Skip to main content
Log in

A Comprehensive Review on Analysis and Implementation of Recent Image Dehazing Methods

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Images acquired in poor weather conditions (haze, fog, smog, mist, etc.) are often severely degraded. In the atmosphere, there exists two types of particles: dry particles (dust, smoke, etc.) and wet particles (water droplets, rain, etc.) Due to the scattering and absorption of these particles, various adverse effects, including reduced visibility and contrast, color distortions, etc. are introduced in the image. These degraded images are not acceptable for many computer vision applications such as smart transportation, video surveillance, weather forecasting, remote sensing, etc. The computer vision task associated with the mitigation of this effect is known as image dehazing. A high-quality input image (haze-free) is required to ensure the accurate working of these applications, supplied by image dehazing methods. The haze effect in the captured image is dependent on the distance from the observer to the scene. Besides, the scattering of particles adds non-linear and data-dependent noise to the captured image. Single image dehazing utilizes the physical model of hazy image formation in which estimation of depth or transmission is an important parameter to obtain a haze-free image. This review article groups the recent dehazing methods into different categories and elaborates the popular dehazing methods of each category. This category-wise analysis of different dehazing methods reveals that the deep learning and the restoration-based methods with priors have attracted the attention of the researchers in recent years in solving two challenging problems of image dehazing: dense haze and non-homogeneous haze. Also, recently, hardware implementation-based methods are introduced to assist smart transportation systems. This paper provides in-depth knowledge of this field; progress made to date and compares performance (both qualitative and quantitative) of the latest works. It covers a detailed description of dehazing methods, motivation, popular, and challenging datasets used for testing, metrics used for evaluation, and issues/challenges in this field from a new perspective. This paper will be useful to all types of researchers from novice to highly experienced in this field. It also suggests research gaps in this field where recent methods are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Kumar R, Kaushik BK, Balasubramanian R (2017) FPGA implementation of image dehazing algorithm for real time applications. In: Proc SPIE 10396, applications of digital image processing XL. https://doi.org/10.1117/12.2274682

  2. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48:233–254

    Article  MATH  Google Scholar 

  3. Li Y, You S, Brown MS, Tan RT (2017) Haze visibility enhancement: A Survey and quantitative benchmarking. Comput Vis Image Underst 165:1–16

    Article  Google Scholar 

  4. Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Automat Sin 4(3):410–436. https://doi.org/10.1109/JAS.2017.7510532

    Article  MathSciNet  Google Scholar 

  5. Singh D, Kumar VA (2019) Comprehensive review of computational dehazing techniques. Arch Comput Methods Eng 26:1395–1413. https://doi.org/10.1007/s11831-018-9294-z

    Article  Google Scholar 

  6. Babu GH, Venkatram N (2020) A survey on analysis and implementation of state-of-the-art haze removal techniques. J Visu Commun Image Represent 72:102912. https://doi.org/10.1016/j.jvcir.2020.102912

    Article  Google Scholar 

  7. Das B, Ebenezer JP, Mukhopadhyay SA (2020) Comparative study of single image fog removal methods. Vis Comput. https://doi.org/10.1007/s00371-020-02010-4

    Article  Google Scholar 

  8. https://www.ndtv.com/topic/fog-accident

  9. Min X et al (2019) Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans Multimedia 21(9):2319–2333. https://doi.org/10.1109/TMM.2019.2902097

    Article  Google Scholar 

  10. Shen L, Zhao Y, Peng Q, Chan JC, Kong SG (2019) An iterative image dehazing method with polarization. IEEE Trans Multimedia 21(5):1093–1107. https://doi.org/10.1109/TMM.2018.2871955

    Article  Google Scholar 

  11. Ancuti C, Ancuti CO, De Vleeschouwer C, Bovik AC (2020) Day and night-time dehazing by local airlight estimation. IEEE Trans Image Process 29:6264–6275. https://doi.org/10.1109/TIP.2020.2988203

    Article  MATH  Google Scholar 

  12. Chen W, Ding J, Kuo S (2019) PMS-net: Robust haze removal based on patch map for single images. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, pp 11673–11681. https://doi.org/10.1109/CVPR.2019.01195.

  13. Galdran A (2018) Image dehazing by artificial multiple-exposure image fusion. Signal Process 149:135–147

    Article  Google Scholar 

  14. Fu X, Wang J, Zeng D, Huang Y, Ding X (2015) Remote sensing image enhancement using regularized-histogram equalization and dct. IEEE Geosci Remote Sens Lett 12(11):2301–2305

    Article  Google Scholar 

  15. Chen BH, Huang SC, Ye JH (2015) Hazy image restoration by bi-histogram modification. ACM Tran Intell Syst Technol TIST 6(4):50

    Google Scholar 

  16. He S, Yang Q, Lau RW, Yang MH (2016) Fast weighted histograms for bilateral filtering and nearest neighbor searching. IEEE Trans Circ Syst Video Technol 26(5):891–902

