Skip to main content
Log in

A Review of Domain Decomposition Methods for Simulation of Fluid Flows: Concepts, Algorithms, and Applications

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Domain decomposition (DD) is a powerful approach to numerically solve partial differential equations, and it has become popular and indispensable in simulations of fluid flows, especially those that arise from models of the real world that require large-scale, parallel computation. Domain decomposition methods (DDMs) were originally introduced for problems on “complex” geometries, and they are now widely used as parallel algebraic solvers and preconditioners for solutions of various problems. Research in theory and practical application of DDMs for fluid flows has seen considerable progress with a substantial amount of work published in the past forty years. This paper makes a comprehensive review of the development and current status of the DDMs, and, for both beginners and experts in this area, it surveys the concepts, algorithms, and the utilization of DD to simulate compressible flows, incompressible flows, and flows in various applications. Along with numerical examples, difficulties are highlighted with potential methods to overcome them, and topics for future study are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. International conference on computational fluid dynamics. http://www.iccfd.org

  2. International conference on domain decomposition methods. http://www.ddm.org/conferences.html

  3. Ababou R, Alastal K, Astruc D, AlBitar A, Marcoux M, Wang Y (2015) Model coupling for environmental flows, with applications in hydrology and coastal hydrodynamics. Houille Blanche-Revue Internationale De L Eau 2:9–24

    Google Scholar 

  4. Agullo E, Giraud L, Poirel L (2016) Robust coarse spaces for abstract Schwarz preconditioners via generalized eigenproblems. Research report RR-8978, INRIA Bordeaux. https://hal.inria.fr/hal-01399203

  5. Ahn SJ, Kwon OJ (2013) Numerical investigation of cavitating flows for marine propulsors using an unstructured mesh technique. Int J Heat and Fluid Flow 43:259–267

    Google Scholar 

  6. Ahuja V, Hosangadi A, Arunajatesan S (2001) Simulations of cavitating flows using hybrid unstructured meshes. J Fluids Eng 123:331–340

    Google Scholar 

  7. Ahusborde E, Glockner S (2010) An implicit method for the Navier–Stokes equations on overlapping block-structured grids. Int J Numer Methods Fluids 62:784–801

    MathSciNet  MATH  Google Scholar 

  8. Alaia A, Puppo G (2012) A hybrid method for hydrodynamic–kinetic flow—Part II—coupling of hydrodynamic and kinetic models. J Comput Phys 231:5217–5242

    MathSciNet  MATH  Google Scholar 

  9. Alcin H, Koobus B, Allain O, Dervieux A (2013) Efficiency and scalability of a two-level Schwarz algorithm for incompressible and compressible flows. Int J Numer Methods Fluids 72:69–89

    MathSciNet  MATH  Google Scholar 

  10. Amaral S, Allaire D, Willcox K (2014) A decomposition-based approach to uncertainty analysis of feed-forward multicomponent systems. Int J Numer Methods Eng 100:982–1005

    MathSciNet  MATH  Google Scholar 

  11. Arbogast T, Xiao H (2015) Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems. Comput Methods Appl Mech Eng 292:221–242

    MathSciNet  MATH  Google Scholar 

  12. Artigues A, Houzeaux G (2015) Parallel mesh partitioning in Alya. Technical report 202, PRACE white paper

  13. Ayala O, Parishani H, Chen L, Rosa B, Wang L (2014) DNS of hydrodynamically interacting droplets in turbulent clouds: parallel implementation and scalability analysis using 2D domain decomposition. Comput Phys Commun 185:3269–3290

    Google Scholar 

  14. Badia S, Martín AF, Principe J (2013) Enhanced balancing Neumann–Neumann preconditioning in computational fluid and solid mechanics. Int J Numer Methdods Eng 96(4):203–230

    MathSciNet  MATH  Google Scholar 

  15. Badia S, Martí A, Principe J (2016) Principe: multilevel balancing domain decomposition at extreme scales. SIAM J Sci Comput 38(1):C22–C52

    MATH  Google Scholar 

  16. Badia S, Martín A, Principe J (2013) Implementation and scalability analysis of balancing domain decomposition methods. Arch Comput Methods Eng 20(3):239–262

    MathSciNet  MATH  Google Scholar 

  17. Badia S, Martín A, Principe J (2014) A highly scalable parallel implementation of balancing domain decomposition by constraints. SIAM J Sci Comput 36(2):C190–C218

    MathSciNet  MATH  Google Scholar 

  18. Badia S, Quaini A, Quarteroni A (2009) Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J Comput Phys 228:7986–8014

