Skip to main content

Advertisement

Log in

Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Digital pathology represents a major evolution in modern medicine. Pathological examinations constitute the standard in medical protocols and the law, and call for specific action in the diagnostic process. Advances in digital pathology have made it possible for image analysis to take advantage of the information analysis from hematoxylin and eosin stained images. In spite of concern, it is recorded in the majority of breast cancer datasets, which makes research more difficult in prediction. The objective of our work is to evaluate the performance of the machine learning and deep learning techniques applied to predict breast cancer recurrence rates. This study starts with an overview of tissue preparation, analysis of stained images, and a prognosis for cancer patients. The high accuracy results recorded are compromised in terms of sensitivity and specificity. The missing loss function and class imbalance problems are rarely addressed, and most often the chosen performance measures are context-inappropriate. The challenge that presents itself is to analyse whole slide images for the content imaging required with diagnostic biomarkers, and prognosis support backed by digital pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdolhoseini M, Kluge MG, Walker FR, Johnson SJ (2019) Segmentation of heavily clustered nuclei from histopathological images. Sci Rep 9(1):4551

    Google Scholar 

  2. Albayrak A, Bilgin G (2018) Automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms. Med Biol Eng Comput 57(3):653–665

    Google Scholar 

  3. Ali S, Madabhushi A (2012) An integrated region, boundary, shape-based active contour for multiple object overlap resolution in histological imagery. IEEE Trans Med Imaging 31(7):1448–1460

    Google Scholar 

  4. Angarita FA, Nadler A, Zerhouni S, Escallon J (2014) Perioperative measures to optimize margin clearance in breast conserving surgery. Surg Oncol 23(2):81–91

    Google Scholar 

  5. Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polónia A, Campilho A (2017) Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6):e0177544

    Google Scholar 

  6. Attia SJ, Blackledge JM, Abood ZM, Agool IR (2012) Diagnosis of breast cancer by optical image analysis

  7. Baheerathan S, Albregtsen F, Danielsen HE (1999) New texture features based on the complexity curve. Pattern Recognit 32(4):605–618

    Google Scholar 

  8. Bejnordi BE, Litjens G, Hermsen M, Karssemeijer N, van der Laak JA (2015) A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images. In: Medical imaging 2015: digital pathology, International Society for Optics and Photonics, vol 9420, p 94200H

  9. Bhardwaj A, Tiwari A (2015) Breast cancer diagnosis using genetically optimized neural network model. Exp Syst Appl 42(10):4611–4620

    Google Scholar 

  10. Bhardwaj A, Tiwari A, Bhardwaj H, Bhardwaj A (2016) A genetically optimized neural network model for multi-class classification. Exp Syst Appl 60:211–221

    Google Scholar 

  11. Bianconi F, González E, Fernández A (2015) Dominant local binary patterns for texture classification: labelled or unlabelled? Pattern Recognit Lett 65:8–14

    Google Scholar 

  12. Bilgin CC, Ray S, Baydil B, Daley WP, Larsen M, Yener B (2012) Multiscale feature analysis of salivary gland branching morphogenesis. PLoS One 7(3):e32906

    Google Scholar 

  13. Boucheron LE, Manjunath B, Harvey NR (2010) Use of imperfectly segmented nuclei in the classification of histopathology images of breast cancer. In: 2010 IEEE international conference on Acoustics Speech and Signal Processing (ICASSP), IEEE, pp 666–669

  14. Brachtel E, Yagi Y (2012) Digital imaging in pathology-current applications and challenges. J Biophoton 5(4):327–335

    Google Scholar 

  15. Bray F, McCarron P, Parkin DM (2004) The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res 6(6):229

    Google Scholar 

  16. Casiraghi E, Huber V, Frasca M, Cossa M, Tozzi M, Rivoltini L, Leone BE, Villa A, Vergani B (2018) A novel computational method for automatic segmentation, quantification and comparative analysis of immunohistochemically labeled tissue sections. BMC Bioinform 19(10):281