    Article  Google Scholar 

  17. Mi Z, Zhou H, Zheng Y, Wang M (2016) Single image dehazing via multi-scale gradient domain contrast enhancement. IET Image Process 10(3):206–214

    Article  Google Scholar 

  18. Zheng L, Shi H, Gu M (2017) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B 31:1740044

    Article  Google Scholar 

  19. Gao Y, Chen H, Li H, Zhang W (2017) Single image dehazing using local linear fusion. IET Image Proc 12:637–643

    Article  Google Scholar 

  20. Ju M, Ding C, Zhang D, Guo YJ (2018) Gamma-correction-based visibility restoration for single hazy images. IEEE Signal Process Lett 25(7):1084–1088. https://doi.org/10.1109/LSP.2018.2839580

    Article  Google Scholar 

  21. Wang J, Lu K, Xue J, He N, Shao L (2018) Single image dehazing based on the physical model and MSRCR algorithm. IEEE Trans Circ Syst Video Technol 28(9):2190–2199. https://doi.org/10.1109/TCSVT.2017.2728822

    Article  Google Scholar 

  22. Liu X, Zhang H, Cheung Y, You X, Tang YY (2017) Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput Vis Image Underst 162:23–33

    Article  Google Scholar 

  23. Yang H, Yang CH, Tsai YJ (2020) Y-net: multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), Barcelona, Spain, pp 2628–2632. https://doi.org/10.1109/ICASSP40776.2020.9053920.

  24. He J, Xing FZ, Yang R, Zhang C (2019) Fast single image dehazing via multilevel wavelet transform based optimization. arXiv:1904.08573

  25. Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114

    Article  Google Scholar 

  26. Liu C, Zhao J, Shen Y et al (2016) Texture filtering based physically plausible image dehazing. Vis Comput 32:911–920. https://doi.org/10.1007/s00371-016-1259-3

    Article  Google Scholar 

  27. Singh D, Kumar V (2019) Image dehazing using Moore neighborhood-based gradient profile prior. Signal Process Image Commun 70:131–144

    Article  Google Scholar 

  28. Tarel JP, Hautiere N, Cord A, Gruyer D, Halmaoui H (2010) Improved visibility of road scene images under heterogeneous fog. In: Proc IEEE Intell Veh Symp, pp 478–485

  29. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: Proceedings of the IEEE 12th international conference on computer vision. IEEE, Kyoto, Japan, pp 2201–2208

  30. Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimedia 19(6):1142–1155. https://doi.org/10.1109/TMM.2017.2652069

    Article  Google Scholar 

  31. Salazar-Colores S, Cabal-Yepez E, Ramos-Arreguin JM, Botella G, Ledesma-Carrillo LM, Ledesma S (2019) A fast image dehazing algorithm using morphological reconstruction. IEEE Trans Image Process 28(5):2357–2366. https://doi.org/10.1109/TIP.2018.2885490

    Article  MathSciNet  Google Scholar 

  32. Bi G, Ren J, Fu T, Nie T, Chen C, Zhang N (2017) Image dehazing based on accurate estimation of transmission in the atmospheric scattering model. IEEE Photon J 9(4):1–18. https://doi.org/10.1109/JPHOT.2017.2726107

    Article  Google Scholar 

  33. Li Z, Zheng J (2018) Single image de-hazing using globally guided image filtering. IEEE Trans Image Process 27(1):442–450. https://doi.org/10.1109/TIP.2017.2750418

    Article  MathSciNet  MATH  Google Scholar 

  34. Fan X, Wang Y, Tang X, Gao R, Luo Z (2017) Two-layer Gaussian process regression with example selection for image dehazing. IEEE Trans Circuits Syst Video Technol 27(12):2505–2517. https://doi.org/10.1109/TCSVT.2016.2592328

    Article  Google Scholar 

  35. Riaz I, Yu T, Rehman Y, Shin H (2016) Single image dehazing via reliability guided fusion. J Vis Commun Image Represent 40:85–97

    Article  Google Scholar 

  36. Xiao J, Shen M, Lei J, Zhou J, Klette R, Sui HG (2020) Single image dehazing based on learning of haze layers. Neurocomputing 389:108–122

    Article  Google Scholar 

  37. Jiang B, Meng H, Ma X et al (2018) Nighttime image Dehazing with modified models of color transfer and guided image filter. Multimed Tools Appl 77:3125–3141. https://doi.org/10.1007/s11042-017-4954-9

    Article  Google Scholar 

  38. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  39. Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image Process 24(1):120–129

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh D, Kumar V, Kaur M (2019) Single image dehazing using gradient channel prior. Appl Intell 49:4276–4293. https://doi.org/10.1007/s10489-019-01504-6

    Article  Google Scholar 

  41. Nandal S, Kumar S (2019) Single image fog removal algorithm in spatial domain using fractional order anisotropic diffusion. Multimed Tools Appl 78:10717–10732. https://doi.org/10.1007/s11042-018-6576-2