    MathSciNet  MATH  Google Scholar 

  19. Baiges J, Codina R, Idelsohn S (2013) A domain decomposition strategy for reduced order models. Application to the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 267:23–42

    MathSciNet  MATH  Google Scholar 

  20. Bank R, Deotte C (2017) The influence of partitioning on domain decomposition convergence rates. Comput Vis Sci 18:53–63

    MathSciNet  MATH  Google Scholar 

  21. Barnes ER (1982) An algorithm for partitioning the nodes of a graph. SIAM J Matrix Anal Appl 3:541–550

    MathSciNet  MATH  Google Scholar 

  22. Beckert A (2000) Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerosp Sci Technol 4:13–22

    MATH  Google Scholar 

  23. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261–274

    MATH  Google Scholar 

  24. Behrens J, Rakowsky N, Hiller W, Handorf D, Lauter M, Papke J, Dethloff K (2005) amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model 10:171–183

    Google Scholar 

  25. Belliard M, Grandotto M (2002) Computation of two-phase flow in steam generator using domain decomposition and local zoom methods. Nucl Eng Des 213:223–239

    Google Scholar 

  26. Benek JA, Steger JL, Dougherly FC (1983) A flexible grid embedding technique with application to the Euler equations. Technical report AIAA paper 83-1944

  27. Benhamadouche S, Fournier Y, Billard F, Jarrin N, Prosser R (2006) RANS/LES coupling in the industrial CFD tool Code\(\_\) saturne: implementation and first results. In: Hanjalić YNK, Jakirlic S (eds) Proceedings of the international symposium on turbulence, heat and mass transfer, Dubrovnik, Croatia

  28. Benocci C, Giammanco R, Manna M, Simons E (2005) Large eddy simulation of turbulent flows via domain decomposition techniques. Part 2: applications. Int J Numer Methods Fluids 48:397–422

    MATH  Google Scholar 

  29. Benzi M, Meyer CD, Tuma M (1996) A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J Sci Comput 17:1135–1149

    MathSciNet  MATH  Google Scholar 

  30. Berger M, Bokhari S (1987) A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans Comput 36:570–580

    Google Scholar 

  31. Berger M, Colella P (1989) Local adaptive mesh refinement for shock hydrodynamics. J Comput Phys 82(1):64–84

    MATH  Google Scholar 

  32. Berger MJ (1987) On conservation at grid interfaces. SIAM J Numer Anal 24:967–984

    MathSciNet  MATH  Google Scholar 

  33. Bergmann M, Ferrero A, Iollo A, Lombardi E, Scardigli A, Telib H (2018) A zonal Galerkin-free POD model for incompressible flows. J Comput Phys 352:301–325

    MathSciNet  MATH  Google Scholar 

  34. Bernardi C, Maday Y, Rapetti F (2005) Basics and some applications of the mortar element method. GAMM-Mitteilungen 28(2):97–123

    MathSciNet  MATH  Google Scholar 

  35. Bian X, Li Z, Karniadakis G (2015) Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition. J Comput Phys 297:132–155

    MathSciNet  MATH  Google Scholar 

  36. Bird RB, Stewart WE (2007) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  37. Bjrhus M (1995) On domain decomposition, subdomain iteration and waveform relaxation. PhD thesis, University of Trondheim, Norway

  38. Blanco P, Feijóo R, Urquiza S (2007) A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput Methods Appl Mech Eng 196:4391–4410

    MathSciNet  MATH  Google Scholar 

  39. Blayo E (2016) About interface conditions for coupling hydrostatic and nonhydrostatic Navier–Stokes flows. Discrete Contin Dyn Syst Ser S 9(5):1565–1574

    MathSciNet  MATH  Google Scholar 

  40. Blayo E, Cherel D, Rousseau A (2015) Towards optimized Schwarz methods for the Navier–Stokes equations. J Sci Comput 66(1):275–295

    MathSciNet  MATH  Google Scholar 

  41. de Boer A, van Zuijlen AH, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Eng 196:1515–1525

    MathSciNet  MATH  Google Scholar 

  42. Bogers J, Kumar K, Notten PHL, Oudenhoven JFM, Pop I (2013) A multiscale domain decomposition approach for chemical vapor deposition. J Comput Appl Math 246:65–73

    MathSciNet  MATH  Google Scholar 

  43. Borg MK, Lockerby DA, Reese JM (2013) A multiscale method for micro/nano flows of high aspect ratio. J Comput Phys 233:400–413

    Google Scholar 

  44. Borrell R, Cajas J, Mira D, Taha A, Koric S, Vázquez M, Houzeaux G (2018) Parallel mesh partitioning based on space filling curves. Comput Fluids 173:264–272

