Skip to main content
Log in

A Comprehensive Review on Deep Synergistic Drug Prediction Techniques for Cancer

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Drug combination therapies are successfully used in the treatment of cancer disease. The synergistic drug combinations not only increase the drug efficacy, but also reduce the drug dosage. The exhaustive combination of synergistic drugs makes it more challenging. The deep learning techniques are used to handle this issue. In this paper, a comprehensive review on deep synergistic drug combination is presented. The theoretical aspects of drug synergy are discussed with their mathematical formulation. The deep synergistic drug combinations prediction techniques are also deliberated in detail. The applicability of deep learning tools and software packages in prediction models is investigated. The datasets and performance measures are studied at length. The challenges and future research directions in field of drug synergy are discussed with a view to benefit the young researchers and scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Humphrey RW et al (2011) Opportunities and challenges in the development of experimental drug combinations for cancer. J Natl Cancer Inst 103(16):1222–1226

    Article  Google Scholar 

  2. Huang Y et al (2016) Fulvestrant reverses doxorubicin resistance in multidrug-resistant breast cell lines independent of estrogen receptor expression. Oncol Rep 37:705–712

    Article  Google Scholar 

  3. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894

    Article  Google Scholar 

  4. Goswami C et al (2015) A new drug combinatory effect prediction algorithm on the cancer cell based on gene expression and dose-response curve. CPT Pharmacometr Syst Pharmacol 4:80–90

    Article  Google Scholar 

  5. Bulusu K,et al. (2016) Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov Today 21:225–238

    Article  Google Scholar 

  6. Singh H, Singh S, Singla D, Agarwal SM, Raghava GP (2015) QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest. Biol Direct 10:10

    Article  Google Scholar 

  7. Doucet J-P, Barbault F, Xia H, Panaye A, Fan B (2007) Nonlinear SVM approaches to QSPR/QSAR studies and drug design. Curr Comput Aided-Drug Des 3:263–289

    Article  Google Scholar 

  8. Li J, Tong X-Y, Zhu L-D, Zhang H-Y (2020) A machine learning method for drug combination prediction. Front Genet 11:1000

    Article  Google Scholar 

  9. Wildenhain J et al (2015) Prediction of synergism from chemical–genetic interactions by machine learning. Cell Syst 1:383–395

    Article  Google Scholar 

  10. Wang D, Menden M, Yu T (2017) Data description of AstraZeneca-Sanger drug combination prediction DREAM challenge

  11. Ma J et al (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55:263–274

    Article  Google Scholar 

  12. Unterthiner T, et al (2015) Toxicity prediction using deep learning. arXiv. Preprint arXiv, 1503.01445

  13. Geary N (2013) Understanding synergy. Am J Physiol Endrocrinol Metab 304:E237-253

    Article  Google Scholar 

  14. Yuan S, Chen H (2019) Mathematical rules for synergistic, additive, and antagonistic effects of multi-drug combinations and their application in research and development of combinatorial drugs and special medical food combinations. Food Sci Hum Wellness 8(2):136–141

    Article  Google Scholar 

  15. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3(6):285–290

    Google Scholar 

  16. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26(3):585–615

    Article  Google Scholar 

  17. Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3:e00149

    Article  Google Scholar 

  18. Yadav B, Wennerberg K, Aittokallio T, Tang J (2015) Searching for drug synergy in complex dose-response landscapes using an interaction potency model. Comput Struct Biotechnol J 13:504–513

    Article  Google Scholar 

  19. Goodfellow I, Bengio YCA (2016) Deep Learning. MIT Press

    MATH  Google Scholar 

  20. Segler MHS, Kogej T, Tyrchan C, Waller MP (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4(1):120–131

    Article  Google Scholar 

  21. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen G, Tsoi A, Xu H et al (2018) Predict effective drug combination by deep belief network and ontology fingerprints. J Biomed Inform 85:149–154

    Article  Google Scholar 

  23. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure activity relationships. J Chem Inf Model 55(2):263–274

    Article  Google Scholar 

  24. Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. https://arxiv.org/pdf/1510.02855.pdf

  25. Hu P-W, Chan KC, You Z-H (2016) Large-scale prediction of drug-target interactions from deep representations. In: International joint conference on neural networks (IJCNN), pp 1236–1243

  26. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    Article  Google Scholar 

  27. Kumar V, Kumar D (2020) A systematic review on firefly algorithm: past, present and future. Arch Comput Methods Eng

  28. Kalra M, Tyagi S, Kumar V, Kaur M, Mashwani WM, Shah H, Shah K (2021) A comprehensive review on scatter search: techniques, applications, and challenges. Math Probl Eng

