Skip to main content

Advertisement

Log in

A Systematic Review on Bat Algorithm: Theoretical Foundation, Variants, and Applications

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Bat algorithm (BA) is a population-based metaheuristic algorithm inspired by echolocation behavior of bat. After the development of BA in 2010, it becomes the attention of researchers from various domains. It has been successfully applied in various real-life engineering problems. This paper presents a comprehensive review of BA. The biological inspiration and working of BA are deliberated. The variants of BA namely improved, hybrid, levy flight, chaotic, binary, and multiobjective are analyzed in detail. The applications of BA in different research domains are investigated. The current challenges and future research directions of BA are discussed. Besides highlighting the new developments in structure of BA, this study can be act as a baseline for young researchers to enhance the performance of their metaheuristic algorithms on adapting the BA. This study will encourage the young researchers and scientists to use BA in their research problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308

    Article  Google Scholar 

  2. Velho L, Carvalho P, Gomes J, Figueiredo LD (2008) Mathematical optimization in computer graphics and vision. Elsevier, Amsterdam, Netherland

    Google Scholar 

  3. Mashwani WK, Haider R, Belhaouari SB (2021) A multi-swarm intelligence algorithm for expensive bound constrained optimization problems. Complexity 2021

  4. Almufti SM, Marqas RB, Othman PS, Sallow AB (2021) Single-based and population-based metaheuristic for solving Np-hard problems. Iraqi J Sci 62(5):1–11

    Google Scholar 

  5. Kader MA, Zamil KZ, Ahmed BS (2021) A systematic review on emperor penguin optimizer. Neural Comput Appl

  6. Mashwani WK, Shah H, Kaur M, Bakar MA, Miftahuddin M (2021) Large-scale bound constrained optimization based on hybrid teaching learning optimization algorithm. Alexand Eng J 60:6013–6033

    Article  Google Scholar 

  7. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evolut Comput 48:1–24

    Article  Google Scholar 

  8. Biswas A, Mishra KK, Tiwari S, Misra AK (2013). Physics-inspired optimization algorithms: a survey. J Optim 438152

  9. Mashwani WK, Saha SNA, Belhaouari SB, Hamdi A (2021) Ameliorated ensemble strategy based evolutionary algorithm with dynamic resources allocations. Int J Comput Intell Syst 14(1):412–437

    Article  Google Scholar 

  10. Shehab M, Abualigah L, Hamad HA, Alabool H, Alshinwan M, Khasawneh AM (2020) Moth–flame optimization algorithm: variants and applications. Neural Comput Appl 32:9859–9884

    Article  Google Scholar 

  11. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26(1):29–41

    Article  Google Scholar 

  12. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  13. Yang XS (2008) Nature-inspired meta-heuristic algorithms. Luniver Press, Moscow

    Google Scholar 

  14. Karaboga D (2005) An idea based on honeybee swarm for numerical optimization, technical report TR06. Erciyes University, Engineering Faculty, Computer Engineering Department

  15. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68

    Article  Google Scholar 

  16. Yang XS, He XS (2013) Bat algorithm: literature review and applications. Int J Bio Inspired Comput 5:141–149

    Article  Google Scholar 

  17. Chawla M, Duhan M (2015) Bat algorithm: a survey of the state-of-the-art. Appl Artif Intell 29(6):617–634

    Article  Google Scholar 

  18. Kongkaew W (2017) Bat algorithm in discrete optimization: a review of recent applications. Songklanakarin J Sci Technol 39(5):641–650

    Google Scholar 

  19. Zebari AY, Almufti SM, Abdulrahman CM (2020) Bat algorithm (BA): review, applications and modifications. Int J Sci World 8(1):1–7

    Article  Google Scholar 

  20. Gagnon I, April A, Abran A (2020) A critical analysis of the bat algorithm. Eng Rep 2, e12212

  21. Umar SU, Rashid TA (2021) Critical analysis: bat algorithm-based investigation and application on several domains. World J Eng 18:4

    Article  Google Scholar 

  22. Kaur A, Kumar Y (1950) (2021) Recent developments in bat algorithm: a mini review. Int J Phys Conf Ser 1:012055

    Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

    Article  Google Scholar 

  24. Kumar V, Dogra N (2021) A comprehensive review on deep synergistic drug prediction techniques for cancer. Arch Comput Methods Eng 1–19

  25. Kalra M, Tyagi S, Kumar V, Kaur M, Mashwani WK, Shah H, Shah K (2021) A comprehensive review on scatter search: techniques, applications, and challenges. Math Prob Eng 5588486:1–21

    Article  Google Scholar 

  26. Yang X.S. (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez J.R., Pelta D.A., Cruz C., Terrazas G., Krasnogor N. (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Berlin, Heidelberg

  27. Metzner W (1991) Echolocation behaviour in bats. Sci Prog 1933:453–465

    Google Scholar 

  28. Richardson P (2008) Bats. Natural History Museum, London

    Google Scholar 

  29. Eberhart RC, Yuhui S, Kennedy J (2001) Swarm intelligence. Elsevier, Amsterdam

    Google Scholar 

  30. Chakri A, Khelif R, Benouaret M, Yang X-S (2017) New directional bat algorithm for continuous optimization problems. Exp Syst Appl 69:159–175

    Article  Google Scholar 

  31. Chen YT, Shieh CS, Horng MF, Liao BY, Pan JS, Tsai MT (2014) A guidable bat algorithm based on doppler effect to improve solving efficiency for optimization problems. In: Hwang D, Jung J, Nguyen NT (eds) Computational collective intelligence. Technologies and applications, Vol. 8733. Springer, New York, pp. 373–383

  32. Meng X-B, Gao X, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Exp Syst Appl 42:6350–6364

    Article  Google Scholar 

  33. Wang X, Wang W, Wang Y (2013) An adaptive bat algorithm. In: Huang DS, Jo KH, Zhou YQ, Han K (eds) Intelligent computing theories and technology, Vol. 7996. Springer, Berlin Heidelberg, pp. 216–223