    MathSciNet  MATH  Google Scholar 

  45. Buis S, Piacentini A, Déclat D (2006) PALM: a computational framework for assembling high-performance computing applications. Concur Comput Pract Exp 18(2):231–245

    Google Scholar 

  46. Bungartz HJ, Lindner F, Gatzhammer B, Mehl M, Scheufele K, Shukaev A, Uekermann B (2016) preCICE - A fully parallel library for multi-physics surface coupling. Comput Fluids 141:250–258

    MathSciNet  MATH  Google Scholar 

  47. Buning PG, Chiu IT, Obayashi S, Rizk YM, Steger JL (1988) Numerical simulation of the integrated space shuttle vehicle in ascent. Technical report AIAA paper 88-4359

  48. Buning PG, Gomez RJ (2010) 20+ years of Chimera grid development for the space shuttle. In: 10th symposium on overset composite grid and solution technology, September 20–23. Moffett Field, CA

  49. Burton TM, Eaton JK (2002) Analysis of a fractional-step method on overset grids. J Comput Phys 177:336–364

    MATH  Google Scholar 

  50. Bustamante CA, Power H, Florez WF (2005) Schwarz alternating domain decomposition approach for the solution of two-dimensional Navier–Stokes flow problems by the method of approximate particular solutions. Numer Methods Partial Differ Equ 31(3):777–797

    MathSciNet  MATH  Google Scholar 

  51. Cadafalch J, Oliva A, Perez-Segarra CD, Costa M, Salom J (2010) Comparative study of conservative and nonconservative interpolation schemes for the domain decomposition method on laminar incompressible flows. Numer Heat Transf Part B Fundam Int J Comput Methodol 35(1):65–84

    Google Scholar 

  52. Cai XC (1993) An optimal two-level overlapping domain decomposition method for elliptic problems in two and three dimensions. SIAM J Sci Comput 14:239–247

    MathSciNet  MATH  Google Scholar 

  53. Cai XC, Dryja D, Sarkis M (2006) Overlapping nonmatching grid mortar element methods for elliptic problems. SIAM J Numer Anal 36(2):581–606

    MathSciNet  MATH  Google Scholar 

  54. Cai XC, Keyes D (2002) Nonlinearly preconditioned inexact Newton algorithms. SIAM J Sci Comput 24:183–200

    MathSciNet  MATH  Google Scholar 

  55. Cai XC, Sarkis M (1999) A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput 21:239–247

    MathSciNet  MATH  Google Scholar 

  56. Cajas JC, Houzeaux G, Vázquez M, Garcia-Gasulla M, Casoni E, Calmet H, Artigues A, Borrell R, Lehmkuhl O, Pastrana D, Yanez DY, Pons R, Martorell J (2018) Fluid structure interaction based on HPC multi-code coupling. SIAM J Sci Comput 40(6):C677–C703

    MATH  Google Scholar 

  57. Calafell J, Triasa F, Lehmkuhl O, Oliva A (2019) A time-average filtering technique to improve the efficiency of two-layer wall models for large eddy simulation in complex geometries. Comput Fluids 188:44–59

    MathSciNet  MATH  Google Scholar 

  58. Cambier L, Ghazzi W, Veuillot JP, Viviand H (1981) Une approche par domaines pour le calcul d’ecoulements compressibles. Compressibles Cinquierae Colloque International sur les Methodes de Calcul Sclentifique et Technique, 14–18 Decembre, INRIA, Versailles, France

  59. Cecchi MM, Pica A, Secco E (1998) A projection method for shallow water equations. Int J Numer Methods Fluids 27:81–95

    MathSciNet  MATH  Google Scholar 

  60. Chan T, Hou T, Lions P (1991) Geometry related convergence results for domain decomposition algorithms. SIAM J Numer Anal 28(2):378–391

    MathSciNet  MATH  Google Scholar 

  61. Chan TF, Mathew TP (1994) Domain decomposition algorithms. Acta Numer 3:61–143

    MathSciNet  MATH  Google Scholar 

  62. Chan WM, Gomez III R, Rogers SE, Buning P (2002) Best practices in overset grid generation. Technical report AIAA-2002-3191

  63. Chao J, Haselbacher H, Balachandar S (2009) A massively parallel multi-block hybrid compact-WENO scheme for compressible flows. J Comput Phys 228:7473–7491

    MathSciNet  MATH  Google Scholar 

  64. Charest MRJ, Groth CPT, Gulder OL (2010) A computational framework for predicting laminar reactive flows with soot formation. Combust Theor Model 14(6):793–825

