Skip to main content
Log in

Abstract

As an interdisciplinary between quantum computing and image processing, quantum image processing provides more possibilities for image processing due to the powerful parallel computing capabilities of quantum computers. In recent years, quantum image processing attracts more and more researcher’s attention. In order to allow researchers to better understand quantum image processing technology, we have reviewed relevant literature in recent years in the paper. First, the background and mathematical concepts of quantum computing are introduced. Then, the research progress of quantum image processing is sorted out and summarized in the fileds of quantum image representation, geometric transformation, image encryption, edge detection, image segmentation, filtering and compression. Finally, we have discussed the advantages and disadvantages of quantum image processing, and pointed out the potential future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Moore G (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85

    Article  Google Scholar 

  2. Feynman R-P (1982) Simulating physics with computers. Int J Theor Phys 21(6/7):467–488

    Article  MathSciNet  Google Scholar 

  3. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp 124–134

  4. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, ACM, pp 212–219

  5. Venegas-Andraca S-E, Bose S (2003) Storing processing and retrieving an image using quantum mechanics. SPIE Conf Quant Inf Comput 5106(01):137–147

    Google Scholar 

  6. Latorre JI (Oct 2005) Image compression and entanglement, Tech. Rep. quant-ph/0510031, University of Barcelona

  7. Venegas-Andraca SE, Ball JL (2010) Processing images in entangled quantum system. Quant Inf Process 9(1):1–11

    Article  MathSciNet  Google Scholar 

  8. Le PQ, Dong F, Hirota K (2011) A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quant Inf Process 10(1):63–84

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun B, Iliyasu AM, Le P, Dong F, Hirota K (2011) A multi-channel representation for images on quantum computers using the rgb\(\alpha\) color space. In: IEEE 7th International Symposium on Intelligent, Signal Processing, Malta, Floriana, pp 160–165

  10. Zhang Y, Lu K, Gao Y, Wang M (2013) Neqr: a novel enhanced quantum representation of digital images. Quant Inf Process 12(8):2833–2860

    Article  MathSciNet  MATH  Google Scholar 

  11. Nielsen MA, Chuang IL (2007) Quantum computation and quantum information. Math Struct Comput Sci 17(6):1115–1115

    MathSciNet  Google Scholar 

  12. Jiang N, Wang L (2015) Quantum image scaling using nearest neighbor interpolation. Quant Inf Process 14(5):1559–1571

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang N, Wang J, Mu Y (2015) Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quant Inf Process 14(11):4001–4026

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang Y, Lu K, Gao Y, Xu K (2013) A novel quantum representation for log-polar images. Quant Inf Process 12(9):3103–3126

    Article  MathSciNet  MATH  Google Scholar 

  15. Li HS, Zhu Q, Zhou RG, Li MC, Song L, Ian H (2014) Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf Sci 273:212–232

    Article  Google Scholar 

  16. Li P, Xiao H, Li B (2016) Quantum representation and watermark strategy for color images based on the controlled rotation of qubits. Quant Inf Process 15(11):4415–4440

    Article  MathSciNet  MATH  Google Scholar 

  17. Sang J, Wang S, Li Q (2017) A novel quantum representation of color digital images. Quant Inf Process 16(2):42

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu K, Zhang Y, Lu K, Wang X, Wang X (2018) An optimized quantum representation for color digital images. Quant Inf Process 57(10):2938–2948

    MATH  Google Scholar 

  19. Abdolmaleky M, Naseri M, Batle J, Farouk A, Gong LH (2017) Red-green-blue multi-channel quantum representation of digital images. Opt Int J Light Electron Opt 128:121–132

    Article  Google Scholar 

  20. Jiang N, Hu H, Dang Y, Zhang W (2017) Quantum point cloud and its compression. Int J Theor Phys 56(10):3147–3163

    Article  MATH  Google Scholar 

  21. Li H-S, Chen X, Xia H-Y, Liang Y, Zhou Z (2018) A quantum image representation based on bitplanes. IEEE Access 6:62396–62404

    Article  Google Scholar 

  22. Wang L, Ran Q, Ma J, Yu S, Tan L (2019) Qrci: a new quantum representation model of color digital images. Opt Commun 438:147–158