    Article  Google Scholar 

  42. Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282

    Article  Google Scholar 

  43. Vazquez-Corral J, Galdran A, Cyriac P et al (2020) A fast image dehazing method that does not introduce color artifacts. J Real-Time Image Proc 17:607–622. https://doi.org/10.1007/s11554-018-0816-6

    Article  Google Scholar 

  44. Liu P, Horng S, Lin J, Li T (2019) Contrast in haze removal: configurable contrast enhancement model based on dark channel prior. IEEE Trans Image Process 28(5):2212–2227. https://doi.org/10.1109/TIP.2018.2823424

    Article  MathSciNet  Google Scholar 

  45. Baig N, Riaz MM, Ghafoor A, Siddiqui AM (2016) Image dehazing using quadtree decomposition and entropy-based contextual regularization. IEEE Signal Process Lett 23(6):853–857. https://doi.org/10.1109/LSP.2016.2559805

    Article  Google Scholar 

  46. Yuan H, Liu C, Guo Z, Sun Z (2017) A region-wised medium transmission based image dehazing method. IEEE Access 5:1735–1742

    Article  Google Scholar 

  47. Raikwar SC, Tapaswi S (2020) Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans Image Process 29:4832–4847. https://doi.org/10.1109/TIP.2020.2975909

    Article  MATH  Google Scholar 

  48. Zhang S, He F, Ren W et al (2020) Joint learning of image detail and transmission map for single image dehazing. Vis Comput 36:305–316. https://doi.org/10.1007/s00371-018-1612-9

    Article  Google Scholar 

  49. Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE international conference on computer vision, pp 617–624

  50. Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted L 1-norm regularization. IET Image Proc 11(2):145–154

    Article  Google Scholar 

  51. Chen C, Do MN, Wang J (2016) Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: European conference on computer vision. Springer, pp 576–591

  52. Wang X, Ju M, Zhang D (2017) Image haze removal via multiscale fusion and total variation. J Syst Eng Electron 28(3):597–605. https://doi.org/10.21629/JSEE.2017.03.19

    Article  Google Scholar 

  53. Liu Q, Gao X, He L, Lu W (2018) Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans Image Process 27(10):5178–5191. https://doi.org/10.1109/TIP.2018.2849928

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu Q, Zhang J, Ren W, Zuo W, Cao X (2020) Accurate transmission estimation for removing haze and noise from a single image. IEEE Trans Image Process 29:2583–2597. https://doi.org/10.1109/TIP.2019.2949392

    Article  MATH  Google Scholar 

  55. Park J, Han DK, Ko H (2020) Fusion of heterogeneous adversarial networks for single image dehazing. IEEE Trans Image Process 29:4721–4732. https://doi.org/10.1109/TIP.2020.2975986

    Article  MATH  Google Scholar 

  56. Zhu Z, Wei H, Hu G, Li Y, Qi G, Mazur N (2021) A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans Instrum Meas 70:1–23. https://doi.org/10.1109/TIM.2020.3024335

    Article  Google Scholar 

  57. Yuan F, Zhou Y, Xia X, Shi J, Fang Y, Qian X (2020) Image dehazing based on a transmission fusion strategy by automatic image matting. Comput Vis Image Underst 194:102933

    Article  Google Scholar 

  58. Ma Z, Wen J, Zhang C, Liu Q, Yan D (2016) An effective fusion defogging approach for single sea fog image. Neuro-computing 173:1257–1267

    Google Scholar 

  59. Son C, Zhang X (2018) Near-infrared fusion via color regularization for haze and color distortion removals. IEEE Trans Circuits Syst Video Technol 28(11):3111–3126. https://doi.org/10.1109/TCSVT.2017.2748150

    Article  Google Scholar 

  60. Shibata T, Tanaka M, Okutomi M (2019) Unified image fusion framework with learning-based application-adaptive importance measure. IEEE Trans Comput Imaging 5(1):82–96. https://doi.org/10.1109/TCI.2018.2879021

    Article  Google Scholar 

  61. Zhao D, Xu L, Yan Y, Chen J, Duan L-Y (2019) Multi-scale optimal fusion model for single image dehazing. Signal Process 74:253–265

    Google Scholar 

  62. Agrawal SC, Jalal AS (2021) A joint cumulative distribution function and gradient fusion-based method for dehazing of long shot hazy images. J Vis Commun Image Represent 77:103087

    Article  Google Scholar 

  63. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Google Scholar 

  64. Zhu Q, Mai J, Shao L et al (2015) A fast single image haze removal algorithm using color attenuation prior. TIP 24(11):3522–3533

    MathSciNet  MATH  Google Scholar 

  65. Zhenfei Gu, Mingye Ju, Zhang D (2017) A single image dehazing method using average saturation prior. Math Probl Eng. https://doi.org/10.1155/2017/6851301