    MATH  Google Scholar 

  65. Chen C, Liu H, Beardsley RC (2003) An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol 20:159–186

    Google Scholar 

  66. Chen HC, Jang YJ, Han JC (2000) Computation of heat transfer in rotating two-pass square channels by a second-moment closure model. Int J Heat Mass Transf 43:1603–1616

    MATH  Google Scholar 

  67. Chen RL, Wu YQ, Yan Z, Zhao Y, Cai XC (2014) A parallel domain decomposition method for 3D unsteady incompressible flows at high Reynolds number. J Sci Comput 58:275–289

    MathSciNet  MATH  Google Scholar 

  68. Chen WL, Lien FS, Leschziner M (1997) Local mesh refinement within a multi-block structured-grid scheme for general flows. Comput Methods Appl Mech Eng 144:327–369

    MATH  Google Scholar 

  69. Chesshire G, Henshaw WD (1990) Composite overlapping meshes for the solution of partial differential equations. J Comput Phys 90:1–64

    MathSciNet  MATH  Google Scholar 

  70. Christon MA (1997) A domain-decomposition message-passing approach to transient viscous incompressible flow using explicit time integration. Comput Methods Appl Mech Eng 148:329–352

    MathSciNet  MATH  Google Scholar 

  71. Chu J, Zafar NB, Yang X (2017) A Schur complement preconditioner for scalable parallel fluid simulation. ACM Trans Graph 36(5):163

    Google Scholar 

  72. Clerc S (1995) A domain decomposition method for nonlinear steady state flow computations. Nuclear Sci Eng 123:415–420

    Google Scholar 

  73. Coclici CA, Wendland WL (2001) Analysis of a heterogeneous domain decomposition for compressible viscous flow. Math Models Methods Appl Sci 11(4):565–599

    MathSciNet  MATH  Google Scholar 

  74. Coelho PJ, Novo PA, Carvalho MG (1999) Modelling of a utility boiler using parallel computing. J Supercomput 13:211–232

    Google Scholar 

  75. Colicchio G, Greco M, Faltinsen O (2011) Domain-decomposition strategy for marine applications with cavity entrapments. J Fluids Struct 27:567–585

    Google Scholar 

  76. Colicchio G, Greco M, Faltinsen OM (2006) A BEM-level set domain-decomposition strategy for non-linear and fragmented interfacial flows. Int J Numer Methods Eng 67:1385–1419

    MathSciNet  MATH  Google Scholar 

  77. Constantine PG, Phipps ET, Wildey TM (2014) Efficient uncertainty propagation for network multiphysics systems. Int J Numer Methods Eng 99:183–202

    MathSciNet  MATH  Google Scholar 

  78. Craft T, Iacovides H, Skillen A (2012) A new overset grid algorithm applied to the simulation of flows involving complex geometries. In: Conference on modelling fluid flow (CMFF12) and the 15th international conference on fluid flow technologies, Budapest, Hungary, September 4–7

  79. Cromer M, Cook LP (2016) A study of pressure-driven flow of wormlike micellar solutions through a converging/diverging channel. J Rheol 60:953–972

    Google Scholar 

  80. Cromer M, Cook LP, McKinley GH (2011) Pressure-driven flow of wormlike micellar solutions in rectilinear microchannels. J Non-Newton Fluid Mech 166:180–193

    MATH  Google Scholar 

  81. Cullum J, Johnson K, Tuma M (2003) Effects of problem decomposition (partitioning) on the rate of convergence of parallel numerical algorithms. Numer Linear Algebra Appl 10:445–465

    MathSciNet  MATH  Google Scholar 

  82. Cyr EC, Shadid JN, Tuminaro RS, Pawlowski RP, Chacón L (2013) A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J Sci Comput 35(3):B701–B730

    MathSciNet  MATH  Google Scholar 

  83. Danabasoglu G (1994) Biringen: application of the spectral multidomain method to the Navier–Stokes equations. J Comput Phys 113:155–164

    MATH  Google Scholar 

  84. Darbandi M, Naderi A (2006) Multiblock hybrid grid finite volume method to solve flow in irregular geometries. Comput Methods Appl Mech Eng 196:321–336

    MATH  Google Scholar 

  85. Degroote J (2013) Partitioned simulation of fluid-structure interaction. Arch Comput Methods Eng 20(3):185–238

    MathSciNet  MATH  Google Scholar 

  86. Delis AI, Mathioudakis EN (2009) A finite volume method parallelization for the simulation of free surface shallow water flows. Math Comput Simul 79:3339–3359

    MathSciNet  MATH  Google Scholar 

  87. