} - kp_{2} } \right)}}} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}; \quad kp_{2} \le x < kp_{1} \hfill \\ \end{gathered} \right.$$

Appendix J

Proof—The fuzzy number \(Z = XY\), associate \(L_{1} \left( x \right)\) with \(L_{1} \left( y \right)\) and \(R_{1} \left( x \right)\) with \(R_{2} \left( y \right)\) and get \(y = \emptyset_{1} \left( x \right)\) and \(y = \emptyset_{2} \left( x \right)\),

Where,\(\emptyset_{1} \left( x \right) = \frac{{q_{1} + q_{2} }}{2} + \frac{{q_{2} - q_{1} }}{{a_{2} - a_{1} }}\left( {x - \frac{{a_{1} + a_{2} }}{2}} \right)\);\(\emptyset_{2} \left( x \right)\)\(= \frac{{q_{2} + q_{3} }}{2} + \frac{{q_{3} - q_{2} }}{{a_{3} - a_{2} }}\left( {x - \frac{{a_{2} + a_{3} }}{2}} \right)\).

Therefore, at \(y = \emptyset_{1} \left( x \right),\) \(z = xy\) becomes

$$x = \frac{{p_{1} q_{2} - p_{2} q_{1} \pm \sqrt {(p_{1} q_{2} - p_{2} q_{1} )^{2} + 4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)x} }}{{2\left( {q_{2} - q_{1} } \right)}} = \xi_{1} \left( z \right)$$

Therefore,

$$m_{1} \left( z \right) = |\frac{dx}{{dz}}|_{{x = \xi_{1} \left( z \right)}} = \frac{{4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)}}{{4\left( {q_{2} - q_{1} } \right)\sqrt {(p_{1} q_{2} - p_{2} q_{1} )^{2} + 4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)z} }}$$
$$= \frac{{p_{2} - p_{1} }}{{\sqrt {(p_{1} q_{2} - p_{2} q_{1} )^{2} + 4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)z} }} = \frac{{p_{2} - p_{1} }}{{\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}$$

where \(P_{1} = \left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)\); \(Q_{1} = p_{1} \left( {q_{2} - q_{1} } \right) +\);\(R_{1} = p_{1} q_{1}\).and in addition,

$$\eta_{1} \left( z \right) = \frac{d}{dx}\left( {L_{1} } \right){\text{ at, }}x = \xi_{1} \left( z \right)$$
$$= \frac{10}{{\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)dx}}\left( {\varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{\left( {p_{2} - p_{1} } \right)}}} \right)} \right)$$
$$= \frac{10}{{\left( {p_{2} - p_{1} } \right)\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{\left( {p_{2} - p_{1} } \right)}}} \right) \times \left( {1 - \varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{\left( {p_{2} - p_{1} } \right)}}} \right)} \right)$$

At,

$$X = \xi_{1} \left( z \right) = \frac{{p_{1} q_{2} - p_{2} q_{1} \pm \sqrt {(p_{1} q_{2} - p_{2} q_{1} )^{2} + 4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)z} }}{{2\left( {q_{2} - q_{1} } \right)}}$$
$$\varphi \left( {\left\{ {x - \frac{{p_{1} + p_{2} }}{2}} \right\}\frac{10}{{\left( {p_{2} - p_{1} } \right)}}} \right) = \varphi \left( {\left\{ {\frac{{p_{1} q_{2} - p_{2} q_{1} \pm \sqrt {\left( {p_{1} q_{2} - p_{2} q_{1} } \right)^{2} + 4\left( {p_{2} - p_{1} } \right)\left( {q_{2} - q_{1} } \right)z} p_{1} + p_{2} }}{{2\left( {q_{2} - q_{1} } \right)2}}} \right\} \times \frac{10}{{p_{2} - p_{1} }}} \right)$$
$$= \varphi \left( {\left\{ {\frac{{p_{1} q_{2} - p_{2} q_{1} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} p_{1} + p_{2} }}{{2\left( {q_{2} - q_{1} } \right)2}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)$$
$$= \varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2\left( {q_{2} - q_{1} } \right)}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)$$

Hence

$$\eta_{1} \left( z \right) = \frac{10}{{\left( {p_{2} - p_{1} } \right)\left( {\psi \left( 5 \right) - \psi \left( { - 5} \right)} \right)}}\varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2\left( {q_{2} - q_{1} } \right)}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)$$
$$\times \left[ {1 - \varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2\left( {q_{2} - q_{1} } \right)}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right]$$