    Article  Google Scholar 

  66. Berman D, Treibitz T, Avidan S (2020) Single image dehazing using haze-lines. IEEE Trans Pattern Anal Mach Intel 42(3):720–734. https://doi.org/10.1109/TPAMI.2018.2882478

    Article  Google Scholar 

  67. Bui TM, Kim W (2018) Single image dehazing using color ellipsoid prior. IEEE Trans Image Process 27(2):999–1009. https://doi.org/10.1109/TIP.2017.2771158

    Article  MathSciNet  MATH  Google Scholar 

  68. Mei K, Jiang A, Li J, Li J, Wang M (2019) Progressive feature fusion network for realistic image dehazing. In: Asian conference on computer vision. https://doi.org/10.1007/978-3-030-20887-5_13

  69. Salazar-Colores S, Ramos-Arreguín JM, Pedraza-Ortega JC et al (2019) Efficient single image dehazing by modifying the dark channel prior. J Image Video Proc 2019:66. https://doi.org/10.1186/s13640-019-0447-2

    Article  Google Scholar 

  70. Zhang L, Wang S, Wang X (2018) Saliency-based dark channel prior model for single image haze removal. IET Image Process 12(6):1049–1055

    Article  Google Scholar 

  71. Zhu M, He B, Wu Q (2018) Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Process Lett 25(2):174–178. https://doi.org/10.1109/LSP.2017.2780886

    Article  Google Scholar 

  72. Shiau Y, Yang H, Chen P, Chuang Y (2013) Hardware implementation of a fast and efficient haze removal method. IEEE Trans Circ Syst Video Technol 23(8):1369–1374. https://doi.org/10.1109/TCSVT.2013.2243650

    Article  Google Scholar 

  73. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang M-H (2016) Single image dehazing via multi-scale convolutional neural networks. In: ECCV, 2016

  74. Cai B, Xu X, Jia K, Qing C, Tao D (2016) Dehazenet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198

    Article  MathSciNet  MATH  Google Scholar 

  75. Li B, Peng X, Wang Z, Xu J, Feng D (2017) Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE international conference on computer vision, pp 4770–4778

  76. Engin D, Genc A, Ekenel HK (2018) Cycle-dehaze: enhanced CycleGAN for single image dehazing. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 938–9388. https://doi.org/10.1109/CVPRW.2018.00127.

  77. Ren W, Ma L, Zhang J, Pan J, Cao X, Liu W, Yang M-H (2018) Gated fusion network for single image dehazing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3253–3261

  78. Liu Z, Xiao B, Alrabeiah M, Wang K, Chen J (2019) Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process Lett 26(6):833–837

    Article  Google Scholar 

  79. Singh A, Bhave A, Prasad DK (2020) Single image dehazing for a variety of haze scenarios using back projected pyramid network. In: European conference on computer vision workshops

  80. Gandelsman Y, Shocher A, Irani M (2019) Double-DIP: unsupervised image decomposition via coupled deepimage-priors. In: CVPR

  81. Li B, Gou Y, Liu JZ, Zhu H, Zhou JT, Peng X (2020) Zero-shot image dehazing. IEEE Trans Image Process 29:8457–8466. https://doi.org/10.1109/TIP.2020.3016134

    Article  MATH  Google Scholar 

  82. Liu Y, Pan J, Ren J, Su Z (2019) Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp 2492–2500

  83. Zhang H, Sindagi V, Patel VM (2020) Joint transmission map estimation and dehazing using deep networks. IEEE Trans Circ Syst Video Technol 30(7):1975–1986

    Google Scholar 

  84. Chen D, He M, Fan Q, Liao J, Zhang L, Hou D, Yuan L, Hua G (2019) Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE winter conference on applications of computer vision (WACV), pp 1375–1383

  85. Zhang H, Sindagi V, Patel VM (2018) Multi-scale single image dehazing using perceptual pyramid deep network. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 1015–101509. https://doi.org/10.1109/CVPRW.2018.00135.

  86. Qin X, Wang Z, Bai Y, Xie X, Jia H (2019) Ffa-net: feature fusion attention network for single image dehazing. arXiv:1911.07559

  87. Li L, Dong Y, Ren W, Pan J, Gao C, Sang N, Yang MH (2019) Semi-supervised image dehazing. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2019.2952690

    Article  MATH  Google Scholar 

  88. Golts A, Freedman D, Elad M (2020) Unsupervised single image dehazing using dark channel prior loss. IEEE Trans Image Process 29:2692–2701. https://doi.org/10.1109/TIP.2019.2952032

    Article  MATH  Google Scholar 

  89. Agrawal SC, Jalal AS (2022) Distortion-free image dehazing by superpixels and ensemble neural network. Vis Comput 38:781–796. https://doi.org/10.1007/s00371-020-02049-3

    Article  Google Scholar 

  90. Yu M, Cherukuri V, Guo T, Monga V (2020) Ensemble dehazing networks for non-homogeneous haze. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 1832–1841. https://doi.org/10.1109/CVPRW50498.2020.00233.