  34. Wang W, Wang Y, Wang X (2013) Bat algorithm with recollection. In: Huang DS, Jo KH, Zhou YQ, Han K (eds) Intelligent computing theories and technology, Vol. 7996. Springer, Berlin Heidelberg, pp. 207–215

  35. Li L, Zhou Y (2014) A novel complex-valued bat algorithm. Neural Comput Appl 25(6):1369–1381

    Article  Google Scholar 

  36. Dao TK, Pan JS, Nguyen TT, Chu SC, Shieh CS (2014) Compact bat algorithm. In: Pan JS, Snasel V, Corchado ES, Abraham A, Wang SL (eds) Intelligent data analysis and its applications, volume II, vol 298. Springer, New York, pp 57–68

    Chapter  Google Scholar 

  37. Ramli MR, Abas ZA, Desa MI, Abidin ZZ, Alazzam MB (2019) Enhanced convergence of Bat Algorithm based on dimensional and inertia weight factor. Comput Inform Sci 3(4):452–458

    Google Scholar 

  38. Fister I, Brest J, Yang XS (2015) Modified bat algorithm with quaternion representation. In: Proceedings of the 2015 IEEE congress on evolutionary computation, CEC 2015 (September), pp 491–498

  39. Yilmaz S, Kucuksille EU, Cengiz Y (2014) Modified bat algorithm Elect Elect Eng 20(2):71–78

    Google Scholar 

  40. Alam MS, Kabir MWU (2014) Bat algorithm with self-adaptive mutation: A comparative study on numerical optimization problems. Int J Comput Appl 100(10):7–11

    Google Scholar 

  41. Yilmaz S, Kucuksille EU (2013) Improved bat algorithm for global optimization. Lect Notes Softw Eng 1(3):279–283

    Article  Google Scholar 

  42. Jamil M, Zepernic H-J, Yang XS (2013) Improved bat algorithm for global optimization. Appl Soft Comput 48–75

  43. Yilmaz S, Kucuksille EU (2014) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  44. Tsai PW, Pan JS, Liao BY, Tsai MJ, Istanda V (2012) Bat algorithm inspired algorithm for solving numerical optimization problems. Appl Mech Mater 148:134–137

    Google Scholar 

  45. Cai X, Gao XZ, Xue Y (2016) Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int J Bio-Insp Comput 8:205

    Article  Google Scholar 

  46. Zhu B, Zhu W, Liu Z, Duan Q, Cao L (2016) A novel quantum-behaved bat algorithm with mean best position directed for numerical optimization. Comput Intell Neurosci 2016:1–17

    Article  Google Scholar 

  47. Rekaby A (2013) Directed artificial bat algorithm (DABA): a new bio-inspired algorithm. In: Proceedings of the 2013 international conference on advances in computing, communications and informatics (ICACCI), 2013. IEEE, pp 1241–1246

  48. Kabir MWU, Sakib N, Chowdhury SMR, Alam MS (2014) A novel adaptive bat algorithm to control explorations and exploitations for continuous optimization problems. Int J Comput Appl 94:13

    Google Scholar 

  49. Topal AO, Altun O (2016) A novel meta-heuristic algorithm: dynamic virtual bats algorithm. Inf Sci 354:222–235

    Article  Google Scholar 

  50. Cai X, Wang L, Kang Q, Qidi W (2014) Bat algorithm with gaussian walk. Int J Bio-Insp Comput 6(3):166–174

    Article  Google Scholar 

  51. Zhou Y, Xie J, Li L, Ma M (2014) Cloud model bat algorithm. The Scientific World Journal, New York, pp 1–11

    Google Scholar 

  52. Cai X, Wang H, Cui Z, Cai J, Xue Y, Wang L (2017) Bat algorithm with triangle-flipping strategy for numerical optimization. Int J Mach Learn Cybern 9:199–215

    Article  Google Scholar 

  53. Al-Betar MA, Awadallah MA (2018) Island bat algorithm for optimization. Exp Syst Appl 107:126–145

    Article  Google Scholar 

  54. Gan C, Cao W, Wu M, Chen X (2018) A new bat algorithm based on iterative local search and stochastic inertia weight. Exp Syst Appl 104:202–212

    Article  Google Scholar 

  55. Nawi NM, Rehman MZ, Khan A, Chiroma H, Herawan T (2016) A modified bat algorithm based on gaussian distribution for solving optimization problem J. Comput Theor Nanosci 13:706–714

    Article  Google Scholar 

  56. Shan X, Cheng H (2017) Modified bat algorithm based on covariance adaptive evolution for global optimization problems. Soft Comput 22:5215–5230

    Article  Google Scholar 

  57. Kiełkowicz K, Grela D (2016) Modified Bat algorithm for nonlinear optimization. Int J Comput Sci Netw Sec (IJCSNS) 16:46–50

    Google Scholar 

  58. Yahya NM, Tokhi MO (2017) A modified bats echolocation-based algorithm for solving constrained optimisation problems. Int J Bio-Insp Comput 10(1):12–23

    Article  Google Scholar 

  59. Jaddi NS, Abdullah S, Hamdan AR (2015) Optimization of neural network model using modified bat-inspired algorithm. Appl Soft Comput 37:71–86

    Article  Google Scholar 

  60. Ghanem W, Jantan A (2017) An enhanced bat algorithm with mutation operator for numerical optimization problems. Neural Comput Appl 31:1–35

    Google Scholar 

  61. Banati H, Chaudhary R (2017) Multi-modal bat algorithm with improved search (mmbais). J Comput Sci 23:130–144

    Article  MathSciNet  Google Scholar 

  62. Chaudhary R, Banati H (2019) Weighted multi-modal bat algorithm with improved search. Int J Hyb Intell 1(4):326–361

    Google Scholar 

  63. Chaudhary R, Banati H (2019) Swarm bat algorithm with improved search (SBAIS). Soft Comput 23:11461–11491

    Article  Google Scholar 

  64. Banati H, Chaudhary R (2016) Enhanced shuffled bat algorithm (EShBAT). In: Proceedings of the 2016 international conference on advances in computing, communications and informatics (ICACCI), Jaipur, pp 731–738

  65. Jaddi NS, Abdullah S, Hamdan AR (2015) Multi-population cooperative bat algorithm-based optimization of artificial neural network model. Elsevier, Amsterdam, Netherlands

    Book  Google Scholar 

  66. Chaudhary R, Banati H (2017) Shuffled multi-population bat algorithm (SMPBat). In: Proceedings of the 2017 international conference on advances in computing, communications and informatics (ICACCI), Udupi, pp 541–547

  67. Al-Betar MA, Awadallah MA, Faris H, Yang XS, Khader AT, Alomari OA (2018) Bat-inspired algorithms with natural selection mechanisms for global optimization. Neurocomputing 273:448–465

    Article  Google Scholar 

  68. Cui Z, Li F, Zhang W (2019) Bat algorithm with principal component analysis. Int J Mach Learn Cybern 10(3):603–622

    Article  Google Scholar 

  69. Wang Y, Wang P, Zhang J, Cui Z, Cai X, Zhang W, Chen J (2019) A novel bat algorithm with multiple strategies coupling for numerical optimization. Mathematics 7:135

    Article  Google Scholar 

  70. Junaid M, Bangyal WH, Ahmed J (2020) A novel bat algorithm using sobol sequence for the initialization of population. Int Multitop Conf (INMIC).

  71. Huang J, Ma Y (2020) Bat algorithm based on an integration strategy and Gaussian distribution. Math Prob Eng 2020:9495281

    Article  MathSciNet  MATH  Google Scholar 

  72. Bangyal WH, Ahmed J, Rauf HT (2020) A modified bat algorithm with torus walk for solving global optimisation problems. Int J Bio-insp Comput 15(1):1–13

    Article  Google Scholar 

  73. Li C, Lian Z, Zhang T (2020) An optimized bat algorithm combining local search and global search. IOP Conf Ser Earth Environ Sci 571:012018

    Article  Google Scholar 

  74. Alsalibi B, Abualigah L, Khader AT (2021) A novel bat algorithm with dynamic membrane structure for optimization problems. Appl Intell 51:1992–2017

    Article  Google Scholar 

  75. Mashwani WK, Mehmood I, Bakar MA, Koccak I (2021) A modified bat algorithm for solving large-scale bound constrained global optimization problems. Math Prob Eng 2021:6636918

    Article  Google Scholar 

  76. Mirjalili S, Mirjalili SM, Yang X-S (2013) Binary bat algorithm Neural Comput Appl 25(3–4):663–681

    Google Scholar 

  77. Rizk-Allah RM, Hassanien AE (2018) New binary bat algorithm for solving 0–1 knapsack problem. Comp Intell Syst 4:31–53

    Article  Google Scholar 

  78. Sabba S, Chikhi S (2014) A discrete binary version of bat algorithm for multidimensional knapsack problem. Int J Bio-Insp Comput 6(2):140–152

    Article  Google Scholar 

  79. Ma X-X, Wang J-S (2018) Optimized parameter settings of binary bat algorithm for solving function optimization problems. J Elect Comput Eng 2018

  80. Dahi Z, Mezioud C, Draa A (2015) Binary bat algorithm: on the efficiency of mapping functions when handling binary problems using continuous-variable-based metaheuristics. In: International Conference on Computer Science and Its Applications (CIIA), May 2015, Saida, Algeria, pp 3–14

  81. Tawhid MA, Dsouza KB (2018) Hybrid binary bat enhanced particle swarm optimization algorithm for solving feature selection problems. Appl Comput Inform 16(1/2):117–136

    Article  Google Scholar 

  82. Meraihi Y, Acheli D, Ramdane-Cherif A (2016) An improved chaotic binary bat algorithm for QoS multicast routing. Int J Artif Intell Tools 25(4):1650025

    Article  Google Scholar 

  83. Huang X, Zeng X, Han R (2017) Dynamic inertia weight binary bat algorithm with neighborhood search. Comput Intell Neurosci 2017:1–15

    Google Scholar 

  84. Ravindra M, Rao RS (2017) An upgraded binary bat algorithm approach for optimal allocation of PMUs in power system with complete observability. Int J Adv Appl Sci 4(10):33–39

    Article  Google Scholar 

  85. Jordehi RA (2015) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  86. Lin J, Chou C, Yang C, Tsai H (2010) A chaotic levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. J Comput Inf Technol 2(2):56–63

    Google Scholar 

  87. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm J Comput Sci 5(2):224–232

    Google Scholar 

  88. Hamidzadeh J, Sadeghi R, Namaei N (2017) Weighted support vector data description based on chaotic bat algorithm. Appl Soft Comput 60:540–551

    Article  Google Scholar 

  89. Xueting C, Ying L, Jiahao F (2020) Global chaotic bat optimization algorithm J. Northeast Univ (Nat Sci Edn) 41(4):488–491

    Google Scholar 

  90. Afrabandpey H, Ghaffari M, Mirzaei A, Safayani M (2014) A novel bat algorithm based on chaos for optimization tasks. In: Proceedings of intelligent systems (ICIS), Iranian Conference, pp 1–6.

  91. Liu C, Chunming YE (2013) Bat algorithm with the characteristics of lévy flights. Caai Trans Intell Syst 8:240–246

    Google Scholar 

  92. Boudjemaa R, Ouaar F, Oliva D (2020) Fractional lévy flight bat algorithm for global optimization. Int J Bio-Insp Comput 15(2):100

    Article  Google Scholar 

  93. Xie J, Zhou Y, Chen H (2013) A novel bat algorithm based on differential operator and Levy flights trajectory. Comput Intell Neurosci

  94. Shan X, Liu K, Sun P-L (2016) Modified bat algorithm based on lévy flight and opposition based learning. Scientific Programming, 8031560

  95. Jun L, Liheng L, Xianyi WA (2015) double-subpopulation variant of the bat algorithm. Appl Math Comput 263:361–377

    MathSciNet  MATH  Google Scholar 

  96. Li Y, Li X, Liu J, Ruan X (2020) An improved bat algorithm based on lévy flights and adjustment factors. Symmetry 11(7):925

    Article  Google Scholar 

  97. Fister IJ, Fister D, Yang X-S (2013) A hybrid bat algorithm ELEKTROTEHNISKIVESTNIK 80(1):1–7

    Google Scholar 

  98. Yildizdan G, Baykan OK (2020) A new hybrid BA_ABC algorithm for global optimization problems. Mathematics 8:1749

    Article  Google Scholar 

  99. Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math 2013:21

    MathSciNet  MATH  Google Scholar 

  100. Ghanem WAHM, Jantan A (2011) Hybridizing bat algorithm with modified pitch-adjustment operator for numerical optimization problems. In: First EAI International Conference on Computer Science and Engineering.

  101. Alihodzic A, Tuba M (2014) Improved hybridized bat algorithm for global numerical optimization. In: UKSim-AMSS 16th international conference on computer modelling and simulation, pp 57–62

  102. Nguyen TT, Pan JS, Dao TK, Kuo MY, Horng MF (2014) Hybrid bat algorithm with artificial bee colony. In: Pan JS, Snasel V, Corchado, Abraham A, Wang SL (eds) Intelligent data analysis and its applications, Volume II, Vol. 298. Springer, New York, pp. 45–55

  103. Rauf HT, Malik S, Shoaib U, Irfan MN, Lali MI (2020) Adaptive inertia weight Bat algorithm with Sugeno-Function fuzzy search. Appl Soft Comput 90:106159

    Article  Google Scholar 

  104. Fister IJ, Fister D, Fister I (2013) Differential evolution strategies with random forest regression in the bat algorithm. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, GECCO ’13 Companion, 2013, pp. 1703–1706

  105. Yildizdan G, Baykan ÖK (2020) A novel modified bat algorithm hybridizing by differential evolution algorithm. Exp Syst Appl 141:112949

    Article  Google Scholar 

  106. He X-S, Ding W-J, Yang X-S (2014) Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput Appl 25(2):459–468

    Article  Google Scholar 

  107. Fister IJ, Fong S, Brest J, Fister I (2014) A novel hybrid self-adaptive bat algorithm. Sci World J, 709–738.

  108. Pan TS, Dao TK, Nguyen TT, Chu SC (2015) Hybrid particle swarm optimization with bat algorithm. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing, vol. 329. Springer, New York, pp. 37–47

  109. Liu Q, Wu L, Xiao W, Wang F, Zhang L (2018) A novel hybrid bat algorithm for solving continuous optimization problems. Appl Soft Comput 73:67–82

    Article  Google Scholar 

  110. Guo L, Wang G-G, Wang H (2013) An novel hybrid bat algorithm with harmony search for global numerical optimization. Sci World J 2013:9

    Article  MATH  Google Scholar 

  111. Meng X, Gao X, Liu Y (2015) A novel hybrid bat algorithm with differential evolution strategy for constrained optimization. Int J Hybrid Inform Technol 8(1):383–396

    Article  Google Scholar 

  112. Pravesjit S (2016) A hybrid bat algorithm with natural-inspired algorithms for continuous optimization problem. Artif Life Robot 21(1):112–119

    Article  Google Scholar 

  113. Yang X-S (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Insp Comput 3(5):267–274

    Article  Google Scholar 

  114. Yammani C, Maheswarapu S, Matam S (2016) A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models. Int J Elect Power Energy Syst 79:120131

    Article  Google Scholar 

  115. Prakash S, Trivedi V, Ramteke M (2016) An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor. Int J Syst Assur Eng 7(3):299–315

    Article  Google Scholar 

  116. Heraguemi KE, Kamel N, Drias H (2018) Multi-objective bat algorithm for mining numerical association rules. Int J Bio-Insp Comput 11:4

    Google Scholar 

  117. Laudis LL, Shyam S, Jemila C, Suresh V (2018) MOBA: multi objective bat algorithm for combinatorial optimization in VLSI. Proced Comput Sci 125:840–846

    Article  Google Scholar 

  118. Chen G, Qian J, Zhang Z, Sun Z (2019) Multi-objective improved bat algorithm for optimizing fuel cost, emission and active power loss in power system. Int J Comput Sci 46:1

    Google Scholar 

  119. Perwaiz U, Younas I, Anwar AA (2020) Many-objective BAT algorithm. PLoS ONE 15(6):e0234625

    Article  Google Scholar 

  120. Han Y, Qian J, Chen G (2021) Research of multi-objective modified bat algorithm on optimal power flow problems. Int J Syst Control Inform Process 3(2):150–171

    Google Scholar 

  121. Sheah RH, Abbas IT (2021) Using multi-objective bat algorithm for solving multi-objective non-linear programming problem. Iraqi J Sci 62(3):997–1015

    Article  Google Scholar 

  122. Jiang M, Liu W, Xu W, Chen W (2021) Improved multiobjective bat algorithm for the credibilistic multiperiod mean-VaR portfolio optimization problem. Soft Comput 8

  123. Ahmadianfar I, Adib A, Salarijazi M (2016) Optimizing multireservoir operation: hybrid of bat algorithm and differential evolution. J Water Resourc Plan Manag 142(2):05015010

    Article  Google Scholar 

  124. Ethteram M, Mousavi S-F, Farzin S, Deo R, Othman FB, Chau K-W, Sarkamaryan S, Singh VP, El-Shafie A (2018) Bat algorithm for dam-reservoir operation. Environ Earth Sci 77(13):1–15

    Article  Google Scholar 

  125. Bozorg-Haddad O, Karimirad I, Seifollahi-Aghmiuni S, Loáiciga HA (2014) Development and application of the bat algorithm for optimizing the operation of reservoir systems. J Water Resour Plan Manag 141:04014097

    Article  Google Scholar 

  126. Bath GS, Dhillon JS, Walia BS (2021) Blended bat algorithm for optimum design of cantilever retaining wall. Levant J 20(8):175–196

    Google Scholar 

  127. Bath GS, Dhillon JS, Walia BS (2020) Geometric design of retaining wall by bat algorithm. Sci Eng J 24(12):1–20

    Google Scholar 

  128. Farzin S, Karami H, Anaraki MV, Ehteram M (2018) The application of bat algorithm for economical design of open channels. Iran J Irrig Drain 12(3):635–646

    Google Scholar 

  129. Talatahari S, Kaveh A (2015) Improved bat algorithm for optimum design of large-scale truss structures. Int J Optim Civil Eng 5(2):241–254

    Google Scholar 

  130. Yancang L, Zhen Y (2019) Application of improved bat algorithm in truss optimization. KSCE J Civil Eng 23:2636–2643

    Article  Google Scholar 

  131. Kaveh A, Zakian P (2014) Enhanced bat algorithm for optimal design of skeletal structures. Asian J Civil Eng 15:179–212

    Google Scholar 

  132. Aalimahmoody N, Bedon C, Hasanzadeh-Inanlou N, Hasanzade-Inallu A, Nikoo M (2021) BAT algorithm-based ANN to predict the compressive strength of concrete: a comparative study. Infrastructures 6:80

    Article  Google Scholar 

  133. Su Y, Liu L, Lei Y (2021) Structural damage identification using a modified directional bat algorithm. Appl Sci 11:6507

    Article  Google Scholar 

  134. Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang XS (2012) BBA: a binary bat algorithm for feature selection. In: Proceedings of the 2012 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), 2012, pp. 291–297.

  135. Taha AM, Mustapha A, Chen SD (2013) Naive bayes-guided bat algorithm for feature selection. Sci World J

  136. Rodrigues D, Pereira LA, Nakamura RY, Costa KA, Yang X-S, Souza AN, Papa JP (2014) A wrapper approach for feature selection based on bat algorithm and optimum-path forest. Exp Syst Appl 41(5):2250–2258

    Article  Google Scholar 

  137. Alihodzic A, Tuba E, Simian D, Tuba V, Tuba M (2018) Extreme learning machines for data classification by improved bat algorithm. International Joint Conference on Neural Networks, Brazil.

  138. Leke CA, Marwala T (2019) Missing data estimation using bat algorithm. Deep learning and missing data in engineering systems, Springer, Berlin, Germany.

  139. Talal R (2014) Comparative study between the (BA) algorithm and (PSO) algorithm to train (RBF) network at data classification 92 (5), 16–22

  140. Cheruku R, Edla DR, Kuppili V, Dharavath R (2017) RST-BatMiner: a fuzzy rule miner integrating rough set feature selection and bat optimization for detection of diabetes disease. Appl Soft Comput 67:764–780

    Article  Google Scholar 

  141. Taha AM, Tang AY (2013) Bat algorithm for rough set attribute reduction. J Theor Appl Inform Technol 51(1):1–8

    Google Scholar 

  142. Banu AF, Chandrasekar C (2013) An optimized approach of modified BAT algorithm to record deduplication. Int J Comput Appl 62(1):10–15

    Google Scholar 

  143. Komarasamy G, Wahi A (2012) An optimized k-means clustering technique using bat algorithm. Eur J Sci Res 84(2):263–273

    Google Scholar 

  144. Sood M, Bansal S (2013) K-medoids clustering technique using bat algorithm. Int J Appl Inform Syst 5(8):20–22

    Google Scholar 

  145. Aboubi Y, Drias H, Kamel N (2016) BAT-CLARA: BAT-inspired algorithm for Clustering LARge Applications. IFAC-PapersOnLine 49(2):243–248

    Article  Google Scholar 

  146. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45:1021–1033

    Article  Google Scholar 

  147. Zhang JW, Wang GG (2012) Image matching using a bat algorithm with mutation. Appl Mech Mater 203:88–93

    Article  Google Scholar 

  148. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Sci World J 2014

  149. Alsalibi B, Venkat I, Al-Betar MA (2017) A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Eng Appl Artif Intell 64:242–260

    Article  Google Scholar 

  150. Akhtar S, Ahmad AR, Abdel-Rahman EM (2012) A metaheuristic bat-inspired algorithm for full body human pose estimation. In: Proceedings of the 2012 ninth conference on computer and robot vision (CRV), 2012, pp. 369–375

  151. Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) MRMR BA: a hybrid gene selection algorithm for cancer classification. J Theor Appl Inf Technol 95(12):2610–2618

    Google Scholar 

  152. Mishra S, Shaw K, Mishra D (2012) A new meta-heuristic bat inspired classification approach for microarray data. Proced Technol 4:802–806

    Article  Google Scholar 

  153. Lu S, Qiu X, Shi J, Li N, Lu Z-H, Chen P, Yang M-M, Liu F-Y, Jia W-J, Zhang Y (2017) A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disord Drug Targets (Form Curr Drug Targ CNS Neurol Disord) 16(1):23–29

    Article  Google Scholar 

  154. Lu S, Wang S-H, Zhang Y-ZD (2021) Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Comput Appl 33:10799–10811

    Article  Google Scholar 

  155. Kora P, Kalva SR (2015) Improved Bat algorithm for the detection of myocardial infarction. Springerplus 4(1):666

    Article  Google Scholar 

  156. Marichelvam M, Prabaharan T, Xin-She Y, Geetha M (2013) Solving hybrid flow shop scheduling problems using bat algorithm. Int J Log Econ Global 5(1):15–29

    Google Scholar 

  157. Luo Q, Zhou Y, Xie J, Ma M, Li L (2014) Discrete bat algorithm for optimal problem of permutation flow shop scheduling. Sci World J 2014.