    Article  Google Scholar 

  23. Sahin E, YILMAZ I (2018) Qrmw: quantum representation of multi wavelength images. Turk J Elect Eng Comput Sci 26(2):768–779

    Article  Google Scholar 

  24. Li P, Liu X (2018) Color image representation model and its application based on an improved frqi. Int J Quant Inf 16(1):1850005

    Article  MATH  Google Scholar 

  25. Khan RA An improved flexible representation of quantum images. Quant Inf Process 18(7)

  26. Wang B, Hao M-Q, Li P-C, Liu Z-B (2019) Quantum representation of indexed images and its applications. Int J Theor Phys 59(2):374–402

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu G, Xu X, Wang X, Wang X (2019) Order-encoded quantum image model and parallel histogram specification. Quant Inf Process 18(11):1–26

    Article  MathSciNet  Google Scholar 

  28. Li HS, Fan P, Xia HY, Peng H, Song S (2019) Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans Circuits Syst I Regular Papers 66(1):341–354

    Article  Google Scholar 

  29. Grigoryan AM, Agaian SS New look on quantum representation of images: fourier transform representation. Quant Inf Process 19(5)

  30. Wang L, Ran Q, Ma J (2020) Double quantum color images encryption scheme based on DQRCI. Multimed Tools Appl 79(9–10):6661–6687

    Article  Google Scholar 

  31. Le PQ, Iliyasu AM, Dong F, Hirota K (2011) Strategies for designing geometric transformations on quantum images. Theoret Comput Sci 412(15):1406–1418

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang J, Jiang N, Wang L (2015) Quantum image translation. Quant Inf Process 14(5):1589–1604

    Article  MathSciNet  MATH  Google Scholar 

  33. Fan P, Zhou RG, Jing N, Li HS (2016) Geometric transformations of multidimensional color images based on nass. Inf Sci 340:191–208

    Article  Google Scholar 

  34. Zhou RG, Tan C, Ian H (2017) Global and local translation designs of quantum image based on frqi. Int J Theor Phys 56(4):1382–1398

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou RG, Liu X, Luo J (2017) Quantum circuit realization of the bilinear interpolation method for gqir. Int J Theor Phys 56(9):2966–2980

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou R-G, Tan C, Fan P (2017) Quantum multidimensional color image scaling using nearest-neighbor interpolation based on the extension of frqi. Mod Phys Lett B 31(17):1750184

    Article  MathSciNet  Google Scholar 

  37. Zhou R-G, Hu W, Fan P, Ian H (2017) Quantum realization of the bilinear interpolation method for neqr. Sci Rep 7:2511

    Article  Google Scholar 

  38. Zhou R-G, Cheng Y, Liu D (2019) Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quant Inf Process 18(9):267

    Article  Google Scholar 

  39. Li P, Liu X (2018) Bilinear interpolation method for quantum images based on quantum fourier transform. Int J Quant Inf 16(4):1850031

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou R, Hu W, Luo G, Liu X, Fan P (2018) Quantum realization of the nearest neighbor value interpolation method for ineqr. Quant Inf Process 17(7):166

    Article  MathSciNet  MATH  Google Scholar 

  41. Yuan S, Mao X, Chen L, Wang X (2016) Improved quantum dilation and erosion operations. Int J Quant Inf 14(7):1085–1564

    Article  MATH  Google Scholar 

  42. Li P, Shi T, Lu A, Wang B (2019) Quantum circuit design for several morphological image processing methods. Quantum Inf Process 18(12):364

    Article  MathSciNet  Google Scholar 

  43. Fan P, Zhou R-G, Hu W, Jing N (2019) Quantum circuit realization of morphological gradient for quantum grayscale image. Int J Theor Phys 58(2):415–435

    Article  MATH  Google Scholar 

  44. Heidari S, Naseri M (2016) A novel lsb based quantum watermarking. Int J Theor Phys 55(10):4205–4218

    Article  MATH  Google Scholar 

  45. Yan F, Iliyasu AM, Sun B, Venegas-Andraca SE, Dong F, Hirota K (2015) A duple watermarking strategy for multi-channel quantum images. Quantum Inf Process 14(5):1675–1692