  29. Zagidullin B, Aldahdooh J, Zheng S et al (2019) DrugComb: an integrative cancer drug combination data portal. Nucleic Acids Res 47(W1):W43-51

    Article  Google Scholar 

  30. Liu H, Zhang W, Zou B, Wang J, Deng Y, Deng L (2020) DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res 48(D1):D871–D881

    Google Scholar 

  31. Holbeck SL, Camalier R, Crowell JA, Govindharajulu JP, Hollingshead M, Anderson LW, Polley E, Rubinstein L, Srivastava A, Wilsker D et al (2017) The national cancer institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res 77:3564–3576

    Article  Google Scholar 

  32. O’Neil J, Benita Y, Feldman I, Chenard M, Roberts B, Liu Y, Li J, Kral A, Lejnine S, Loboda A et al (2016) An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther 15:1155–1162

    Article  Google Scholar 

  33. Forcina GC, Conlon M, Wells A, Cao JY, Dixon SJ (2017) Systematic quantification of population cell death kinetics in mammalian cells. Cell Syst 4(6):600–610

    Article  Google Scholar 

  34. Licciardello MP, Ringler A, Markt P, Klepsch F, Lardeau CH, Sdelci S, Schirghuber E, Muller AC, Caldera M, Wagner A et al (2017) A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor. Nat Chem Biol 13:771–778

    Article  Google Scholar 

  35. Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R et al (2019) Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 10(1):1–17

    Article  Google Scholar 

  36. Friedman AA, Amzallag A, Pruteanu-Malinici I, Baniya S, Cooper ZA, Piris A, Hargreaves L, Igras V, Frederick DT, Lawrence DP et al (2015) Landscape of targeted anti-cancer drug synergies in melanoma identifies a novel BRAF-VEGFR/PDGFR combination treatment. PLoS ONE 10:e0140310

    Article  Google Scholar 

  37. Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, et al (2017) Combinatorial screening of pancreatic adenocarcinoma reveals sensitivity to drug combinations including bromodomain inhibitor plus neddylation inhibitor. Mol Cancer Ther 16(6):1041-1053

  38. Patterson JC, Joughin BA, Prota AE, Muhlethaler T et al (2019) VISAGE reveals a targetable mitotic spindle vulnerability in cancer cells. Cell Syst 9(1):74–92

    Article  Google Scholar 

  39. Wali VB, Langdon CG (2017) Systematic drug screening identifies tractable targeted combination therapies in triple-negative breast cancer. Cancer Res. 77(2):566–578

  40. Lanevski A, Giri AK, Gautam P et al (2019) Prediction of drug combination effects with a minimal set of experiments. Nat Mach Intell 1:568–577

    Article  Google Scholar 

  41. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR et al (2012) Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(D1):D955–D961

    Article  Google Scholar 

  42. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607

    Article  Google Scholar 

  43. Tate JG, Bamford S, Jubb HC et al (2019) COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47(D1):D941-947

    Article  Google Scholar 

  44. Seashore-Ludlow B, Rees MG, Cheah JH et al (2015) Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 5(11):1210–1223

    Article  Google Scholar 

  45. Wilks C, Cline MS, Weiler E, Diehkans M, Craft B, Martin C, et al (2014) The cancer genomics hub (CGHub): overcoming cancer through the power of torrential data. Database (Oxford), (2014), p. bau093

  46. Yang Y, Dong X, Xie B et al (2015) Databases and web tools for cancer genomic study. Genom Proteom Bioinf 13(1):46–50

    Article  Google Scholar 

  47. Zeeberg BR, Kohn KW, Kahn A et al (2012) Concordance of gene expression and functional correlation patterns across the NCI-60 cell lines and the Cancer Genome Atlas glioblastoma samples. PLoS ONE 7:e40062

    Article  Google Scholar 

  48. Zubrod CG (1984) Origins and development of chemotherapy research at the National Cancer Institute. Cancer Treat Rep 68:9–19

    Google Scholar 

  49. Greshock J, Bachman KE, Degenhardt YY et al (2010) Molecular target class is predictive of in vitro response profile. Cancer Res 70:3677–3686

    Article  Google Scholar 

  50. Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575

    Article  Google Scholar 

  51. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z et al (2018) Drugbank 5.0: a major update to the drug bank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  Google Scholar 

  52. Günther S, Kuhn M, Dunkel M et al (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res 36:D919–D922

    Article  Google Scholar 

  53. Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384

    Article  Google Scholar 

  54. Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343

    Article  Google Scholar 

  55. Kumar R, Chaudhary K, Gupta S et al (2013) CancerDR: cancer drug resistance database. Sci Rep 3:1445

    Article  Google Scholar 

  56. Seiler KP, George GA, Happ MP et al (2008) ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res 36:D351–D359

    Article  Google Scholar 

  57. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30(1):412–415

    Article  Google Scholar 

  58. Hecker N, Ahmed J, von Eichborn J et al (2012) SuperTarget goes quantitative: update on drug–target interactions. Nucleic Acids Res 40:D1113–D1117

    Article  Google Scholar 

  59. Liu T, Lin Y, Wen X et al (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201

    Article  Google Scholar 

  60. Chen X, Ren B, Chen M et al (2014) ASDCD: antifungal synergistic drug combination database. PLoS ONE 9:e86499

    Article  Google Scholar 

  61. Pawson AJ, Sharman JL, Benson HE et al (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106

    Article  Google Scholar 

  62. Magariños MP, Carmona SJ, Crowther GJ et al (2012) TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res 40:D1118–D1127

    Article  Google Scholar 

  63. Chen X, Yan CC, Zhang X et al (2016) Drug–target interaction prediction: databases, web servers and computational models. Brief Bioinform 17(4):696–712

    Article  Google Scholar 

  64. Kim N, He N, Yoon S (2014) Cell line modeling for systems medicine in cancers (review). Int J Oncol 44(2):371–376

    Article  Google Scholar 

  65. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B et al (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109

    Article  Google Scholar 

  66. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrian-Uhalte E et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954

    Article  Google Scholar 

  67. Irwinv JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  Google Scholar 

  68. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  69. Delgado R, Tibau X-A (2019) Why Cohen’s Kappa should be avoided as performance measure in classification. PLoS ONE, 14(9):16

  70. Ait-Amir B, Pougnet P, El Hami A (2015) Meta-model development. embedded mechatronic systems 2: analysis of failures, modeling, simulation and optimization, 151–179

  71. Kaur J, Singh D, Kaur M (2019) A novel framework for drug synergy prediction using differential evolution based multinomial random forest. Int J Adv Comput Sci Appl 10(5):601–608

    Google Scholar 

  72. Jiang P, Huang S, Fu Z, Sun Z, Lakowski TM, Hu P (2020) Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput Struct Biotechnol J 18:427–438

    Article  Google Scholar 

  73. Diaconis P, Graham RL (1977) Spearman's footrule as a measure of disarray. J. R. Stat. Soc. Ser. B 262–268

  74. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Morgan Kaufmann

  75. Tan P-N, Steinbach M, Karpatne A, Kumar V (2018) Introduction to data mining. Pearson Education.

  76. Korkmaz S (2020) Deep learning-based imbalanced data classification for drug discovery. J Chem Inf Model 60(9):4180–4190

    Article  Google Scholar 

  77. Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G (2017) DeepSynergy: predicting anti-cancer drug synergy with deep learning. 34(9):1538–1546

  78. Zhang T, Zhang L, Payne PRO, Li F (2021) Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol 2194:223–238

    Article  Google Scholar 

  79. Kuru HI, Tastan O, Cicek AE (2020) MatchMaker: a deep learning framework for drug synergy prediction. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1101/2020.05.24.11324

    Article  Google Scholar 

  80. Zhang H, Chen Y, Payne P, Li F (2021) Mining signaling flow to interpret mechanisms of synergy of drug combinations using deep graph neural networks. bioRxiv. https://doi.org/10.1101/2021.03.25.43700

    Article  Google Scholar 

  81. Preto A.J, Matos-Filipe P, Mourao J, Moreira IS (2021) SynPred: prediction of drug combination effects in cancer using full-agreement synergy metrics and deep learning. Cancers 3:2021040395. https://doi.org/10.20944/preprint972104.0395.v1

  82. Liu Q, Xie L (2021) TranSynergy: mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations. PLoS Comput Biol 17(2):653

    Article  Google Scholar 

  83. Seo H, Tkachuk D, Ho C, Mammoliti A, Rezaie A, Tonekaboni SAM, HAibe-Kains B. (2020) SYNERGxDB: an integrative pharmacogenomic portal to identify synergistic drug combinations for precision oncology. Nucleic Acids Res 48(1):W494–W501

    Article  Google Scholar 

  84. Wang J, Zhang W, Shen S, Deng L, Liu H (2021) DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. bioRxiv. https://doi.org/10.1101/2021.04.06.438723

    Article  Google Scholar 

  85. Sun Z, Huang S, Jiang P, Hu P (2020) DTF: deep tensor factorization for predicting anticancer drug synergy. Bioinformatics 36(16):4483–4489

    Article  Google Scholar 

  86. Jarada TN, Rokne JG, Alhajj R (2021) SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. BMC Bioinf 22:28

    Article  Google Scholar 

  87. Kim Y, Zheng S, Tang J, Zheng WJ, Li Z, Jiang X (2021) Anticancer drug synergy prediction in understudied tissues using transfer learning. J Am Med Inf Assoc 28(1):42–51