  158. Tosun Ö, Marichelvam MK (2016) Hybrid bat algorithm for flow shop scheduling problems. Int J Math Oper Res 9(1):125–138

    Article  MathSciNet  MATH  Google Scholar 

  159. Marichelvam M, Prabaharam T (2012) A bat algorithm for realistic hybrid flowshop scheduling problems to minimize makespan and mean flow time. ICTACT J Soft Comput 3(1):428–433

    Article  Google Scholar 

  160. Xie J, Zhou Y, Tang Z (2013) Differential Lévy-Flights bat algorithm for minimization makespan in permutation flow shops. In: Huang DS, Jo KH, Zhou YQ, Han K (eds) Lecture notes in computer science, vol 7996. Intelligent computing theories and technology. Springer, Berlin, pp 179–188

    Google Scholar 

  161. Dao TK, Pan TS, Nguyen TT, Pan JS (2015) Parallel bat algorithm for optimizing makespan in job shop scheduling problems J. Intell Manuf 29:1–12

    Google Scholar 

  162. Musikapun P, Pongcharoen P (2012) Solving multi-stage multi-machine multi-product scheduling problem using bat algorithm. Int Proc Econ Develop Res 35:98–102

    Google Scholar 

  163. Malakooti B, Kim H, Sheikh S (2012) Bat intelligence search with application to multi-objective multi-processor scheduling optimization. Int J Adv Manuf Technol 60(9–12):1071–1086

    Article  Google Scholar 

  164. Talafuse TP, Pohl EA (2016) A bat algorithm for the redundancy allocation problem. Eng Optim 48(5):900–910

    Article  MathSciNet  Google Scholar 

  165. Fister I, Rauter S, Yang X-S, Ljubic K (2014) Planning the sports training sessions with the bat algorithm. Neurocomputing 149:993–1002

    Article  Google Scholar 

  166. Khan K, Nikov A, Sahai A (2011) A fuzzy bat clustering method for ergonomic screening of office workplaces. In: Dicheva D, Markov Z, Stefanova E (eds) Third international conference on software, services and semantic technologies, number 101 in advances in intelligent and soft computing. Springer, Berlin Heidelberg, pp 59–66

    Google Scholar 

  167. Osaba E, Yang X-S, Diaz F, Lopez-Garcia P, Carballedo R (2016) An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng Appl Artif Intell 48:59–71

    Article  Google Scholar 

  168. Saji Y, Riffi ME (2016) A novel discrete bat algorithm for solving the travelling salesman problem. Neural Comput Appl 27(7):1853–1866

    Article  Google Scholar 

  169. Bora TC, Coelho LDS, Lebensztajn L (2012) Bat-inspired optimization approach for the brushless DC wheel motor problem. IEEE Trans Magn 48(2):947–950

    Article  Google Scholar 

  170. Ali ES (2014) Optimization of power system stabilizers using BAT search algorithm. Int J Electr Power Energy Syst 61(2014):683–690

    Article  Google Scholar 

  171. Peres W, de Oliveira EJ, Filho JAP, Silva ICD (2015) Coordinated tuning of power system stabilizers using bio-inspired algorithms. Int J Elect Power Energy Syst 64:419–428

    Article  Google Scholar 

  172. Sambariya DK, Prasad R (2014) Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int J Electr Power Energy Syst 61:229–238

    Article  Google Scholar 

  173. Sathya MR, Ansari MMT (2015) Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system. Int J Electr Power Energy Syst 64:365–374

    Article  Google Scholar 

  174. Sathya MR, Ansari MMT (2014) Design of BAT inspired algorithm based dual mode gain scheduling of PI load frequency control controllers for interconnected multi-area multi-unit power systems. Aust J Basic Appl Sci 8(18):635–647

    Google Scholar 

  175. Sakthivel S, Natarajan R, Gurusamy P (2013) Application of bat optimization algorithm for economic load dispatch considering valve point effects. Int J Comput Appl 67(11):35–39

    Google Scholar 

  176. Bestha M, Reddy KH, Hemakeshavulu O (2014) Economic load dispatch downside with valve point result employing a binary bat formula. Int J Elect Comput Eng (IJECE) 4(1):101–107

    Google Scholar 

  177. Biswal S, Barisal A, Behera A, Prakash T (2013) Optimal power dispatch using bat algorithm. In: International conference on energy efficient technologies for sustainability (ICEETS), 1018–1023.

  178. Ramesh B, Mohan VCJ, Ressy VCV (2013) Application of bat algorithm for combined economic load and emission dispatch. J Electr Eng Telecommun 2(1):1–9

    Google Scholar 

  179. Niknam T, Azizipanah-Abarghooee R, Zare M, Bahmani-Firouzi B (2013) Reserve constrained dynamic environmental/economic dispatch: a new multiobjective self-adaptive learning bat algorithm. IEEE Syst J 7(4):763–776

    Article  Google Scholar 

  180. Latif A, Palensky P Economic dispatch using modified bat algorithm. Algorithms 7(3): 328–338

  181. Bahmani-Firouzi B, Azizipanah-Abarghooee R (2014) Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm. Int J Electr Power Energy Syst 56(2014):42–54

    Article  Google Scholar 

  182. Eltamaly AM, Al-Saud MS, Abokhalil AG (2020) A novel scanning bat algorithm strategy for maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams Eng J 11(4):1093–1103

    Article  Google Scholar 

  183. Seyedmahmoudian M et al (2018) Maximum power point tracking for photovoltaic systems under partial shading conditions using bat algorithm. Sustainability 10(5):1347

    Article  Google Scholar 

  184. Eltamaly AM, Al-Saud MS, Abokhalil AG (2020) A novel bat algorithm strategy for maximum power point tracker of photovoltaic energy systems under dynamic partial shading. IEEE Access 8:10048–10060

    Article  Google Scholar 

  185. Kaced K et al (2017) Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Sol Energy 158:490–503

    Article  Google Scholar 

  186. Niknam T, Sharifinia S, Azizipanah-Abarghooee R (2013) A new enhanced bat-inspired algorithm for finding linear supply function equilibrium of GENCOs in the competitive electricity market. Energy Convers Manag 76:1015–1028

    Article  Google Scholar 

  187. Tamiru AL, Hashim FM (2013) Application of bat algorithm and fuzzy systems to model exergy changes in a gas turbine. In: Artificial intelligence, evolutionary computing and metaheuristics. Springer, Berlin, Germany

  188. Kotteeswaran R, Sivakumar L (2013) A novel bat algorithm based re- tuning of PI controller of coal gasifier for optimum response. In: Prasath R, Kathirvalavakumar T (eds) Mining intelligence and knowledge exploration, number 8284 in lecture notes in computer science. Springer, New York, pp 506–517