    Article  MathSciNet  MATH  Google Scholar 

  46. Miyake S, Nakamae K (2016) A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf Process 15(5):1849–1864

    Article  MathSciNet  MATH  Google Scholar 

  47. Li P, Zhao Y, Xiao H, Cao M (2017) An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf Process 16(5):127

    Article  MATH  Google Scholar 

  48. Naseri M, Heidari S, Batle J, Baghfalaki M, Fatahi N, Gheibi R, Farouk A, Habibi A (2017) A new secure quantum watermarking scheme. Opt Int J Light Elect Opt 139:77–86

    Article  Google Scholar 

  49. Qu Z, Cheng Z, Wang M (2017) A robust quantum watermark algorithm based on quantum log-polar images. Int J Theor Phys 56(11):3460–3476

    Article  MathSciNet  MATH  Google Scholar 

  50. Luo G, Zhou R-G, Hu W, Luo J, Liu X, Ian H (2018) Enhanced least significant qubit watermarking scheme for quantum images. Quant Inf Process 17(11):299

    Article  MATH  Google Scholar 

  51. Zhou R-G, Zhou Y, Zhu C, Wei L, Zhang X, Ian H (2018) Quantum watermarking scheme based on ineqr. Int J Theor Phys 57(4):1120–1131

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou R-G, Yang PL, Liu XA, Ian H (2018) Quantum color image watermarking based on fast bit-plane scramble and dual embedded. Int J Quant Inf 16(07):1850060

    Article  MATH  Google Scholar 

  53. Luo G, Zhou R-G, Luo J, Hu W, Zhou Y, Ian H (2019) Adaptive lsb quantum watermarking method using tri-way pixel value differencing. Quant Inf Process 18(2):49

    Article  MathSciNet  MATH  Google Scholar 

  54. Laurel CO, Dong S-H, Cruz-Irisson M (2016) Steganography on quantum pixel images using shannon entropy. Int J Quant Inf 14(5):1650021

    Article  MathSciNet  MATH  Google Scholar 

  55. Luo G, Zhou R-G, Hu W (2019) Efficient quantum steganography scheme using inverted pattern approach. Quant Inf Process 18(7):222

    Article  MathSciNet  Google Scholar 

  56. Jiang N, Zhao N, Wang L (2016) Lsb based quantum image steganography algorithm. Int J Theor Phys 55(1):107–123

    Article  MATH  Google Scholar 

  57. Heidari S, Pourarian MR, Gheibi R, Naseri M, Houshmand M (2017) Quantum red–green–blue image steganography. Int J Quant Inf 15(5):1750039

    Article  MathSciNet  MATH  Google Scholar 

  58. Abd El-Latif AA, Abd-El-Atty B, Hossain M, Rahman M, Alamri A, Gupta B (2018) Efficient quantum information hiding for remote medical image sharing. IEEE Access 6(1):21075–21083

    Article  Google Scholar 

  59. Sahin E, Yilmaz I (2018) A novel quantum steganography algorithm based on lsbq for multi-wavelength quantum images. Quant Inf Process 17(11):319

    Article  MathSciNet  MATH  Google Scholar 

  60. Li P, Liu X (2018) A novel quantum steganography scheme for color images. Int J Quant Inf 16(2):1850020

    Article  MATH  Google Scholar 

  61. Li P, Lu A (2018) Lsb-based steganography using reflected gray code for color quantum images. Int J Theor Phys 57(5):1516–1548

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhou R-G, Luo J, Liu XA, Zhu C, Wei L, Zhang X (2018) A novel quantum image steganography scheme based on lsb. Int J Theor Phys 57(6):1848–1863

    Article  MathSciNet  MATH  Google Scholar 

  63. Qu Z, Cheng Z, Liu W, Wang X (2019) A novel quantum image steganography algorithm based on exploiting modification direction. Mult Tools Appl 78(7):7981–8001

    Article  Google Scholar 

  64. Luo G, Zhou R-G, Mao Y (2019) Two-level information hiding for quantum images using optimal lsb. Quant Inf Process 18(10):297

    Article  MathSciNet  Google Scholar 

  65. Su C-F, Chen C-Y (2020) Information hiding method based on quantum image by using bell states. Quant Inf Process 19(1):36