  91. Zhang S, Wu Y, Zhao Y, Cheng Z, Ren W (2020) Color-Constrained Dehazing Model. In: 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 3799–3807. https://doi.org/10.1109/CVPRW50498.2020.00443.

  92. Golts A, Freedman D, Elad M Deep-energy: unsupervised training of deep neural networks. https://arxiv.org/abs/1805.12355

  93. Li B, Gou Y, Gu S, Liu JZ, Zhou JT, Peng X (2020) You only look yourself: Unsupervised and untrained single image dehazing neural network. http://arxiv.org/abs/2006.16829

  94. Metwaly K, Li X, Guo T, Monga V (2020) NonLocal channel attention for nonhomogeneous image dehazing. 2020 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Seattle, WA, USA, pp 1842–1851. https://doi.org/10.1109/CVPRW50498.2020.00234.

  95. Wu H, Liu J, Xie Y, Qu Y, Ma L (2020) Knowledge transfer dehazing network for non-homogeneous dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 478–479

  96. Tarel J, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intel Transport Syst Mag 4(2):6–20. https://doi.org/10.1109/MITS.2012.2189969

    Article  Google Scholar 

  97. Fattal R (2014) Dehazing using color-lines. ACM Trans Graph 34(1):13

    Article  Google Scholar 

  98. Ma K, Liu W, Wang Z (2015) Perceptual evaluation of single image dehazing algorithms. In: 2015 IEEE international conference on image processing (ICIP), Quebec City, QC, pp 3600–3604. https://doi.org/10.1109/ICIP.2015.7351475.

  99. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901. https://doi.org/10.1109/TIP.2015.2456502

    Article  MathSciNet  MATH  Google Scholar 

  100. Ancuti C, Ancuti CO, De Vleeschouwer C (2016) D-HAZY: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE international conference on image processing (ICIP), Phoenix, AZ, pp 2226–2230. https://doi.org/10.1109/ICIP.2016.7532754.

  101. Lee Y-H, Tang S-J (2021) A Design of Image Dehazing Engine Using DTE and DAE Techniques. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2020.3034250

    Article  Google Scholar 

  102. Sakaridis C, Dai D, Van Gool L (2017) Semantic foggy scene understanding with synthetic data. arXiv:1708.07819

  103. Zhang Y, Ding L, Sharma G (2017) Hazerd: an outdoor scene dataset and benchmark for single image dehazing. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 3205–3209

  104. Ancuti CO, Ancuti C, Timofte R, De Vleeschouwer C (2018) I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images. ArXiv e-prints

  105. Ancuti CO, Ancuti C, Timofte R, De Vleeschouwer C (2018) O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Salt Lake City, UT, pp 867–8678. https://doi.org/10.1109/CVPRW.2018.00119.

  106. Ancuti CO, Ancuti C, Sbert M, Timofte R (2019) Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. In: IEEE international conference on image processing (ICIP)

  107. Li B et al (2019) Benchmarking single-image dehazing and beyond. IEEE Trans Image Process 28(1):492–505. https://doi.org/10.1109/TIP.2018.2867951

    Article  MathSciNet  MATH  Google Scholar 

  108. Ancuti CO, Ancuti C, Timofte R (2020) NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 444–445

  109. Borkar K, Mukherjee S (2020) Single image dehazing by approximating and eliminating the additional airlight component. Neurocomputing 400:294–308

    Article  Google Scholar 

  110. Hautiere N, Tarel JP, Aubert D, Dumont E (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol J 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  111. Zhan Y, Zhang R (2017) No-reference JPEG image quality assessment based on blockiness and luminance change. IEEE Signal Process Lett 24(6):760–764. https://doi.org/10.1109/LSP.2017.2688371

    Article  Google Scholar 

  112. Crete-Roffet F, Dolmiere T, Ladret P, Nicolas M (2007) The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: SPIE

  113. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352. https://doi.org/10.1109/TIP.2012.2191563

    Article  MathSciNet  MATH  Google Scholar 

  114. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  115. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212. https://doi.org/10.1109/LSP.2012.2227726

    Article  Google Scholar 

  116. Min X, Zhai G, Gu K, Yang X, Guan X (2019) Objective quality evaluation of dehazed images. IEEE Trans Intell Transport Syst 20(8):2879–2892. https://doi.org/10.1109/TITS.2018.2868771

    Article  Google Scholar 

  117. Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep features as a perceptual metric. In: Proc CVPR

  118. Luan Z, Shang Y, Zhou X, Shao Z, Guo G, Liu X (2017) Fast single image dehazing based on a regression model. Neurocomputing 245:10–22

    Article  Google Scholar 

  119. Wang Z, Bovik AC (2006) Modern image quality assessment. Synth Lect Image Video Multimedia Process. https://doi.org/10.2200/S00010ED1V01Y200508IVM003

    Article  Google Scholar 

  120. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  121. Sharma G, Wu W, Dalal E (2005) The ciede2000 color difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl. https://doi.org/10.1002/col.20070

    Article  Google Scholar 

  122. Westland S, Ripamonti C, Cheung V (2005) Computational colour science using matlab, 2nd edn. Wiley, New York

    Google Scholar 

  123. Shi L et al (Sept. 2018) Removing haze particles from single image via exponential inference with support vector data description. IEEE Trans Multimedia 20(9):2503–2512. https://doi.org/10.1109/TMM.2018.2807593

    Article  Google Scholar 

  124. Sharma P, Jain P, Sur A (2020) Scale-aware conditional generative adversarial network for image dehazing. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV), pp 2355–2365

  125. https://timesofindia.indiatimes.com/india/over-10000-lives-lost-in-fog-related-road-crashes/articleshow/67391588.cms

  126. Santra S, Mondal R, Chanda B (2018) Learning a patch quality comparator for single image dehazing. IEEE Trans Image Process 27(9):4598–4607. https://doi.org/10.1109/TIP.2018.2841198

    Article  MathSciNet  Google Scholar 

  127. Yang D, Sun J (2018) Proximal dehaze-net: a prior learning-based deep network for single image dehazing. In: ECCV, pp 702–717

  128. Deng Z, Zhu L, Hu X, Fu C-W, Xu X, Zhang Q, Qin J, Heng P-A (2019) Deep multi-model fusion for single-image dehazing. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp 2453–2462

  129. Bianco S, Celona L, Piccoli F, Schettini R (2019) High-resolution single image dehazing using encoder-decoder architecture. In: 2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), Long Beach, CA, USA, pp 1927–1935. https://doi.org/10.1109/CVPRW.2019.00244.

  130. Agrawal SC, Jalal AS (2022) Dense haze removal by nonlinear transformation. IEEE Trans Circuits Syst Video Technol 32(2):593–607. https://doi.org/10.1109/TCSVT.2021.3068625

    Article  Google Scholar 

  131. Zhang B, Zhao J (2017) Hardware implementation for real-time haze removal”. IEEE Trans Very Large Scale Integr Syst 25(3):1188–1192

    Article  Google Scholar 

  132. Shiau Y-H, Kuo Y-T, Chen P-Y, Hsu F-Y (2019) VLSI design of an efficient flicker-free video defogging method for real-time applications. IEEE Trans Circuits Syst Video Technol 29(1):238–251

    Article  Google Scholar 

  133. Kumar R, Balasubramanian R, Kaushik BK (2020) Efficient method and architecture for real-time video defogging. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2020.2993906

    Article  Google Scholar 

  134. Salazar-Colores S, Cruz-Aceves I, Ramos-Arreguin J (2018) Single image dehazing using a multilayer perceptron. J Electron Imaging. https://doi.org/10.1117/1.JEI.27.4.043022

    Article  Google Scholar 

  135. Zhu Y, Tang G, Zhang X, Jiang J, Tian Q (2018) Haze removal method for natural restoration of images with sky. Neurocomputing 275:499–510

    Article  Google Scholar 

  136. Ju M, Ding C, Ren W, Yang Y, Zhang D, Guo YJ (2021) IDE: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans Image Process 30:2180–2192. https://doi.org/10.1109/TIP.2021.3050643

    Article  Google Scholar 

  137. Sahu G, Seal A, Krejcar O, Yazidi A (2021) Single image dehazing using a new color channel. J Visual Commun Image Represent 74:103008

    Article  Google Scholar 

  138. Ju M, Ding C, Guo YJ, Zhang D (2020) IDGCP: image dehazing based on gamma correction prior. IEEE Trans Image Process 29:3104–3118. https://doi.org/10.1109/TIP.2019.2957852

    Article  MATH  Google Scholar 

  139. Morales P, Klinghoffer T, Lee SJ (2019) Feature forwarding for efficient single image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops

  140. Zheng X, et al. (2018) Strong baseline for single image dehazing with deep features and instance normalization. In: BMVC

  141. Yang A, Wang H, Ji Z, Pang Y, Shao L (2019) Dual-path in dual-path network for single image dehazing. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence main track, pp 4627–4634. https://doi.org/10.24963/ijcai.2019/643

  142. Zhang H, Patel VM (2018) Densely connected pyramid dehazing network. In: CVPR, pp 3194–3203

  143. Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155. https://doi.org/10.1109/LSP.2016.2643168

    Article  MATH  Google Scholar 

  144. Zheng M, Qi G, Zhu Z, Li Y, Wei H, Liu Y (2020) Image dehazing by an artificial image fusion method based on adaptive structure decomposition. IEEE Sens J 20(14):8062–8072. https://doi.org/10.1109/JSEN.2020.2981719

    Article  Google Scholar 

  145. Gao Y, Su Y, Li Q, Li H, Li J (2020) Single image dehazing via self-constructing image fusion. Signal Process 167:107284

    Article  Google Scholar 

  146. Wang B, Wei B, Kang Z et al (2020) Fast color balance and multi-path fusion for sandstorm image enhancement. SIViP. https://doi.org/10.1007/s11760-020-01786-1

    Article  Google Scholar 

  147. Huo F, Zhu X, Zeng H, Liu Q, Qiu J (2021) Fast fusion-based dehazing with histogram modification and improved atmospheric illumination prior. IEEE Sens J 21(4):5259–5270. https://doi.org/10.1109/JSEN.2020.3033713

    Article  Google Scholar 

  148. Hong S, Kim M, Kang MG (2021) Single image dehazing via atmospheric scattering model-based image fusion. Signal Process 178:107798

    Article  Google Scholar 

  149. Wang R, Li R, Sun H (2016) Haze removal based on multiple scattering model with superpixel algorithm. Signal Process 127:24–36

    Article  Google Scholar 

  150. Jiang Y, Sun C, Zhao Y, Yang L (2017) Image dehazing using adaptive bi-channel priors on superpixels. Comput Vis Image Understand 165:17–32

    Article  Google Scholar 

  151. Yang M, Liu J, Li Z (2018) Superpixel-based single nighttime image haze removal. IEEE Trans Multimedia 20(11):3008–3018. https://doi.org/10.1109/TMM.2018.2820327

    Article  Google Scholar 

  152. Wang P, Fan Q, Zhang Y, Bao F, Zhang C (2019) A novel dehazing method for color fidelity and contrast enhancement on mobile devices. IEEE Trans Consum Electron 65(1):47–56. https://doi.org/10.1109/TCE.2018.2884794

    Article  Google Scholar 

  153. Hassan H, Bashir AK, Ahmad M et al (2020) Real-time image dehazing by superpixels segmentation and guidance filter. J Real-Time Image Proc. https://doi.org/10.1007/s11554-020-00953-4

    Article  Google Scholar 

  154. Wang LZSWX (2021) Single image dehazing based on bright channel prior model and saliency analysis strategy. IET Image Proc 15(3):1023–1031

    Google Scholar 

  155. Tan Y, Wang G (2020) Image haze removal based on superpixels and Markov random field. IEEE Access 8:60728–60736. https://doi.org/10.1109/ACCESS.2020.2982910

    Article  Google Scholar 

  156. Yuan F, Huang H (2018) Image haze removal via reference retrieval and scene prior. IEEE Trans Image Process 27(9):4395–4409. https://doi.org/10.1109/TIP.2018.2837900

    Article  MathSciNet  MATH  Google Scholar 

  157. Mandal S, Rajagopalan AN (2020) Local proximity for enhanced visibility in haze. IEEE Trans Image Process 29:2478–2491

    Article  MATH  Google Scholar 

  158. Reda M, Zhao Y, Chan JC-W (2017) polarization guided autoregressive model for depth recovery. IEEE Photon J 9(3):1–16

    Article  Google Scholar 

  159. Haofeng Hu, Zhao L, Li X, Wang H, Yang J, Li K, Liu T (2018) Polarimetric image recovery in turbid media employing circularly polarized light. Opt Express 26:25047–25059

    Article  Google Scholar 

  160. Li X et al (2019) Pseudo-polarimetric method for dense haze removal. IEEE Photon J 11(1):1–11. https://doi.org/10.1109/JPHOT.2018.2890771

    Article  Google Scholar 

  161. Tian Y, Liu B, Su X, Wang L, Li K (2019) Underwater imaging based on LF and polarization. IEEE Photon J 11(1):1–9. https://doi.org/10.1109/JPHOT.2018.2890286

    Article  Google Scholar 

  162. Liang Z, Ding X, Mi Z, Wang Y, Fu X (2022) Effective polarization-based image dehazing with regularization constraint”. IEEE Geosci Remote Sens Lett. https://doi.org/10.1109/LGRS.2020.3023805

    Article  Google Scholar 

  163. Zhang L, Yin Z, Zhao K, Tian H (2020) Lane detection in dense fog using a polarimetric dehazing method. Appl Opt 59:5702–5707

    Article  Google Scholar 

  164. Kim SE, Park TH, Eom IK (2020) Fast single image dehazing using saturation based transmission map estimation. IEEE Trans Image Process 29:1985–1998. https://doi.org/10.1109/TIP.2019.2948279

    Article  MathSciNet  MATH  Google Scholar 

  165. Lu Z, Long B, Yang S (2020) Saturation based iterative approach for single image dehazing. IEEE Signal Process Lett 27:665–669. https://doi.org/10.1109/LSP.2020.2985570

    Article  Google Scholar 

  166. Gao Y, Hu H, Li B, Guo Q, Pu S (2019) Detail preserved single image dehazing algorithm based on airlight refinement. IEEE Trans Multimedia 21(2):351–362. https://doi.org/10.1109/TMM.2018.2856095

    Article  Google Scholar 

  167. Wang A, Wang W, Liu J, Gu N (2019) AIPNet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans Image Process 28(1):381–393. https://doi.org/10.1109/TIP.2018.2868567