Therefore,

$$L_{1} \left( x \right) = \mathop \smallint \limits_{{p_{1} q_{1} }}^{X} m_{1} \left( z \right)\eta_{1} \left( z \right)dz = \mathop \smallint \limits_{{p_{1} q_{1} }}^{X} \frac{10}{{\left( {\varphi \left( 5 \right) - \psi \left( { - 5} \right)} \right)\sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}\varphi \left( \cdot \right)\left( {1 - \varphi \left( \cdot \right)} \right)dz$$

where \(\varphi \left( \cdot \right) = \varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2\left( {q_{2} - q_{1} } \right)}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)\)

$$= \frac{1}{{\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} }}{{2\left( {q_{2} - q_{1} } \right)}}} \right\}\frac{10}{{p_{2} - p_{1} }}} \right)} \right]_{{p_{1} b_{1} }}^{X}$$
$$= \frac{1}{{\left( {\varphi \left( 5 \right) - \varphi \left( { - 5} \right)} \right)}}\left[ {\varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {(Q_{1} )^{2} - 4P_{1} \left( {R_{1} - x} \right)} }}{{2\left( {q_{2} - q_{1} } \right)\left( {p_{2} - p_{1} } \right)}}} \right\}10} \right)} \right. - \varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {Q_{1} - p_{1} q_{1} } \right)} }}{{2\left( {q_{2} - b_{1} } \right)\left( {p_{2} - p_{1} } \right)}}} \right\}} \right.$$
$$= \frac{{\varphi \left( {\left\{ {\frac{{p_{1} q_{1} - p_{2} q_{2} \pm \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} }}{{2\left( {q_{2} - q_{1} } \right)\left( {p_{2} - p_{1} } \right)}}} \right\}10} \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}$$

\(= \frac{{\varphi \left( {\tau_{1} } \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}\), where, \(\tau_{1} = 10\left( {\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - x} \right)} - P_{1} }}{{2P_{1} }}} \right)\).

By taking, \(P_{2} = \left( {p_{3} - p_{2} } \right)\left( {q_{3} - q_{2} } \right)\); \(Q_{2} = - p_{3} \left( {q_{3} - q_{2} } \right) - q_{3} \left( {p_{3} - p_{2} } \right)\); \(R_{2} = p_{3} q_{3}\),

We're having the accurate membership of \(Z = XY\) as:

\(R_{1} \left( x \right) = l^{{p_{3} q_{3} }} \eta_{2} \left( z \right)m_{2} \left( z \right)dz = \frac{{\varphi \left( 5 \right) - \varphi \left( {\tau_{2} } \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}}\), where \(\tau_{2} = 10\left( {\frac{{ - Q_{2} - \sqrt {Q_{2}^{2} - 4P_{2} \left( {R_{2} - x} \right)} + P_{2} }}{{2P_{2} }}} \right)\)consequently, the membership of the fuzzy number \(Z = XY\) is:

$$\mu_{XY} \left( z \right) = \left\{ {\begin{array}{*{20}l} {\varepsilon \frac{{\varphi \left( {\tau_{1} } \right) - \varphi \left( { - 5} \right)}}{{\varphi \left( 5 \right) - \varphi \left( { - 5} \right)}};} \hfill & {p_{1} q_{1} \le z < p_{2} q_{2} } \hfill \\ {\varepsilon ;} \hfill & {z = p_{2} q_{2} } \hfill \\ {\varepsilon \frac{{\varphi \left( 5 \right) - \varphi \left( {\tau_{2} } \right)}}{{ \varphi \left( 5 \right) - \varphi \left( { - 5} \right)}};} \hfill & {p_{2} q_{2} \le z < p_{3} q_{3} } \hfill \\ \end{array} } \right.$$
(86)

where \(\tau_{1} = 10\left( {\frac{{ - Q_{1} + \sqrt {Q_{1}^{2} - 4P_{1} \left( {R_{1} - z} \right)} - P_{1} }}{{2P_{1} }}} \right)\) and \(\tau_{2} = 10\left( {\frac{{ - Q_{2} - \sqrt {Q_{2}^{2} - 4P_{2} \left( {R_{2} - z} \right)} + P_{2} }}{{2P_{2} }}} \right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Khepar, J., Yadav, K. et al. A Systematic Review on Generalized Fuzzy Numbers and Its Applications: Past, Present and Future. Arch Computat Methods Eng 29, 5213–5236 (2022). https://doi.org/10.1007/s11831-022-09779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09779-8

Navigation