    Article  MathSciNet  Google Scholar 

  66. Heidari S, Vafaei M, Houshmand M, Tabatabaey-Mashadi N (2018) A dual quantum image scrambling method. Quant Inf Process 18(1):9

    Article  MATH  Google Scholar 

  67. Zhou N, Chen W, Yan X, Wang Y (2018) Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quant Inf Process 17(6):137

    Article  MathSciNet  MATH  Google Scholar 

  68. El-Latif B, Abd-El-Atty Ahmed A, Talha M (2018) Robust encryption of quantum medical images. IEEE Access 6(1):1073–1081

    Article  Google Scholar 

  69. Heidari S, Naseri M, Nagata K (2019) Quantum selective encryption for medical images. Int J Theor Phys 58(11):3908–3926

    Article  MathSciNet  MATH  Google Scholar 

  70. Liu X, Xiao D, Xiang Y (2019) Quantum image encryption using intra and inter bit permutation based on logistic map. IEEE Access 7(1):6937–6946

    Article  Google Scholar 

  71. Li HS, Chen X, Song S, Liao Z, Fang J (2019) A block-based quantum image scrambling for gneqr. IEEE Access 7(1):138233–138243

    Article  Google Scholar 

  72. Li P, Zhao Y (2017) A simple encryption algorithm for quantum color image. Int J Theor Phys 56(6):1961–1982

    Article  MathSciNet  MATH  Google Scholar 

  73. Liu X, Xiao H, Li P, Zhao Y (2018) Design and implementation of color image encryption based on qubit rotation about axis. Chin J Elect 27(4):799–807

    Article  Google Scholar 

  74. Liu X, Xiao D, Liu C (2018) Double quantum image encryption based on arnold transform and qubit random rotation. Entropy 20(11):867

    Article  Google Scholar 

  75. Khan M, Waseem HM (2018) A novel image encryption scheme based on quantum dynamical spinning and rotations. PLoS ONE 13(11):e0206460

    Article  Google Scholar 

  76. Yang Y-G, Xia J, Jia X, Zhang H (2013) Novel image encryption/decryption based on quantum fourier transform and double phase encoding. Quant Inf Process 12(11):3477–3493

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang YG, Jia X, Sun SJ, Pan QX (2014) Quantum cryptographic algorithm for color images using quantum fourier transform and double random-phase encoding. Inf Sci 277:445–457

    Article  Google Scholar 

  78. El-Latif AAA, Li L, Ning W, Qi H, Niu X (2013) A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Sig Process 93(11):2986–3000

    Article  Google Scholar 

  79. Tan R-C, Lei T, Zhao Q-M, Gong L-H, Zhou Z-H (2016) Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform. Int J Theor Phys 55(12):5368–5384

    Article  MATH  Google Scholar 

  80. Gong LH, He XT, Tan RC, Zhou ZH (2018) Single channel quantum color image encryption algorithm based on hsi model and quantum fourier transform. Int J Theor Phys 57(1):59–73

    Article  MATH  Google Scholar 

  81. Zhou NR, Hua TX, Gong LH, Pei DJ, Liao QH (2015) Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quant Inf Process 14(4):1193–1213

    Article  MathSciNet  MATH  Google Scholar 

  82. Hu Y, Xie X, Liu X, Zhou N (2017) Quantum multi-image encryption based on iteration arnold transform with parameters and image correlation decomposition. Int J Theor Phys 56(7):2192–2205

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhou N, Hu Y, Gong L, Li G (2017) Quantum image encryption scheme with iterative generalized arnold transforms and quantum image cycle shift operations. Quant Inf Process 16(6):164

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhou N, Yan X, Liang H, Tao X, Li G (2018) Multi-image encryption scheme based on quantum 3d arnold transform and scaled zhongtang chaotic system. Quant Inf Process 17(12):338

    Article  MATH  Google Scholar 

  85. Luo G-F, Zhou R-G, Hu W-W (2019) Novel quantum secret image-sharing scheme. Chin Phys B 28(4):040302

    Article  Google Scholar 

  86. Liu X, Xiao D, Huang W, Liu C (2019) Quantum block image encryption based on arnold transform and sine chaotification model. IEEE Access 7(1):57188–57199

    Article  Google Scholar 

  87. EL-Latif AAA, Abd-El-Atty B, Venegas-Andraca SE (2020) Controlled alternate quantum walk-based pseudo-random number generator and its application to quantum color image encryption. Phys A Stat Mech Appl 547(1):123869

    Article  MathSciNet  Google Scholar 

  88. Abd-El-Atty B, EL-Latif AAA, Venegas-Andraca SE (2019) An encryption protocol for neqr images based on one-particle quantum walks on a circle. Quant Inf Process 18(9):272

    Article  Google Scholar 

  89. Kadir A, Aili M, Sattar M (2017) Color image encryption scheme using coupled hyper chaotic system with multiple impulse injections. Opt Int J Light Elect Opt 129:231–238

    Article  Google Scholar 

  90. Ran Q, Wang L, Ma J, Tan L, Yu S (2018) A quantum color image encryption scheme based on coupled hyper-chaotic lorenz system with three impulse injections. Quant Inf Process 17(8):188

    Article  MathSciNet  MATH  Google Scholar 

  91. Gong L-H, He X-T, Cheng S, Hua T-X, Zhou N-R (2016) Quantum image encryption algorithm based on quantum image xor operations. Int J Theor Phys 55(7):3234–3250

    Article  MathSciNet  MATH  Google Scholar 

  92. Akhshani A, Akhavan A, Lim SC, Hassan Z (2012) An image encryption scheme based on quantum logistic map. Commun Nonlinear Sci Numer Simul 17(12):4653–4661

    Article  MathSciNet  MATH  Google Scholar 

  93. Cao G, Zhou J, Zhang Y, Jiang Y, Zhang X (2014) Quantum chaotic image encryption with one time running key. Int J Sec Appl 8(4):77–88

    Google Scholar 

  94. Liang HR, Tao XY, Zhou NR (2016) Quantum image encryption based on generalized affine transform and logistic map. Quant Inf Process 15(7):2701–2724

    Article  MathSciNet  MATH  Google Scholar 

  95. Yang YG, Tian J, Lei H, Zhou YH, Shi WM (2016) Novel quantum image encryption using one-dimensional quantum cellular automata. Inf Sci 345(1):257–270

    Article  Google Scholar 

  96. Naseri M, Abdolmaleky M, Laref A, Parandin F, Celik T, Farouk A, Mohamadi M, Jalalian H (2018) A new cryptography algorithm for quantum images. Opt Int J Light Elect Opt 171:947–959

    Article  Google Scholar 

  97. Li H-S, Li C, Chen X, Xia H (2019) Quantum image encryption based on phase-shift transform and quantum haar wavelet packet transform. Mod Phys Lett A 34(26):1950214

    Article  MathSciNet  MATH  Google Scholar 

  98. Liu H, Zhao B, Huang L (2019) A novel quantum image encryption algorithm based on crossover operation and mutation operation. Multimed Tools Appl 78(14):20465–20483

    Article  Google Scholar 

  99. Xu J, Li P, Yang F, Yan H (2019) High intensity image encryption scheme based on quantum logistic chaotic map and complex hyperchaotic system. IEEE Access 7(1):167904–167918

    Article  Google Scholar 

  100. Wang H-Q, Song X-H, Chen L-L, Xie W (2019) A secret sharing scheme for quantum gray and color images based on encryption. Int J Theor Phys 58(5):1626–1650

    Article  MathSciNet  MATH  Google Scholar 

  101. Wang J, Geng YC, Han L, Liu JQ (2019) Quantum image encryption algorithm based on quantum key image. Int J Theor Phys 58(1):308–322

    Article  MATH  Google Scholar 

  102. Liu W, Xu Y, Zhang M, Chen J, Yang C-N (2019) A novel quantum visual secret sharing scheme. IEEE Access 7(1):114374–114384

    Article  Google Scholar 

  103. Jiang N, Dong X, Hu H, Ji Z, Zhang W (2019) Quantum image encryption based on henon mapping. Int J Theor Phys 58(3):979–991

    Article  MathSciNet  MATH  Google Scholar 

  104. Luo Y, Tang S, Liu J, Cao L, Qiu S (2020) Image encryption scheme by combining the hyper-chaotic system with quantum coding. Opt Lasers Eng 124(1):105836

    Article  Google Scholar 

  105. Abdel-Khalek S, Abdel-Azim G, Abo-Eleneen ZA, Obada ASF (2016) New approach to image edge detection based on quantum entropy. J Russ Laser Res 37(2):141–154

    Article  Google Scholar 

  106. Yao XW, Wang H, Liao Z, Chen MC, Pan J, Li J, Zhang K, Lin X, Wang Z, Luo Z, Zheng W, Li J, Zhao M, Peng X, Suter D (2017) Quantum image processing and its application to edge detection: theory and experiment. Phys Rev X 7(3):031041

    Google Scholar 

  107. Fan P, Zhou RG, Hu W, Jing N (2019) Quantum image edge extraction based on classical sobel operator for neqr. Quant Inf Process 18(1):24

    Article  MATH  Google Scholar 

  108. Fan P, Zhou RG, Hu WW, Jing NH (2019) Quantum image edge extraction based on laplacian operator and zero-cross method. Quant Inf Process 18(1):27

    Article  MATH  Google Scholar 

  109. Zhou RG, Liu DQ (2019) Quantum image edge extraction based on improved sobel operator. Int J Theor Phys 58(9):2969–2985

    Article  MathSciNet  MATH  Google Scholar 

  110. Zhou RG, Yu H, Cheng Y, Li FX (2019) Quantum image edge extraction based on improved prewitt operator. Quant Inf Process 18(9):261

    Article  Google Scholar 

  111. Li P, Shi T, Lu A, Wang B (2020) Quantum implementation of classical marr-hildreth edge detection. Quant Inf Process 19(2):64

    Article  MathSciNet  Google Scholar 

  112. Youssry A, El-Rafei A, Elramly S (2015) A quantum mechanics-based framework for image processing and its application to image segmentation. Quant Inf Process 14(10):3613–3638

    Article  MathSciNet  MATH  Google Scholar 

  113. Caraiman S, Manta VI (2015) Image segmentation on a quantum computer. Quant Inf Process 14(5):4693–41715

    Article  MathSciNet  MATH  Google Scholar 

  114. Zhao J, Wang X, Zhang H, Hu J, Jian X (2016) Side scan sonar image segmentation based on neutrosophic set and quantum-behaved particle swarm optimization algorithm. Mar Geophys Res 37(3):229–241

    Article  Google Scholar 

  115. Wang X, Yang C, Xie GS, Liu Z (2018) Image thresholding segmentation on quantum state space. Entropy 20(10):728

    Article  Google Scholar 

  116. Huo F, Liu Y, Wang D, Sun B (2017) Bloch quantum artificial bee colony algorithm and its application in image threshold segmentation. Sig Image Video Process 11(8):1585–1592

    Article  Google Scholar 

  117. Huo F, Sun X, Ren W (2020) Multilevel image threshold segmentation using an improved bloch quantum artificial bee colony algorithm. Multimed Tools Appl 79(3–4):2447–2471

    Article  Google Scholar 

  118. Jiang N, Dang Y, Wang J (2016) Quantum image matching. Quant Inf Process 15(9):3543–3572

    Article  MathSciNet  MATH  Google Scholar 

  119. Iliyasu AM, Yan F, Hirota K (2016) Metric for estimating congruity between quantum images. Entropy 18(10):360

    Article  Google Scholar 

  120. Dang Y, Jiang N, Hu H, Zhang W (2017) Analysis and improvement of the quantum image matching. Quant Inf Process 16(11):269

    Article  MathSciNet  MATH  Google Scholar 

  121. Zhou RG, Liu XA, Zhu C, Wei L, Zhang X, Ian H (2018) Similarity analysis between quantum images. Quant Inf Process 17(6):121

    Article  MathSciNet  MATH  Google Scholar 

  122. GaoFeng Luo, Zhou R.-G., Liu X, Hu W, Luo J (2018) Fuzzy matching based on gray-scale difference for quantum images. Int J Theor Phys 57(8):2447–2460

    Article  MathSciNet  MATH  Google Scholar 

  123. Liu XA, Zhou RG, El-Rafei A, Li FX, Xu RQ (2019) Similarity assessment of quantum images. Quant Inf Process 18(8):244

