Skip to main content

Advertisement

Log in

Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Vector-borne diseases (VBDs) have a significant impact on human and animal health. VBD has been emerging or re-emerging in a variety of geographic regions, raising alarming new disease threats and economic losses. As a result, techniques based on Artificial Intelligence have been utilized to anticipate vector-borne diseases. Specifically, this study examines the various techniques used in previous studies, including individual and ensemble methods, parameters or variables, dataset types, and performance measures. We examined four databases for scholarly articles published from 2010 to 2021 that discussed prediction models for vector-borne illnesses. The results indicated that increasing air travel and uncontrolled mosquito vector populations were mostly responsible for the population's decline in health. We reviewed a count of 159 studies on the aedes mosquito, the anopheles’ mosquito, the culex mosquito, the triatome bug, the lice, the ticks, the fleas, and the blackflies etc. Our research conducted numerous investigations and summarizes the automated learning techniques utilised in VBD predictive modelling in this article. There is a need for more evidence to ensure that machine and deep learning models can be included in regular diagnostic care. Studies on VBD prediction models should be included to aid practitioners and patients in making medical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sultana H, Neelakanta G (2020) Arthropod exosomes as bubbles with message (s) to transmit vector-borne diseases. Current Opinion Insect Sci 40:39–47

    Article  Google Scholar 

  2. Smith E (2019) The effect of potential climate change on infectious disease presentation. J Nurse Pract 15(6):405–409

    Article  Google Scholar 

  3. Cheng Y, Tjaden NB, Jaeschke A, Thomas SM, Beierkuhnlein C (2020)s Deriving risk maps from epidemiological models of vector borne diseases: State-of-the-art and suggestions for best practice. Epidemics 100411

  4. Silva JV Jr, Lopes TR, de Oliveira-Filho EF, Oliveira RA, Durães-Carvalho R, Gil LH (2018) Current status, challenges and perspectives in the development of vaccines against yellow fever, dengue, Zika and chikungunya viruses. Acta Trop 182:257–263

    Article  Google Scholar 

  5. Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ (2017) Vertebrate reservoirs of arboviruses: myth, synonym of amplifier, or reality? Viruses 9(7):185

    Article  Google Scholar 

  6. Arquam M, Singh A, Cherifi H (2020) Impact of seasonal conditions on vector-borne epidemiological dynamics. IEEE Access 8:94510–94525

    Article  Google Scholar 

  7. Freeman MC, Coyne CB, Green M, Williams JV, Silva LA (2019) Emerging arboviruses and implications for pediatric transplantation: a review. Pediatric Transplant 23(1):e13303

  8. Powell JR (2019) An evolutionary perspective on vector-borne diseases. Front Genet 10:1266

    Article  Google Scholar 

  9. Indhumathi K, Kumar KS (2021) A review on prediction of seasonal diseases based on climate change using big data. Materials Today: Proceedings 37:2648–2652

    Google Scholar 

  10. Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW (2020) The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop Diseases 14(1):e0007831

  11. Athni TS, Shocket MS, Couper LI, Nova N, Caldwell IR, Caldwell JM, Mordecai EA (2021) The influence of vector-borne disease on human history: socio-ecological mechanisms. Ecol Lett 24(4):829–846

    Article  Google Scholar 

  12. Abd Rani PAM, Irwin PJ, Gatne M, Coleman GT, Traub RJ (2010) Canine vector-borne diseases in India: a review of the literature and identification of existing knowledge gaps. Parasit Vectors 3(1):1–7

    Google Scholar 

  13. Barandika JF, Hurtado A, Juste RA, García-Pérez AL (2010) Seasonal dynamics of Ixodes ricinus in a 3-year period in northern Spain: first survey on the presence of tick-borne encephalitis virus. Vector Borne Zoonotic Diseases 10(10):1027–1035

    Article  Google Scholar 

  14. Calzolari M, Bonilauri P, Bellini R, Caimi M, Defilippo F, Maioli G, Dottori M (2010) Arboviral survey of mosquitoes in two northern Italian regions in 2007 and 2008. Vector Borne Zoonotic Dis 10(9):875–884

    Article  Google Scholar 

  15. Lu X, Lin XD, Wang JB, Qin XC, Tian JH, Guo WP, Zhang YZ (2013) Molecular survey of hard ticks in endemic areas of tick-borne diseases in China. Ticks Tick Borne Dis 4(4):288–296

    Article  Google Scholar 

  16. Ben-Chetrit E, Schwartz E (2015) Vector-borne diseases in Haiti: a review. Travel Med Infect Dis 13(2):150–158

    Article  Google Scholar 

  17. Aktas M (2014) A survey of ixodid tick species and molecular identification of tick-borne pathogens. Vet Parasitol 200(3–4):276–283

    Article  Google Scholar 

  18. Rasheed SB, Butlin RK, Boots M (2013) A review of dengue as an emerging disease in Pakistan. Public Health 127(1):11–17

    Article  Google Scholar 

  19. Jamison A, Tuttle E, Jensen R, Bierly G, Gonser R (2015) Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl Geogr 63:418–426

    Article  Google Scholar 

  20. Strand TM, Lundkvist Å (2019) Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infection Ecol Epidemiol 9(1):1553461

  21. De Jesus CE, Ganser C, Kessler WH, White ZS, Bhosale CR, Glass GE, Wisely SM (2019) A survey of tick-borne bacterial pathogens in Florida. Insects 10(9):297

    Article  Google Scholar 

  22. Fournet F, Jourdain F, Bonnet E, Degroote S, Ridde V (2018) Effective surveillance systems for vector-borne diseases in urban settings and translation of the data into action: a scoping review. Infect Dis Poverty 7(1):1–14

    Article  Google Scholar 

  23. Chiuya T, Masiga DK, Falzon LC, Bastos AD, Fèvre EM, Villinger J (2021) A survey of mosquito-borne and insect-specific viruses in hospitals and livestock markets in western Kenya. PloS One 16(5):e0252369

  24. Gupta A, Katarya R (2020) Social media-based surveillance systems for healthcare using machine learning: A systematic review. J Biomed Inf, p 103500

  25. Dhaka A, Singh P (2020). Comparative analysis of epidemic alert system using machine learning for dengue and chikungunya. In: 2020 10th International conference on cloud computing, data science and engineering (confluence), pp. 798–804. IEEE

  26. Rishickesh R, Shahina A, Nayeemulla Khan A (2019) Prediction of West Nile virus using ensemble classifiers. Int J Eng Adv Technol IJEAT, pp 2249–8958

  27. Eneanya OA, Fronterre C, Anagbogu I, Okoronkwo C, Garske T, Cano J, Donnelly CA (2019) Mapping the baseline prevalence of lymphatic filariasis across Nigeria. Parasit Vectors 12(1):1–13

    Article  Google Scholar 

  28. Amadin FI, Bello ME (2018) Prediction of yellow fever using multilayer perceptron neural network classifier. J Emerg Trends Eng Appl Sci 9(6):282–286

  29. Salgado Á, Minardi R, Giovanetti M, Veloso A, Morais-Rodrigues F, Adelino T, Alcantara LCJ (2021) Machine learning models exploring characteristic single-nucleotide signatures in Yellow Fever Virus. bioRxiv

  30. Sena L, Deressa W, Ali A (2015) Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop J Health Sci 25(2):129–138

    Article  Google Scholar 

  31. Yang LH, Han BA (2018) Data-driven predictions and novel hypotheses about zoonotic tick vectors from the genus Ixodes. BMC Ecol 18(1):1–6

    Article  MathSciNet  Google Scholar 

  32. Damos P, Tuells J, Caballero P (2021) Soft computing of a medically important arthropod vector with autoregressive recurrent and focused time delay artificial neural networks. Insects 12(6):503

    Article  Google Scholar 

  33. Nkiruka O, Prasad R, Clement O (2021) Prediction of malaria incidence using climate variability and machine learning. Inf Med Unlocked 22:100508

  34. Kulkarni MA, Desrochers RE, Kerr JT (2010) High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk? PLoS One,5(2):e9396

  35. Shen H, Pan WD, Dong Y, Alim M (2016). Lossless compression of curated erythrocyte images using deep autoencoders for malaria infection diagnosis. In: 2016 Picture coding symposium (PCS), pp 1–5. IEEE

  36. Sajana A, Farid MS, Khan MH, Grzegorzek M (2021) Deep malaria parasite detection in thin blood smear microscopic images. Appl Sci 11(5):2284

    Article  Google Scholar 

  37. Telang H, Sonawane K (2020). effective performance of bins approach for classification of malaria parasite using machine learning. In: 2020 IEEE 5th international conference on computing communication and automation (ICCCA), pp 427–432. IEEE

  38. Sriporn K, Tsai CF, Tsai CE, Wang P (2020) Analyzing malaria disease using effective deep learning approach. Diagnostics 10(10):744

    Article  Google Scholar 

  39. González-Parra GC, Aranda DF, Chen-Charpentier B, Díaz-Rodríguez M, Castellanos JE (2019) Mathematical modeling and characterization of the spread of chikungunya in Colombia. Math Comput Appl 24(1):6

    MathSciNet  Google Scholar 

  40. Caicedo-Torres W, Paternina-Caicedo Á, Pinzón-Redondo H, Gutiérrez J (2018) Differential diagnosis of dengue and chikungunya in colombian children using machine learning. In: Ibero-American conference on artificial intelligence, pp 181–192. Springer, Cham

  41. Verma S, Sharma N (2018). Statistical models for predicting chikungunya incidences in India. In: 2018 First international conference on secure cyber computing and communication (ICSCCC), pp 139–142. IEEE.