    Article  Google Scholar 

  88. Kuenzi BM, Park J, Fong SH et al (2020) Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38(5):672–684

    Article  Google Scholar 

  89. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. in: proceedings of international conference on knowledge discovery and data mining. pp 785–794

  90. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

  91. Breiman L (2001) Random forests Machine learning 45(1):5–32

    Article  Google Scholar 

  92. Mayr A et al (2016) DeepTox: toxicity prediction using deep learning. Front Environ Sci 3:80

    Article  Google Scholar 

  93. Kaur M, Singh D, Kumar V (2021) Drug synergy prediction using dynamic mutation based differential evolution. current pharmaceutical design 27(8)

  94. Zou H., Hastie T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.), 67, 301–320

  95. Veroli GYD, Fornari C, Wang D, Mollard S, Bramhall JL, Richards FM, Jodrell DI (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32(18):2866–2868

    Article  Google Scholar 

  96. Prichard M, Aseltine K, Shipman CJ (1993) MacSynergy II. Version 1.0. User’s Manual, University of Michigan, Ann Arbor, Mich, USA

  97. Kashif M (2015) Synergy/antagonism analyses of drug combinations. R package version 104.

  98. Ianevski A, He L, Aittokallio T, Tang J (2017) SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics 33(15):2413–2415

    Article  Google Scholar 

  99. Chou T, Martin N (2005) CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn, Paramus, NJ, USA

  100. Flobak A, Vazquez M, Laegreid A, Valencia A (2017) CImbinator: a web-based tool for drug synergy analysis in small- and large-scale datasets. Bioinformatics 33(15):2410–2412

    Article  Google Scholar 

  101. Ianevski A, Timonen S, Kononov A, Aittokallio T, Giri AK (2020) SynToxProfiler: an interactive analysis of drug combination synergy, toxicity and efficacy. PLoS Comput Biol 16(2):e1007604

    Article  Google Scholar 

  102. Zhang M, Lee S, Yao B, Xiao G, Xu L, Xie Y (2020) DIGREM: an integrated web-based platform for detecting effective multi-drug combinations. Bioinformatics 35(10):1792–1794

    Article  Google Scholar 

  103. Yan X, Yang Y, Chen Z et al (2020) H-RACS: a handy tool to rank anti-cancer synergistic drugs. Aging 12(21):21504–21517

    Article  Google Scholar 

  104. Lewis R, Guha R, Korcsmaros T, Bender A (2015) SynergyMaps: exploring compound combinations using network-based visualization. J Cheminf 7(1):36

    Article  Google Scholar 

  105. Alaimo S, Bonnici V, Cancemi D, Ferro A, Giugno R, Pulvirenti A (2015) DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference. BMC Syst Biol 9(3):1

    Google Scholar 

  106. Sidorov P, Naulaerts S, Ariey-Bonnet J, Pasquier E, Ballester PJ (2019) Predicting synergism of cancer drug combinations using NCI-ALMANAC data. Front Chem 7:509

    Article  Google Scholar 

  107. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  Google Scholar 

  108. Cuvitoglu A, Zhou JX, Huang S, Isik Z (2019) Predicting drug synergy for precision medicine using network biology and machine learning. J Bioinf Comput Biol 17(2):1950012

    Article  Google Scholar 

  109. Zhang C, Yan G (2019) Synergistic drug combinations prediction by integrating pharmacological data. Synth Syst Biotechnol 4(1):67–72

    Article  Google Scholar 

  110. Ding P, Shen C, Lai Z, Liang C, Li G, Luo J (2020) Incorporating multisource knowledge to predict drug synergy based on graph co-regularization. J Chem Inf Model 60(1):37–46

    Article  Google Scholar 

  111. Yang M, Jaaks P, Dry J, Garnett M, Menden MP, Saez-Rodriguez J (2020) Stratification and prediction of drug synergy based on target functional similarity. Npj Syst Biol Appl 6(16):1–10

    Google Scholar 

  112. Chen X, Ren B, Chen M, Wang Q, Zhang L, Yan G (2016) NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLOS Comput Biol

  113. Li X, Qin G, Yang Q, Chen L, Xie L (2016) Biomolecular network-based synergistic drug combination discovery. Biomed Res Int 2016:8518945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Dogra, N. A Comprehensive Review on Deep Synergistic Drug Prediction Techniques for Cancer. Arch Computat Methods Eng 29, 1443–1461 (2022). https://doi.org/10.1007/s11831-021-09617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09617-3

Keywords

Navigation