    Article  Google Scholar 

  124. Yuan S, Mao X, Zhou J, Wang X (2017) Quantum image filtering in the spatial domain. Int J Theor Phys 56(8):2495–2511

    Article  MATH  Google Scholar 

  125. Yuan S, Lu Y, Mao X, Yuan J (2018) Improved quantum image filtering in the spatial domain. Int J Theor Phys 57(3):804–8013

    Article  MathSciNet  MATH  Google Scholar 

  126. Li P, Liu X, Xiao H (2017) Quantum image weighted average filtering in spatial domain. Int J Theor Phys 56(11):3690–3716

    Article  MATH  Google Scholar 

  127. Li P, Xiao H (2018) An improved filtering method for quantum color image in frequency domain. Int J Theor Phys 57(1):258–278

    Article  MATH  Google Scholar 

  128. Li P, Liu X, Xiao H (2018) Quantum image median filtering in the spatial domain. Quant Inf Process 17(3):49

    Article  MathSciNet  MATH  Google Scholar 

  129. Jiang SX, Zhou RG, Hu WW, Li YC (2019) Improved quantum image median filtering in the spatial domain. Int J Theor Phys 58(7):2115–2133

    Article  MathSciNet  MATH  Google Scholar 

  130. Jiang N, Lu X, Hu H, Dang Y, Cai Y (2018) A novel quantum image compression method based on jpeg. Int J Theor Phys 57(3):611–636

    Article  MathSciNet  MATH  Google Scholar 

  131. Li X-Z, Chen W-W, Wang Y-Q (2018) Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int J Theor Phys 57(9):2904–2919

    Article  MATH  Google Scholar 

  132. Pang CY, Zhou RG, Hu BQ, Hu WW, El-Rafei A (2019) Signal and image compression using quantum discrete cosine transform. Inf Sci 473:121–141

    Article  MathSciNet  MATH  Google Scholar 

  133. Pudenz KL, Lidar DA (2013) Quantum adiabatic machine learning. Quant Inf Process 12(5):2027–2070

    Article  MathSciNet  MATH  Google Scholar 

  134. Dunjko V, Taylor JM, Briegel HJ (2016) Quantum-enhanced machine learning. Phys Rev Lett 117(13):130501

    Article  MathSciNet  Google Scholar 

  135. Konar D, Bhattacharyya S, Panigrahi BK, Nakamatsu K (2016) A quantum bi-directional self-organizing neural network (qbdsonn) architecture for binary object extraction from a noisy perspective. Appl Soft Comput J 46(1):731–752

    Article  Google Scholar 

  136. Lau HK, Pooser R, Siopsis G, Weedbrook C (2017) Quantum machine learning over infinite dimensions. Phys Rev Lett 118(8):080501

    Article  MathSciNet  Google Scholar 

  137. Montanaro Ashley (2017) Quantum pattern matching fast on average. Algorithmica 77(1):16–39

    Article  MathSciNet  MATH  Google Scholar 

  138. Benedetti M, Realpe-Gómez J, Perdomo-Ortiz A (2017) Quantum-assisted helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices. Quant Sci Technol 3(3):034007

    Article  Google Scholar 

  139. Patel OP, Tiwari A, Bagade V (2018) Quantum-inspired stacked auto-encoder-based deep neural network algorithm (q-dnn). Arab J Sci Eng 43(12):6929–6943

    Article  Google Scholar 

  140. Liu JG, Wang L (2018) Differentiable learning of quantum circuit born machine. Phys Rev A 98(6):062324

    Article  MathSciNet  Google Scholar 

  141. Dang Y, Jiang N, Hu H, Ji Z, Zhang W (2018) Image classification based on quantum k-nearest-neighbor algorithm. Quant Inf Process 17(9):239

    Article  MATH  Google Scholar 

  142. Piat S, Usher N, Severini S, Herbster M, Mansi T, Mountney P (2018) Image classification with quantum pre-training and auto-encoders. Int J Quant Inf 16(8):1840009

    Article  MATH  Google Scholar 

  143. Potok TE, Schuman C, Young S, Patton R, Spedalieri F, Liu J, Yao KT, Rose G, Chakma G (2018) A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. ACM J Emerg Technol Comput Syst 14(2):19