  42. Laureano-Rosario AE, Duncan AP, Mendez-Lazaro PA, Garcia-Rejon JE, Gomez-Carro S, Farfan-Ale J, Muller-Karger FE (2018) Application of artificial neural networks for dengue fever outbreak predictions in the northwest coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop Med Infect Dis 3(1):5

    Article  Google Scholar 

  43. Childs ML, Nova N, Colvin J, Mordecai EA (2019) Mosquito and primate ecology predict human risk of yellow fever virus spillover in Brazil. Philos Trans R Soc B 374(1782):20180335

    Article  Google Scholar 

  44. Moorthy NHN, Poongavanam V (2015) The KNIME based classification models for yellow fever virus inhibition. RSC Adv 5(19):14663–14669

    Article  Google Scholar 

  45. Jiang D, Hao M, Ding F, Fu J, Li M (2018) Mapping the transmission risk of Zika virus using machine learning models. Acta Trop 185:391–399

    Article  Google Scholar 

  46. Soliman M, Lyubchich V, Gel YR (2020) Ensemble forecasting of the Zika space‐time spread with topological data analysis. Environmetrics, 31(7):e2629

  47. Melo CFOR, Navarro LC, De Oliveira DN, Guerreiro TM, Lima EDO, Delafiori J, Catharino RR (2018) A machine learning application based in random forest for integrating mass spectrometry-based metabolomic data: a simple screening method for patients with zika virus. Front Bioeng Biotechnol 6:31

    Article  Google Scholar 

  48. Eneanya OA, Cano J, Dorigatti I, Anagbogu I, Okoronkwo C, Garske T, Donnelly CA (2018) Environmental suitability for lymphatic filariasis in Nigeria. Parasit Vectors 11(1):1–13

    Article  Google Scholar 

  49. Chinnathambi RA, Marquette A, Clark T, Johnson A, Selvaraj DF, Vaughan J, Kaabouch N (2020) Visualizing and predicting culex tarsalis trapcounts for West Nile Virus (WNV) disease incidence using machine learning models. In: 2020 IEEE international conference on electro information technology (EIT), pp 581–587. IEEE

  50. Marcantonio M, Rizzoli A, Metz M, Rosà R, Marini G, Chadwick E, Neteler M (2015) Identifying the environmental conditions favouring West Nile virus outbreaks in Europe. PloS One, 10(3): e0121158

  51. Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ (2021) Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput Struct Biotechnol J 19:3051–3057

    Article  Google Scholar 

  52. Acharya BK, Chen W, Ruan Z, Pant GP, Yang Y, Shah LP, Lin H (2019) mapping environmental suitability of scrub typhus in nepal using MaxEnt and random forest models. Int J Environ Res Public Health 16(23):4845

    Article  Google Scholar 

  53. Li, G, Zhou, X, Chen, Y. (2018). Comparison of three data mining models for prediction of advanced schistosomiasis prognosis in the Hubei province. PLOS Neglected Trop Dis

  54. Fusco T, Bi Y, Wang H, Browne F (2019) Data mining and machine learning approaches for prediction modelling of schistosomiasis disease vectors. Int J Mach Learn Cybern, pp 1–20

  55. Han BA, Yang L (2016). Predicting novel tick vectors of zoonotic disease. arXiv preprint arXiv:1606.06323

  56. Vendrow J, Haddock J, Needell D, Johnson L (2020) Feature selection from lyme disease patient survey using machine learning. Algorithms 13(12):334

    Article  Google Scholar 

  57. Walter M, Vogelgesang JR, Rubel F, Brugger K (2020) Tick-borne encephalitis virus and its European distribution in ticks and endothermic mammals. Microorganisms 8(7):1065

    Article  Google Scholar 

  58. Ding F, Fu J, Jiang D, Hao M, Lin G (2018) Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop 178:155–162

    Article  Google Scholar 

  59. Vijayalakshmi A (2020) Deep learning approach to detect malaria from microscopic images. Multimedia Tools Appl 79(21):15297–15317

    Article  Google Scholar 

  60. Tran A, Trevennec C, Lutwama J, Sserugga J, Gély M, Pittiglio C, Chevalier V (2016) Development and assessment of a geographic knowledge-based model for mapping suitable areas for Rift Valley fever transmission in Eastern Africa. PLoS Neglected Trop Dis 10(9):e0004999

  61. Carlson CJ, Dougherty ER, Getz W (2016) An ecological assessment of the pandemic threat of Zika virus. PLoS Neglected Trop Dis 10(8):e0004968

  62. Rocklöv J, Dubrow R (2020) Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol 21(5):479–483

    Article  Google Scholar 

  63. Kim K, Hyun J, Kim H, Lim H, Myung H (2019) A deep learning-based automatic mosquito sensing and control system for urban mosquito habitats. Sensors 19(12):2785

    Article  Google Scholar 

  64. Arowolo MO, Adebiyi MO, Adebiyi AA, Olugbara O (2021) Optimized hybrid investigative based dimensionality reduction methods for malaria vector using KNN classifier. Journal of Big Data 8(1):1–14

    Article  Google Scholar 

  65. Baghbanzadeh M, Kumar D, Yavasoglu SI, Manning S, Hanafi-Bojd AA, Ghasemzadeh H, Haque U (2020) Malaria epidemics in India: role of climatic condition and control measures. Sci Total Environ 712:136368

  66. Tek FB, Dempster AG, Kale I (2010) Parasite detection and identification for automated thin blood film malaria diagnosis. Comput Vis Image Underst 114(1):21–32

    Article  Google Scholar 

  67. Ch S, Sohani SK, Kumar D, Malik A, Chahar BR, Nema AK, Dhiman RC (2014) A support vector machine-firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288

    Article  Google Scholar 

  68. Dong Y, Jiang Z, Shen H, Pan WD, Williams LA, Reddy VV, Bryan AW (2017) Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. In: 2017 IEEE EMBS international conference on biomedical and health informatics (BHI), pp 101–104. IEEE

  69. Mohanty I, Pattanaik PA, Swarnkar T (2018) Automatic detection of malaria parasites using unsupervised techniques. In: International conference on ISMAC in computational vision and bio-engineering , pp 41–49. Springer, Cham

  70. Sajana T, Narasingarao MR (2018) Majority voting algorithm for diagnosing of imbalanced malaria disease. In:International conference on ISMAC in computational vision and bio-engineering, pp 31–40. Springer, Cham

  71. Arowolo MO, Adebiyi M, Adebiyi A, Okesola O (2020) PCA model for RNA-Seq malaria vector data classification using KNN and decision tree algorithm. In: 2020 International conference in mathematics, computer engineering and computer science (ICMCECS), pp 1–8. IEEE

  72. Caicedo-Torres W, Montes-Grajales D, Miranda-Castro W, Fennix-Agudelo M, Agudelo-Herrera N (2017). Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia. In: Colombian conference on computing, pp 472–484. Springer, Cham

  73. Arefin SE, Heya TA, Zaber DM (2021) Predictive analysis of chikungunya. arXiv preprint arXiv:2101.03785

  74. Vidal OM, Acosta-Reyes J, Padilla J, Navarro-Lechuga E, Bravo E, Viasus D, Vélez JI (2020) Chikungunya outbreak (2015) in the Colombian Caribbean: latent classes and gender differences in virus infection. PLOS Neglected Trop Dis 14(6):e0008281

  75. Hossain MS, Sultana Z, Nahar L, Andersson K (2019) An intelligent system to diagnose chikungunya under uncertainty. J Wireless Mobile Networks Ubiquitous Comput Depend Appl 10(2):37–54

    Google Scholar 

  76. Althouse BM, Ng YY, Cummings DA (2011) Prediction of dengue incidence using search query surveillance. PLoS Negl Trop Dis 5(8):e1258

  77. Brasier AR, Ju H, Garcia J, Spratt HM, Victor SS, Forshey BM, Venezuelan Dengue Fever Working Group (2012) A three-component biomarker panel for prediction of dengue hemorrhagic fever. Am J Trop Med Hygiene 86(2):341–348

  78. Fathima A, Manimegalai D (2012) Predictive analysis for the arbovirus-dengue using svm classification. Int J Eng Technol 2(3):521–527

    Google Scholar 

  79. Farooqi W, Ali S (2013) A critical study of selected classification algorithms for dengue fever and dengue hemorrhagic fever. In: 2013 11th international conference on frontiers of information technology, pp 140–145). IEEE