    Google Scholar 

  17. Chaabane SB, Fnaiech F (2014) Color edges extraction using statistical features and automatic threshold technique: application to the breast cancer cells. BioMed Eng OnLine 13(1):4

    Google Scholar 

  18. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28

    Google Scholar 

  19. Chang H, Han J, Zhong C, Snijders AM, Mao JH (2017) Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal Mach Intell 40(5):1182–1194

    Google Scholar 

  20. Chen H, Dou Q, Wang X, Qin J, Heng PA (2016) Mitosis detection in breast cancer histology images via deep cascaded networks. In: Thirtieth AAAI conference on artificial intelligence

  21. Chen K, Zhang N, Powers L, Roveda J (2019) Cell nuclei detection and segmentation for computational pathology using deep learning. In: 2019 Spring Simulation Conference, SpringSim 2019 [8732905]

  22. Das DK, Dutta PK (2019) Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches. Comput Biol Med 104:29–42

    Google Scholar 

  23. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3):131–156

    Google Scholar 

  24. Demir C, Yener B (2005) Automated cancer diagnosis based on histopathological images: a systematic survey. Rensselaer Polytechnic Institute, Tech Rep, Troy

    Google Scholar 

  25. Di Cataldo S, Ficarra E, Acquaviva A, Macii E (2010) Automated segmentation of tissue images for computerized ihc analysis. Comput Methods Programs Biomed 100(1):1–15

    Google Scholar 

  26. Dimopoulos S, Mayer CE, Rudolf F, Stelling J (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30(18):2644–2651

    Google Scholar 

  27. Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3d deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54

    Google Scholar 

  28. Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan MN (2011) Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng 58(7):1977–1984

    Google Scholar 

  29. Ergin S, Kilinc O (2014) A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput Biol Med 51:171–182

    Google Scholar 

  30. Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the International Conference on Machine Learning, ACM New York, USA, vol 28

  31. Feng Y, Zhang L, Yi Z (2018) Breast cancer cell nuclei classification in histopathology images using deep neural networks. Int J Comput Assist Radiol Surg 13(2):179–191

    Google Scholar 

  32. Fox H (2000) Is h&e morphology coming to an end? J Clin Pathol 53(1):38–40

    Google Scholar 

  33. Hai-Ying Z, Zheng-guang X, Hong P (2009) A texture feature extraction based on two fractal dimensions for content based image retrieval. In: 2009 WRI World Congress on computer science and information engineering, IEEE, vol 3, pp 117–121

  34. Hamad A, Ersoy I, Bunyak F (2018) Improving nuclei classification performance in h&e stained tissue images using fully convolutional regression network and convolutional neural network. In: 2018 IEEE applied imagery pattern recognition workshop (AIPR), IEEE, pp 1–6

  35. Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):4172

    Google Scholar 

  36. Haralick RM, Shanmugam K, Dinstein I et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Google Scholar 

  37. He X, Liao Q (2008) A novel shape prior based segmentation of touching or overlapping ellipse-like nuclei. In: Medical imaging 2008: image processing, international society for optics and photonics, vol 6914, p 69141T

  38. Hoo-Chang S, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285

    Google Scholar 

  39. Hou L, Nguyen V, Kanevsky AB, Samaras D, Kurc TM, Zhao T, Gupta RR, Gao Y, Chen W, Foran D et al (2019) Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit 86:188–200

    Google Scholar 

  40. Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q (2018) Deep learning for image-based cancer detection and diagnosis-a survey. Pattern Recognit

  41. Huang CH, Racoceanu D (2018) exclusive autoencoder (xae) for nucleus detection and classification on hematoxylin and eosin (h&e) stained histopathological images. arXiv preprint arXiv:181111243

  42. Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng 7:97–114

    Google Scholar 

  43. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inform 7

  44. Janowczyk A, Basavanhally A, Madabhushi A (2017) Stain normalization using sparse autoencoders (stanosa): Application to digital pathology. Comput Med Imaging Graph 57:50–61