    Article  MathSciNet  MATH  Google Scholar 

  168. Hu H, Zhang H, Zhao Z, Li B, Zheng J (2020) Adaptive single image dehazing using joint local-global illumination adjustment. IEEE Trans Multimedia 22(6):1485–1495. https://doi.org/10.1109/TMM.2019.2944260

    Article  Google Scholar 

  169. Dhara SK, Roy M, Sen D, Biswas PK (2021) Color cast dependent image dehazing via adaptive airlight refinement and non-linear color balancing. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2020.3007850

    Article  Google Scholar 

  170. Lee Y, Wu B (2019) Algorithm and architecture design of a hardware-efficient image dehazing engine. IEEE Trans Circuits Syst Video Technol 29(7):2146–2161. https://doi.org/10.1109/TCSVT.2018.2862906

    Article  Google Scholar 

  171. Kumar R, Kaushik BK, Balasubramanian R (2019) Multispectral transmission map fusion method and architecture for image dehazing. IEEE Trans Very Large-Scale Integr Syst 27(11):2693–2697

    Article  Google Scholar 

  172. Soma P, Jatoth RK (2020) Implementation of a novel, fast and efficient image de-hazing algorithm on embedded hardware platforms. Circuits Syst Signal Process. https://doi.org/10.1007/s00034-020-01517-4

    Article  Google Scholar 

  173. Wu X, Wang K, Li Y, Liu K, Huang B (2021) Accelerating haze removal algorithm using CUDA. Remote Sens 13(1):85. https://doi.org/10.3390/rs13010085

    Article  Google Scholar 

  174. Xie CH, Qiao WW, Liu Z et al (2017) Single image dehazing using kernel regression model and dark channel prior. SIViP 11:705–712. https://doi.org/10.1007/s11760-016-1013-3

    Article  Google Scholar 

  175. Chen B, Huang S, Li C, Kuo S (2018) Haze removal using radial basis function networks for visibility restoration applications. IEEE Trans Neural Netw Learn Syst 29(8):3828–3838. https://doi.org/10.1109/TNNLS.2017.2741975

    Article  Google Scholar 

  176. Kang C, Kim G (2018) Single image haze removal method using conditional random fields. IEEE Signal Process Lett 25(6):818–822. https://doi.org/10.1109/LSP.2018.2827882

    Article  Google Scholar 

  177. Yin JL, Huang YC, Chen BH, Ye SZ (2020) Color transferred convolutional neural networks for image dehazing. IEEE Trans Circuits Syst Video Technol 30(11):3957–3967. https://doi.org/10.1109/TCSVT.2019.2917315

    Article  Google Scholar 

  178. Chaitanya BSNV, Mukherjee S (2021) Single image dehazing using improved cycleGAN. J Visual Commun Image Represent 74:103014

    Article  Google Scholar 

  179. Li Y, Liu Y, Yan Q, Zhang K (2021) Deep dehazing network with latent ensembling architecture and adversarial learning. IEEE Trans Image Process 30:1354–1368. https://doi.org/10.1109/TIP.2020.3044208

    Article  Google Scholar 

  180. Sun Z, Zhang Y, Bao F, Shao K, Liu X, Zhang C (2021) ICycleGAN: Single image dehazing based on iterative dehazing model and CycleGAN. Comput Vis Image Understand 203:1031332

    Article  Google Scholar 

  181. . Huang L, Yin J, Chen B, Ye S (2019) Towards unsupervised single image dehazing with deep learning. In: 2019 IEEE international conference on image processing (ICIP), Taipei, Taiwan, pp 2741–2745. https://doi.org/10.1109/ICIP.2019.8803316.

  182. Liu R, Ma L, Wang Y, Zhang L (2019) Learning converged propagations with deep prior ensemble for image enhancement. IEEE Trans Image Process 28(3):1528–1543. https://doi.org/10.1109/TIP.2018.2875568

    Article  MathSciNet  Google Scholar 

  183. Das SD, Dutta S (2020) Fast deep multi-patch hierarchical network for nonhomogeneous image dehazing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 482–483

  184. Mehta A, Sinha H, Mandal M, Narang P (2021) Domain-aware unsupervised hyperspectral reconstruction for aerial image dehazing. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV), pp 413–422

  185. Mehta A, Sinha H, Narang P, Murari (2020) HIDEGAN: a hyperspectral-guided image Dehazing GAN Mandal. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, pp 212–213

  186. Dudhane A, Murala S (2020) RYF-net: deep fusion network for single image haze removal. IEEE Trans Image Process 29:628–640. https://doi.org/10.1109/TIP.2019.2934360

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chand Agrawal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S.C., Jalal, A.S. A Comprehensive Review on Analysis and Implementation of Recent Image Dehazing Methods. Arch Computat Methods Eng 29, 4799–4850 (2022). https://doi.org/10.1007/s11831-022-09755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09755-2

Navigation