  80. Ibrahim F, Faisal T, Salim MM, Taib MN (2010) Non-invasive diagnosis of risk in dengue patients using bioelectrical impedance analysis and artificial neural network. Med Biol Eng Compu 48(11):1141–1148

    Article  Google Scholar 

  81. Caicedo-Torres W, Paternina Á, Pinzón H (2016) Machine learning models for early dengue severity prediction. In: Ibero-American conference on artificial intelligence, pp 247–258. Springer, Cham

  82. Gambhir S, Malik SK, Kumar Y (2017) PSO-ANN based diagnostic model for the early detection of dengue disease. New Horizons Trans Med 4(1–4):1–8

    Google Scholar 

  83. Aburas HM, Cetiner BG, Sari M (2010) Dengue confirmed-cases prediction: a neural network model. Expert Syst Appl 37(6):4256–4260

    Article  Google Scholar 

  84. Iqbal, N., & Islam, M. (2019). Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers. Informatica, 43(3).

  85. Xu J, Xu K, Li Z, Meng F, Tu T, Xu L, Liu Q (2020) Forecast of dengue cases in 20 chinese cities based on the deep learning method. Int J Environ Res Public Health 17(2):453

    Article  Google Scholar 

  86. Adak S, Jana S (2021) A model to assess dengue using type 2 fuzzy inference system. Biomed Signal Process Control 63:102121

  87. Azman MIABZ, Sarlan AB (2020) Aedes larvae classification and detection (ALCD) system by using deep learning. In: 2020 International conference on computational intelligence (ICCI), pp 179–184. IEEE

  88. Sohail A, Iftikhar M, Arif R, Ahmad H, Gepreel KA, Iftikhar S (2021) Dengue control measures via cytoplasmic incompatibility and modern programming tools. Res Phys 21:103819

  89. Gambhir S, Malik SK, Kumar Y (2018) The diagnosis of dengue disease: an evaluation of three machine learning approaches. Int J Healthcare Inf Syst Inf IJHISI 13(3):1–19

    Article  Google Scholar 

  90. Mussumeci E, Coelho FC (2020) Large-scale multivariate forecasting models for Dengue-LSTM versus random forest regression. Spatial Spatio Temporal Epidemiol 35:100372

  91. González-Parra G, Arenas AJ, Aranda DF, Segovia L (2011) Modeling the epidemic waves of AH1N1/09 influenza around the world. Spatial Spatio-Temporal Epidemiol 2(4):219–226

    Article  Google Scholar 

  92. De Silva S, Pinnamaneni R, Ravichandran K, Fadaq A, Mei Y, Sin V (2020) Yellow fever in Brazil: using novel data sources to produce localized policy recommendations. Leveraging Data Sci Global Health, pp 417–428. Springer, Cham

  93. Barros PH, Lima BG, Crispim FC, Vieira T, Missier P, Fonseca B (2018) Analyzing social network images with deep learning models to fight zika virus. In: International conference image analysis and recognition, pp 605–610. Springer, Cham

  94. Moreira MW, Rodrigues JJ, Carvalho FH, Al-Muhtadi J, Kozlov S, Rabelo RA (2019) Classification of risk areas using a bootstrap-aggregated ensemble approach for reducing Zika virus infection in pregnant women. Pattern Recogn Lett 125:289–294

    Article  Google Scholar 

  95. de Souza VM, Silva DF, Batista GE (2013) Classification of data streams applied to insect recognition: Initial results. In: 2013 Brazilian conference on intelligent systems, pp 76–81. IEEE

  96. Qi Y, Cinar GT, Souza VM, Batista GE, Wang Y, Principe JC (2015) Effective insect recognition using a stacked autoencoder with maximum correntropy criterion. In: 2015 International joint conference on neural etworks (IJCNN), pp 1–7. IEEE

  97. Silva DF, De Souza VM, Batista GE, Keogh E, Ellis DP (2013) Applying machine learning and audio analysis techniques to insect recognition in intelligent traps. In: 2013 12th International conference on machine learning and applications, vol 1, pp 99–104. IEEE

  98. Kondeti PK, Ravi K, Mutheneni SR, Kadiri MR, Kumaraswamy S, Vadlamani R, Upadhyayula SM (2019) Applications of machine learning techniques to predict filariasis using socio-economic factors. Epidemiol Infect, p 147

  99. Tran A, Sudre B, Paz S, Rossi M, Desbrosse A, Chevalier V, Semenza JC (2014) Environmental predictors of West Nile fever risk in Europe. Int J Health Geogr 13(1):1–11

    Article  Google Scholar 

  100. Young SG, Tullis JA, Cothren J (2013) A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus. Appl Geogr 45:241–249