    Google Scholar 

  45. Janowczyk A, Doyle S, Gilmore H, Madabhushi A (2018) A resolution adaptive deep hierarchical (radhical) learning scheme applied to nuclear segmentation of digital pathology images. Comput Methods Biomech Biomed Eng Imaging Visual 6(3):270–276

    Google Scholar 

  46. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Prev Biomark 19(8):1893–1907

    Google Scholar 

  47. Jia Z, Huang X, Eric I, Chang C, Xu Y (2017) Constrained deep weak supervision for histopathology image segmentation. IEEE Trans Med Imaging 36(11):2376–2388

    Google Scholar 

  48. Jung C, Kim C, Chae SW, Oh S (2010) Unsupervised segmentation of overlapped nuclei using bayesian classification. IEEE Trans Biomed Eng 57(12):2825–2832

    Google Scholar 

  49. Kalakech M, Porebski A, Vandenbroucke N, Hamad D (2018) Unsupervised local binary pattern histogram selection scores for color texture classification. J Imaging 4(10):112

    Google Scholar 

  50. Karabatak M (2015) A new classifier for breast cancer detection based on naïve bayesian. Measurement 72:32–36

    Google Scholar 

  51. Kashif MN, Raza SEA, Sirinukunwattana K, Arif M, Rajpoot N (2016) Handcrafted features with convolutional neural networks for detection of tumor cells in histology images. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 1029–1032

  52. Kaymak S, Helwan A, Uzun D (2017) Breast cancer image classification using artificial neural networks. Proc Comput Sci 120:126–131

    Google Scholar 

  53. Kazmar T, Šmíd M, Fuchs M, Luber B, Mattes J (2010) Learning cellular texture features in microscopic cancer cell images for automated cell-detection. In: Engineering in Medicine and Biology Society (EMBC), 2010 annual international conference of the IEEE, IEEE, pp 49–52

  54. Khan S, Islam N, Jan Z, Din IU, Rodrigues JJC (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett 125:1–6

    Google Scholar 

  55. Kolarevic D, Vujasinovic T, Kanjer K, Milovanovic J, Todorovic -Rakovic N, Nikolic-Vukosavljevic D, Radulovic M (2018) Effects of different preprocessing algorithms on the prognostic value of breast tumor microscopic images. J Microsc 270(1):17–26

    Google Scholar 

  56. Komura D, Ishikawa S (2019) Machine learning approaches for pathologic diagnosis. Virchows Archiv pp 1–8

  57. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17

    Google Scholar 

  58. Li C, Xue D, Hu Z, Chen H, Yao Y, Zhang Y, Li M, Wang Q, Xu N (2019) A survey for breast histopathology image analysis using classical and deep neural networks. In: International conference on information technologies in biomedicine, Springer, pp 222–233

  59. Li Y, Zeng X, Han L, Wang P (2010) Two coding based adaptive parallel co-genetic algorithm with double agents structure. Eng Appl Artif Intell 23(4):526–542

    Google Scholar 

  60. Liao S, Law MW, Chung AC (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    MathSciNet  MATH  Google Scholar 

  61. Masood A, Al-Jumaily A (2015) Semi advised svm with adaptive differential evolution based feature selection for skin cancer diagnosis. J Comput Commun 3:184–190

    Google Scholar 

  62. McKenna SJ, Amaral T, Akbar S, Jordan L, Thompson A (2013) Immunohistochemical analysis of breast tissue microarray images using contextual classifiers. J Pathol Inform 4(Suppl):

  63. Naylor P, Laé M, Reyal F, Walter T (2017) Nuclei segmentation in histopathology images using deep neural networks. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), IEEE, pp 933–936

  64. Nielsen B, Albregtsen F, Danielsen HE (2012) Automatic segmentation of cell nuclei in feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry Part A 81(7):588–601

    Google Scholar 

  65. Niwas SI, Palanisamy P, Sujathan K (2010) Complex wavelet based texture features of cancer cytology images. In: 2010 International Conference on Industrial and Information Systems (ICIIS), IEEE, pp 348–353