    Article  Google Scholar 

  144. Wiebe N, Kumar RSS (2018) Hardening quantum machine learning against adversaries. New J Phys 20:123019

    Article  Google Scholar 

  145. Huggins W, Patil P, Mitchell B, Whaley KB, Stoudenmire EM (2019) Towards quantum machine learning with tensor networks. Quant Sci Technol 4(2):024001

    Article  Google Scholar 

  146. Chen SY-C, Yang C-HH, Qi J, Chen P-Y, Ma X, Goan H-S (2020) Variational quantum circuits for deep reinforcement learning. IEEE Access 8:141007–141024

    Article  Google Scholar 

  147. Yang Z, Zhang X (2020) Entanglement-based quantum deep learning. New J Phys 22(3):033041

    Article  MathSciNet  Google Scholar 

  148. Li YC, Zhou RG, Xu RQ, Luo J, Hu WW (2020) A quantum deep convolutional neural network for image recognition. Quant Sci Technol 5(4):044003

    Article  Google Scholar 

  149. Beer K, Bondarenko D, Farrelly T, Osborne TJ, Salzmann R, Scheiermann D, Wolf R (2020) Training deep quantum neural networks. Nat Commun 11(1):808

    Article  Google Scholar 

  150. Yan F, Iliyasu AM, Yang H, Hirota K (2016) Strategy for quantum image stabilization. Sci China Inf Sci 59(5):052102

    Article  Google Scholar 

  151. Ruan Y, Chen H, Liu Z, Tan J (2016) Quantum image with high retrieval performance. Quant Inf Process 15(2):637–650

    Article  MathSciNet  MATH  Google Scholar 

  152. Chapeau-Blondeau F, Belin E (2016) Quantum image coding with a reference-frame-independent scheme. Quant Inf Process 15(7):2685–2700

    Article  MathSciNet  MATH  Google Scholar 

  153. Jiang N, Dang Y, Zhao N (2016) Quantum image location. Int J Theor Phys 55(10):4501–4512

    Article  MATH  Google Scholar 

  154. Kong W, Lei Y, Ren M (2016) Fusion method for infrared and visible images based on improved quantum theory model. Neurocomputing 212(SI):12–21

    Article  Google Scholar 

  155. Yang Y-G, Xu P, Yang R, Zhou Y-H, Shi W-M (2016) Quantum hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci Rep 6:19788

    Article  Google Scholar 

  156. Naseri M, Heidari S, Gheibi R, Gong L-H, Ahmadzadeh Rajii M, Sadri A (2017) A novel quantum binary images thinning algorithm: a quantum version of the hilditch’s algorithm. Optik 131:678–686

    Article  Google Scholar 

  157. Liu K, Zhang Y, Lu K, Wang X (2017) Restoration for noise removal in quantum images. Int J Theor Phys 56(9):2867–2886

    Article  MathSciNet  MATH  Google Scholar 

  158. Du S, Qiu D, Gruska J, Mateus P (2019) Synthesis of quantum images using phase rotation. Quant Inf Process 18(9):286

    Article  MathSciNet  Google Scholar 

  159. Xia H, Li H, Zhang H, Liang Y, Xin J (2019) Novel multi-bit quantum comparators and their application in image binarization. Quant Inf Process 18(7):229

    Article  MathSciNet  Google Scholar 

  160. Liu X, Xiao D (2019) Multimodality image fusion based on quantum wavelet transform and sum-modified-laplacian rule. Int J Theor Phys 58(3):734–744

    Article  MathSciNet  MATH  Google Scholar 

  161. Heidari S, Abutalib MM, Alkhambashi M, Farouk A, Naseri M (2019) A new general model for quantum image histogram (qih). Quant Inf Process 18(6):175

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (Grant No. 61201421), National cryosphere desert data center (grant No.E01Z7902 ) and Capability improvement project for cryosphere desert data center of the Chinese Academy of Sciences(Grant No. Y9298302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xu, M. & Zhang, Y. Review of Quantum Image Processing. Arch Computat Methods Eng 29, 737–761 (2022). https://doi.org/10.1007/s11831-021-09599-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09599-2

Navigation