    Article  Google Scholar 

  101. Campion M, Bina C, Pozniak M, Hanson T, Vaughan J, Mehus J, Boetel M (2016). Predicting west nile virus (wnv) occurrences in north dakota using data mining techniques. In: 2016 Future technologies conference (ftc), pp 310–317. IEEE

  102. Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis I, Magiorkinis G, Stilianakis NI (2019) Satellite earth observation data in epidemiological modeling of malaria, dengue and West Nile virus: a scoping review. Remote Sensing 11(16):1862

    Article  Google Scholar 

  103. Nasrinpour HR, Friesen MR, McLeod RD (2019) Agent based modelling and West Nile Virus: a survey. J Med Biol Eng 39(2):178–183

    Article  Google Scholar 

  104. Coroian M, Petrić M, Pistol A, Sirbu A, Domșa C, Mihalca AD (2020) Human West Nile Meningo-encephalitis in a highly endemic country: a complex epidemiological analysis on biotic and abiotic risk factors. Int J Environ Res Public Health 17(21):8250

    Article  Google Scholar 

  105. Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR, Kluger Y (2017) Gating mass cytometry data by deep learning. Bioinformatics 33(21):3423–3430

    Article  Google Scholar 

  106. Stilianakis NI, Syrris V, Petroliagkis T, Pärt P, Gewehr S, Kalaitzopoulou S, Hadjichristodoulou C (2016) Identification of climatic factors affecting the epidemiology of human West Nile virus infections in northern Greece. PloS One, 11(9):e0161510

  107. Cetina VEDAU, Loeza CFB, Piña HAR (2018) Chagas parasites detection through Gaussian discriminant analysis.

  108. Soberanis-Mukul R, Uc-Cetina V, Brito-Loeza C, Ruiz-Piña H (2013) An automatic algorithm for the detection of Trypanosoma cruzi parasites in blood sample images. Comput Methods Programs Biomed 112(3):633–639

    Article  Google Scholar 

  109. Uc-Cetina V, Brito-Loeza C, Ruiz-Piña H (2015) Chagas parasite detection in blood images using AdaBoost. Comput Math Methods Med, 2015

  110. Khalighifar A, Komp E, Ramsey JM, Gurgel-Gonçalves R, Peterson AT (2019) Deep learning algorithms improve automated identification of Chagas disease vectors. J Med Entomol 56(5):1404–1410

    Article  Google Scholar 

  111. Ghasemi Z, Banitaan S, Al-Refai G (2020) Automated chagas disease vectors identification using data mining techniques. In: 2020 IEEE international conference on electro information technology (EIT), pp 540–545. IEEE

  112. de Santana Teles W, Machado AP, Júnior PCCC, de Melo CM, Silva MHS, da Silva RN, Jeraldo VDLS (2021) Machine learning and automatic selection of attributes for the identification of Chagas disease from clinical and sociodemographic data. Res Soc Develop 10(4):e19310413879–e19310413879

    Article  Google Scholar 

  113. Rabinovich, J. E., Alvarez Costa, A., Muñoz, I. J., Schilman, P. E., & Fountain-Jones, N. M. (2021). Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae). PLoS neglected tropical diseases, 15(3), e0008822.

  114. Park DJ, Park MW, Lee H, Kim YJ, Kim Y, Park YH (2021) Development of machine learning model for diagnostic disease prediction based on laboratory tests. Sci Rep 11(1):1–11

    Google Scholar 

  115. Mulyani Y, Rahman EF, Riza LS (2016) A new approach on prediction of fever disease by using a combination of Dempster Shafer and Naïve bayes. In: 2016 2nd international conference on science in information technology (ICSITech), pp 367–371. IEEE

  116. Widiyaningtyas T, Zaeni IAE, Jamilah N (2020) Diagnosis of fever symptoms using naive bayes algorithm. In: Proceedings of the 5th international conference on sustainable information engineering and technology, pp 23–28

  117. Peláez E (2019) A Fuzzy cognitive map (FCM) as a learning model for early prognosis of seasonal related virus diseases in tropical regions. In: 2019 Sixth international conference on edemocracy & eGovernment (ICEDEG), pp 150–156. IEEE

  118. Tallam K, Liu ZYC, Chamberlin AJ, Jones IJ, Shome P, Riveau G, De Leo GA (2021) Identification of snails and schistosoma of medical importance via convolutional neural networks: a proof-of-concept application for human schistosomiasis. Front Public Health, 900

  119. Fusco T, Bi Y (2016) A cumulative training approach to schistosomiasis vector density prediction. In: IFIP international conference on artificial intelligence applications and innovations, pp 3–13. Springer, Cham

  120. Navas ALA, Magalhães RJS, Osei F, Fornillos RJC, Leonardo LR, Stein A (2018) Modelling local areas of exposure to Schistosoma japonicum in a limited survey data environment. Parasit Vectors 11(1):1–15

    Google Scholar 

  121. Liu ZYC, Chamberlin AJ, Shome P, Jones IJ, Riveau G, Ndione RA, De Leo GA (2019) Identification of snails and parasites of medical importance via convolutional neural network: an application for human schistosomiasis. bioRxiv, 713727

  122. Čuk E, Gams M, Možek M, Strle F, Čarman VM, Tasič JF (2014) Supervised visual system for recognition of erythema migrans, an early skin manifestation of lyme borreliosis. Strojniški vestnik J Mech Eng 60(2):115–123

    Article  Google Scholar 

  123. Burlina P, Joshi N, Ng E, Billings S, Rebman A, Aucott J (2018) Skin image analysis for erythema migrans detection and automated lyme disease referral. In: OR 2.0 Context Aware Operat Theaters Comput Assist Robot Endosc Clin Image Based Proced Skin Image Anal, pp 244–251. Springer, Cham

  124. Burlina PM, Joshi NJ, Ng E, Billings SD, Rebman AW, Aucott JN (2019) Automated detection of erythema migrans and other confounding skin lesions via deep learning. Comput Biol Med 105:151–156

    Article  Google Scholar 

  125. Sadilek A, Hswen Y, Bavadekar S, Shekel T, Brownstein JS, Gabrilovich E (2020) Lymelight: forecasting Lyme disease risk using web search data. NPJ Digital Med 3(1):1–12

    Article  Google Scholar 

  126. Joung HA, Ballard ZS, Wu J, Tseng DK, Teshome H, Zhang L, Ozcan A (2019) Point-of-care serodiagnostic test for early-stage lyme disease using a multiplexed paper-based immunoassay and machine learning. ACS Nano 14(1):229–240

    Article  Google Scholar 

  127. Burlina PM, Joshi NJ, Mathew PA, Paul W, Rebman AW, Aucott JN (2020) AI-based detection of erythema migrans and disambiguation against other skin lesions. Comput Biol Med 125:103977

  128. Qian Q, Zhao J, Fang L, Zhou H, Zhang W, Wei L, Li Q (2014) Mapping risk of plague in Qinghai-Tibetan plateau. China BMC Infect Dis 14(1):1–8

    Google Scholar 

  129. Sun Z, Zhang Z, Liu Q, Lyu B, Fang X, Wang S, Xu B (2020) Identifying the spatiotemporal clusters of plague occurrences in China during the Third Pandemic. Integrat Zool 15(1):69–78

    Article  Google Scholar 

  130. Wang B, Deveson ED, Waters C, Spessa A, Lawton D, Feng P, Li Liu D (2019) Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Sci Total Environ 668:947–957

    Article  Google Scholar 

  131. Ambelu A, Mekonen S, Koch M, Addis T, Boets P, Everaert G, Goethals P (2014) The application of predictive modelling for determining bio-environmental factors affecting the distribution of blackflies (Diptera: Simuliidae) in the Gilgel Gibe watershed in southwest Ethiopia. PLoS One 9(11):e112221

  132. Lock K, Adriaens T, Goethals P (2014) Effect of water quality on blackflies (Diptera: Simuliidae) in Flanders (Belgium). Limnologica 44:58–65

    Article  Google Scholar 

  133. Garcia-Marti I, Zurita-Milla R, Swart A (2019) Modelling tick bite risk by combining random forests and count data regression models. Plos one, 14(12):e0216511

  134. Njage PMK, Leekitcharoenphon P, Hald T (2019) Improving hazard characterization in microbial risk assessment using next generation sequencing data and machine learning: predicting clinical outcomes in shigatoxigenic Escherichia coli. Int J Food Microbiol 292:72–82

    Article  Google Scholar 

  135. Wang Y, Yang L (2019) A robust loss function for classification with imbalanced datasets. Neurocomputing 331:40–49

    Article  Google Scholar 

  136. Walsh M, Haseeb MA (2015) Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States. Peer J 3:e1493. Plague

  137. Wilschut LI, Addink EA, Heesterbeek JAP, Dubyanskiy VM, Davis SA, Laudisoit A, de Jong SM (2013) Mapping the distribution of the main host for plague in a complex landscape in Kazakhstan: an object-based approach using SPOT-5 XS, Landsat 7 ETM+, SRTM and multiple Random Forests. Int J Appl Earth Obs Geoinf 23:81–94

    Google Scholar 

  138. Manore, CA, Ostfeld RS, Agusto FB, Gaff H, LaDeau SL (2017) Defining the risk of Zika and chikungunya virus transmission in human population centers of the eastern United States. PLoS Neglected Trop Dis 11(1):e0005255

  139. Brauer F, Castillo-Chavez C, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology. Springer ,New York, vol 2, p 508

  140. Lashari AA, Hattaf K, Zaman G (2012) A delay differential equation model of a vector borne disease with direct transmission. Int J Ecol Econ Stat 27:25–35

    Google Scholar 

  141. Kaul S, Kumar Y (2020) Artificial intelligence-based learning techniques for diabetes prediction: challenges and systematic review. SN Comput Sci 1(6):1–7

    Article  Google Scholar 

  142. Kumar Y, Singla R (2021) Federated learning systems for healthcare: perspective and recent progress.Federated learning systems, pp 141–156. Springer, Cham

  143. Kumar Y, Mahajan M (2020) Recent advancement of machine learning and deep learning in the field of healthcare system. Comput Intell Mach Learn Healthcare Inf, pp 77–98. De Gruyter

  144. Kumar Y, Kaur K, Singh G (2020). Machine learning aspects and its applications towards different research areas. In: 2020 International conference on computation, automation and knowledge management (ICCAKM), pp 150–156. IEEE

  145. Xiong Y, Wang Q, Yang J, Zhu X, Wei DQ (2018) PredT4SE-stack: prediction of bacterial type IV secreted effectors from protein sequences using a stacked ensemble method. Front Microbiol

  146. Mwanga EP, Mapua SA, Siria DJ, Ngowo HS, Nangacha F, Mgando J, Okumu FO (2019) Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis. Malaria J 18(1):1–9

  147. Barman RK, Mukhopadhyay A, Maulik U, Das S (2019) Identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinf 20(1):1–12

    Article  Google Scholar 

  148. Pai PP, Mondal S (2016) MOWGLI: prediction of protein–MannOse interacting residues With ensemble classifiers usinG evoLutionary Information. J Biomol Struct Dyn 34(10):2069–2083

    Article  Google Scholar 

  149. Savini L, Candeloro L, Perticara S, Conte A (2019) EpiExploreR: a shiny web application for the analysis of animal disease data. Microorganisms 7(12):680

    Article  Google Scholar 

  150. Raizada S, Mala S, Shankar A (2020) Vector borne disease outbreak prediction by machine learning. In: 2020 International conference on smart technologies in computing, electrical and electronics (ICSTCEE), pp 213–218. IEEE

  151. Bhatia G, Bhat S, Choudhary V, Deopurkar A , Talreja S, (2021) Disease prediction using deep learning. In: 2021 2nd International conference for emerging technology (INCET), pp 1–4. Doi: https://doi.org/10.1109/INCET51464.2021.9456172.

  152. Parsons Z, Banitaan S (2021) Automatic identification of Chagas disease vectors using data mining and deep learning techniques. Ecol Inf 62:101270

  153. Gupta S, Kumar Y (2022) Cancer prognosis using artificial intelligence-based techniques. SN COMPUT SCI 3:77. https://doi.org/10.1007/s42979-021-00964-3

    Article  Google Scholar 

  154. Kumar Y, Gupta S, Singla R et al (2021) A systematic review of artificial intelligence techniques in cancer prediction and diagnosis. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-021-09648-w

    Article  Google Scholar 

  155. Singh J, Goyal G (2021) Decoding depressive disorder using computer vision. Multimedia Tools Appl 80(6):8189–8212

    Article  Google Scholar 

  156. Kaur I, Saini KS, Khaira JS (2020) Fog integrated novel architecture for telehealth services with swift medical delivery. Fog Edge Pervasive Comput Intell IoT Driven Appl, pp 263–285

  157. Kohli R, Garg A, Phutela S, Kumar Y, Jain S (2021) An improvised model for securing cloud-based e-healthcare systems. In: IoT in healthcare and ambient assisted living, pp 293–310. Springer, Singapore

  158. Singh J, Modi N (2019) Use of information modelling techniques to understand research trends in eye gaze estimation methods: an automated review. Heliyon 5(12):e03033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, I., Sandhu, A.K. & Kumar, Y. Artificial Intelligence Techniques for Predictive Modeling of Vector-Borne Diseases and its Pathogens: A Systematic Review. Arch Computat Methods Eng 29, 3741–3771 (2022). https://doi.org/10.1007/s11831-022-09724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09724-9

Navigation