  66. Öztürk Ş, Akdemir B (2018) A convolutional neural network model for semantic segmentation of mitotic events in microscopy images. Neural Comput Appl 1–10

  67. Paeng K, Hwang S, Park S, Kim M (2017) A unified framework for tumor proliferation score prediction in breast histopathology. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 231–239

  68. Pan X, Li L, Yang H, Liu Z, Yang J, Zhao L, Fan Y (2017) Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks. Neurocomputing 229:88–99

    Google Scholar 

  69. Pan X, Yang D, Li L, Liu Z, Yang H, Cao Z, He Y, Ma Z, Chen Y (2018) Cell detection in pathology and microscopy images with multi-scale fully convolutional neural networks. World Wide Web 21(6):1721–1743

    Google Scholar 

  70. Pantanowitz L, Valenstein PN, Evans AJ, Kaplan KJ, Pfeifer JD, Wilbur DC, Collins LC, Colgan TJ (2011) Review of the current state of whole slide imaging in pathology. J Pathol Inform 2

  71. Pezoa R, Salinas L, Torres C, Härtel S, Maureira-Fredes C, Arce P (2016) Segmentation of her2 protein overexpression in immunohistochemically stained breast cancer images using support vector machines. In: Journal of physics: conference series, IOP publishing, vol 762, p 012050

  72. Phinyomark A, Jitaree S, Phukpattaranont P, Boonyapiphat P (2012) Texture analysis of breast cancer cells in microscopic images using critical exponent analysis method. Proc Eng 32:232–238

    Google Scholar 

  73. Pourakpour F, Ghassemian H (2015) Automated mitosis detection based on combination of effective textural and morphological features from breast cancer histology slide images. In: 2015 22nd Iranian conference on biomedical engineering (ICBME), IEEE, pp 269–274

  74. Prvulović I, Kardum-Skelin I, Susterčić D, Jakić-Razumović J, Manojlović S (2010) Morphometry of tumor cells in different grades and types of breast cancer. Colleg Antropolog 34(1):99–103

    Google Scholar 

  75. Ren S, He K, Girshick R, Sun J (2017) Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 6:1137–1149

    Google Scholar 

  76. Romo-Bucheli D, Janowczyk A, Gilmore H, Romero E, Madabhushi A (2016) Automated tubule nuclei quantification and correlation with oncotype dx risk categories in er+ breast cancer whole slide images. Sci Rep 6:32706

    Google Scholar 

  77. Roy K, Banik D, Bhattacharjee D, Nasipuri M (2019) Patch-based system for classification of breast histology images using deep learning. Comput Med Imaging Graph 71:90–103

    Google Scholar 

  78. Saha M, Chakraborty C, Arun I, Ahmed R, Chatterjee S (2017) An advanced deep learning approach for ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci Rep 7(1):3213

    Google Scholar 

  79. Sathish D, Kamath S, Prasad K, Kadavigere R, Martis RJ (2017) Asymmetry analysis of breast thermograms using automated segmentation and texture features. Sig Image Video Process 11(4):745–752

    Google Scholar 

  80. Selvi C, Suganthi M (2018) A novel enhanced gray scale adaptive method for prediction of breast cancer. J Med Syst 42(11):221

    Google Scholar 

  81. Sethi A, Sha L, Vahadane AR, Deaton RJ, Kumar N, Macias V, Gann PH (2016) Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images. J Pathol Inform 7

  82. Shahari S, Wakankar A (2015) Color analysis of thermograms for breast cancer detection. In: 2015 International conference on industrial instrumentation and control (ICIC), IEEE, pp 1577–1581

  83. Singh BK, Verma K, Thoke A (2015) Investigations on impact of feature normalization techniques on classifier’s performance in breast tumor classification. Int J Comput Appl 116(19)

  84. Sirinukunwattana K, e Ahmed Raza S, Tsang YW, Snead DR, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206

    Google Scholar 

  85. Sonawane MR, Agrawal DG (2013) Texture classification with feature analysis using wavelet approach: a review

  86. Song Y, Zhang L, Chen S, Ni D, Lei B, Wang T (2015) Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Trans Biomed Eng 62(10):2421–2433