    Google Scholar 

  189. Tamiru AL, Hashim FM (2011) Use of fuzzy systems and bat algorithm for exergy modelling in a gas turbine generator. In: Proceedings of the 2011 IEEE colloquium on humanities, science and engineering (CHUSER), pp 305–310

  190. Kashi S, Minuchehr A, Poursalehi N, Zolfaghari A (2014) Bat algorithm for the fuel arrangement optimization of reactor core. Ann Nucl Energy 64:144–151

    Article  Google Scholar 

  191. Zhou Y, Xie J, Zheng H (2013) A hybrid bat algorithm with path relinking for capacitated vehicle routing problem. Math Prob Eng 2013:1–10

    MathSciNet  MATH  Google Scholar 

  192. Zhou Y, Luo Q, Xie J, Zheng H (2016) A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In: Yang XS, Bekdaş G, Nigdeli SM (eds) Modeling and optimization in science and technologies, vol 7. Metaheuristics and optimization in civil engineering. Springer, Cham, pp 255–276

    Google Scholar 

  193. Ochoa A, Margain L, Arreola J, Luna AD, García G, Soto E, González S, Haltaufoerhyde K, Scarandangotti V (2013) Improved solution based on bat algorithm to vehicle routing problem in a caravan range community. In: Proceedings of the 2013 13th international conference on hybrid intelligent systems (HIS), pp 18–22

  194. Taha A, Hachimi M, Moudden A (2015) Adapted bat algorithm for capacitated vehicle routing problem. Int Rev Comput Softw 10(6):610–619

    Google Scholar 

  195. Dapa K, Loreungthup P, Vitayasak S, Pongcharoen P (2013) Bat algorithm, genetic algorithm and shuffled frog leaping algorithm for designing machine layout. In: Romanna S, Lingras P, Sombattheera C, Krishna A (eds) Lecture notes in computer science, vol 8271. Multi-disciplinary trends in artificial intelligence. Springer, Berlin, pp 59–68

    Google Scholar 

  196. He M, Sun L, Zeng X, Liu W, Tao S (2020) Node layout plans for urban underground logistics systems based on heuristic Bat algorithm. Comput Commun 154:465–480

    Article  Google Scholar 

  197. Büyüksaatç S (2015) Bat algorithm application for the single row facility layout problem. In: Yang XS (ed) Studies in computational intelligence, vol 585. Recent advances in swarm intelligence and evolutionary computation. Springer, Cham, pp 101–120

    Google Scholar 

  198. Carbas S, Hasancebi O (2013) Optimum design of steel space frames via bat inspired algorithm. In: Proceedings of the 10th world congress on structural and multidisciplinary optimization

  199. Hasançebi O, Carbas S (2014) Bat inspired algorithm for discrete size optimization of steel frames. Adv Eng Softw 67:173–185

    Article  Google Scholar 

  200. Gholizadeh S, Shahrezaei AM (2015) Optimal placement of steel plate shear walls for steel frames by bat algorithm. Struct Des Tall Spec Build 24(1):1–18

    Article  Google Scholar 

  201. Hasancebi O, Teke T, Pekcan O (2013) A bat-inspired algorithm for structural optimization. Comput Struct 128:77–90

    Article  Google Scholar 

  202. Arora U, Lodhi EA, Saxena T (2016) PID parameter tuning using modified bat algorithm J. Autom Control Eng 4:347–352

    Article  Google Scholar 

  203. Omar B, Saida IB (2014) Bat algorithm for optimal tuning of PID controller in an AVR system. In: International conference on control, engineering and information, pp 158–170

  204. Sur C, Shukla A (2013) Adaptive and discrete real bat algorithms for route search optimization of graph based road network. In: Proceedings of the 2013 international conference on machine intelligence and research advancement (ICMIRA), pp 120–124

  205. Xi Z, Wang J, Yang Q, Li X, Zheng J, Yan W (2018) Optimal path planning for UAVs based on an improved bat algorithm. In: Proceedings of international multi-conference on complexity, informatics and cybernetics, pp. 40–45

  206. Wang G, Guo L, Duan H, Liu L, Wang H (2012) A bat algorithm with mutation for UCAV path planning. Sci World J 2012:1–15

    Google Scholar 

  207. Li YG, Peng JP (2014) An improved bat algorithm and its application in multiple ucavs. Appl Mech Mater 442:282–286

    Article  Google Scholar 

  208. Kiran M, Reddy GRM (2014) Bat-termite: a novel hybrid bio inspired routing protocol for mobile ad hoc networks. Int J Wireless Mob Comput 7(3):258–269

    Article  Google Scholar 

  209. Pal S, Sethi S (2016) BAT-based optimized routing protocol in cognitive radio ad hoc network. Int J Appl Innov Eng Manag (IJAIEM) 4(12):116–123

    Google Scholar 

  210. Parika W, Seesuaysom W, Vitayasak S, Pongcharoen P (2013) Bat algorithm for designing cell formation with a consideration of routing flexibility. In: Proceedings of the 2013 IEEE international conference on industrial engineering and engineering management (IEEM), 1353–1357

  211. Goyal S, Patterh MS (2016) Modified bat algorithm for localization of wireless sensor network. Wireless Pers Commun 86(2):657–670

    Article  Google Scholar 

  212. Kaur SP, Sharma M (2015) Radially optimized zone-divided energy-aware wireless sensor networks (WSN) protocol using BA (Bat Algorithm). IETE J Res 61(2):170–179

    Article  Google Scholar 

  213. Cao Y, Cui Z, Li F, Dai C, Chen W (2014) Improved low energy adaptive clustering hierarchy protocol based on local centroid bat algorithm. Sens Lett 12:1372–1377

    Article  Google Scholar 

  214. Lin CC, Li YS, Deng DJ (2014). A bat-inspired algorithm for router node placement with weighted clients in wireless mesh networks. In: Proceedings of the 2014 9th international conference on communications and networking in China (CHINACOM), pp 139–143

  215. Hassan EA, Hafez AI, Hassanien AE, Fahmy AA (2015) A discrete bat algorithm for the community detection problem. International conference on hybrid artificial intelligence systems. Springer, New York, pp 188–199

    Google Scholar 

  216. Imane M, Nadjet K (2016) Hybrid Bat algorithm for overlapping community detection. IFAC-PapersOnLine 49:1454–1459

    Article  Google Scholar 

  217. Raghavan S, Sarwesh P, Marimuthu C, Chandrasekaran K (2015) Bat algorithm for scheduling workflow applications in cloud. In: Proceedings of the 2015 international conference on electronic design, computer networks automated verification (EDCAV), pp 139–144

  218. Sharma S, Luhach AK, Abdhullah SS (2016) An optimal load balancing technique for cloud computing environment using bat algorithm. Indian J Sci Technol 9(28):1–4

    Article  Google Scholar 

  219. Suárez P, Iglesias A, Gálvez A (2019) Make robots be bats: specializing robotic swarms to the bat algorithm. Swarm Evolut Comput 44:113–129

    Article  Google Scholar 

  220. Mallick R, Ganguli R (2018) Robust design of helicopter rotor flaps using bat algorithm. In: Handbook research on predictive modeling and optimization methods in science and engineering. pp 1–28

  221. Kumaravel G, Kumar C (2012) Design of self-tuning PI controller for STATCOM using Bats echolocation algorithm based neural controller. In: IEEE-international conference on advances in engineering, science and management (ICAESM-2012), pp 276–281

  222. Bekdas G, Nigdeli SM, Yang XS (2018) A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng Struct 159:89–98

    Article  Google Scholar 

  223. Chakri A, Khelif R, Benouaret M (2016) Improved bat algorithm for structural reliability assessment: application and challenges. Multidiscip Model Mater Struct 12(2):218–253

    Article  Google Scholar 

  224. Wang J, Fan X, Zhao A, Yang M (2015) A hybrid bat algorithm for process planning problem. IFAC-PapersOnLine 48(3):1708–1713

    Article  Google Scholar 

  225. Naderi M, Khamehchi E (2017) Application of DOE and metaheuristic bat algorithm for well placement and individual well controls optimization. J Nat Gas Sci Eng

  226. Osaba E, Yang XS, Fister I, Del Ser J, Lopez-Garcia P, Vazquez-Pardavila AJ (2018) A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evolut Comput

  227. Delalic S, Alihodzic A, Tuba M, Selmanovic E, Hasic D (2020) Discrete bat algorithm for event planning optimization. In: International convention on information, communication and electronic technology (MIPRO)

  228. Liu Q, Li J, Wu L, Wang F, Xiao W (2020) A novel bat algorithm with double mutation operators and its application to low-velocity impact localization problem. Eng Appl Artif Intel 90:103505

    Article  Google Scholar 

  229. Kongkaew W (2015) Solving the single machine total weighted tardiness problem using bat-inspired algorithm. In: Proceedings of the 2015 IEEE international conference on industrial engineering and engineering management (IEEM), pp 265–269.

  230. Sadeghi J, Mousavi SM, Niaki STA, Sadeghi S (2014) Optimizing a bi-objective inventory model of a three-echelon supply chain using a tuned hybrid bat algorithm. Transp Res E Log Transp Rev 70:274–292

    Article  Google Scholar 

  231. Dehghani H, Bogdanovic D (2018) Copper price estimation using bat algorithm. Resour Policy 55:55–61

    Article  Google Scholar 

  232. Srivastava PR, Bidwai A, Khan A, Rathore K, Sharma R, Yang XS (2014) An empirical study of test effort estimation based on bat algorithm. Int J Bio-Insp Comput 6(1):57–70

    Article  Google Scholar 

  233. Hong W, Li M, Geng J, Zhang Y (2019) Novel chaotic bat algorithm for forecasting complex motion of floating platforms. Appl Math Model 72:425–443

    Article  MathSciNet  MATH  Google Scholar 

  234. Koffka A, Sahai K (2012) A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context. IJ Intell Syst Appl 4(7):23–29

    Google Scholar 

  235. Cincy W, Jeba J (2017) Performance analysis of novel hybrid A-BAT algorithm in crowdsourcing environment. Int J Appl Eng Res 12:14964–21496

    Google Scholar 

  236. Cui Z, Zhang C, Zhao Y, Shi Z (2019) Adaptive bat algorithm optimization strategy for observation matrix. Appl Sci 9:3008

    Article  Google Scholar 

  237. Natarajan A, Subramanian S, Premalatha K (2012) A comparative study of cuckoo search and bat algorithm for Bloom filter optimisation in spam filtering. Int J Bio-Insp Comput 4(2):89–99

    Article  Google Scholar 

  238. Xie J, Zhou Y, Zheng H (2013) A hybrid metaheuristic for multiple runways aircraft landing problem based on bat algorithm. J Appl Math

  239. Ochoa A, Margain L, Hernandez A, Ponce J, De Luna A, Hernandez A, Castillo O (2013) Bat algorithm to improve a financial trust forest. In: Proceedings of the 2013 world congress on nature and biologically inspired computing (NaBIC), pp 58–62. IEEE

  240. Ma H, Shen S, Yu M, Yang Z, Fei M, Zhou H (2019) Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey. Swarm Evol Comput 44:365–387

    Article  Google Scholar 

  241. Zamli KZ, Din F, Baharom S, Ahmed BS (2017) Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites. Eng Appl Artif Intell 59:35–50

    Article  Google Scholar 

  242. Cheng M-Y, Prayogo D (2018) Fuzzy adaptive teaching–learning-based optimization for global numerical optimization. Neural Comput Appl 29(2):309–327

    Article  Google Scholar 

  243. Ting TO, Yang XS, Cheng S, Huang K (2015) Hybrid metaheuristic algorithms: past, present, and future. In: Yang X-S (ed) Recent advances in swarm intelligence and evolutionary computation. Springer, Cham, pp 71–83

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T., Kumar, V. A Systematic Review on Bat Algorithm: Theoretical Foundation, Variants, and Applications. Arch Computat Methods Eng 29, 2707–2736 (2022). https://doi.org/10.1007/s11831-021-09673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09673-9

Navigation