    Google Scholar 

  87. Song Y, Tan EL, Jiang X, Cheng JZ, Ni D, Chen S, Lei B, Wang T (2016) Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging 36(1):288–300

    Google Scholar 

  88. Spanhol FA, Oliveira LS, Cavalin PR, Petitjean C, Heutte L (2017) Deep features for breast cancer histopathological image classification. In: 2017 IEEE international conference on systems, man, and cybernetics (SMC), IEEE, pp 1868–1873

  89. Stathonikos N, Veta M, Huisman A, van Diest PJ (2013) Going fully digital: Perspective of a dutch academic pathology lab. J Pathol Inform 4

  90. Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L (2015) Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 383–390

  91. Sudharshan P, Petitjean C, Spanhol F, Oliveira LE, Heutte L, Honeine P (2019) Multiple instance learning for histopathological breast cancer image classification. Exp Syst Appl 117:103–111

    Google Scholar 

  92. Sukumar P, Gnanamurthy R (2016) Computer aided detection of cervical cancer using pap smear images based on adaptive neuro fuzzy inference system classifier. J Med Imaging Health Inform 6(2):312–319

    Google Scholar 

  93. Tang JR, Isa NAM, Ch’ng ES (2015) A fuzzy-c-means-clustering approach: Quantifying chromatin pattern of non-neoplastic cervical squamous cells. PloS One 10(11):e0142830

    Google Scholar 

  94. Tosta TAA, Neves LA, do Nascimento MZ (2017) Segmentation methods of h&e-stained histological images of lymphoma: a review. Inform Med Unlocked 9:35–43

    Google Scholar 

  95. Veta M, Van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in h&e stained breast cancer histopathology images. PloS One 8(7):e70221

    Google Scholar 

  96. Veta M, Pluim JP, Van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: A review. IEEE Trans Biomed Eng 61(5):1400–1411

    Google Scholar 

  97. Veta M, Van Diest PJ, Pluim JP (2016) Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 632–639

  98. Vink JP, Van Leeuwen M, Van Deurzen C, De Haan G (2013) Efficient nucleus detector in histopathology images. J Microsc 249(2):124–135

    Google Scholar 

  99. Vo DM, Nguyen NQ, Lee SW (2019) Classification of breast cancer histology images using incremental boosting convolution networks. Inf Sci 482:123–138

    Google Scholar 

  100. Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016a) Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:160605718

  101. Wang EK, Zhang X, Pan L, Cheng C, Dimitrakopoulou-Strauss A, Li Y, Zhe N (2019) Multi-path dilated residual network for nuclei segmentation and detection. Cells 8(5):499

    Google Scholar 

  102. Wang J, Zhao P, Hoi SC, Jin R (2014) Online feature selection and its applications. IEEE Trans Knowl Data Eng 26(3):698–710

    Google Scholar 

  103. Wang LW, Qu AP, Yuan JP, Chen C, Sun SR, Hu MB, Liu J, Li Y (2013) Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value. PLoS One 8(12):e82314

    Google Scholar 

  104. Wang P, Hu X, Li Y, Liu Q, Zhu X (2016b) Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Process 122:1–13

    Google Scholar 

  105. Xie W, Noble JA, Zisserman A (2018) Microscopy cell counting and detection with fully convolutional regression networks. Comput Methods Biomech Biomed Eng Imaging Visual 6(3):283–292

    Google Scholar 

  106. Xing F, Xie Y, Yang L (2015) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 35(2):550–566

    Google Scholar 

  107. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:150500853

  108. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A (2016) Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images. IEEE Trans Med Imaging 35(1):119–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Krithiga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithiga, R., Geetha, P. Breast Cancer Detection, Segmentation and Classification on Histopathology Images Analysis: A Systematic Review. Arch Computat Methods Eng 28, 2607–2619 (2021). https://doi.org/10.1007/s11831-020-09470-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09470-w

Navigation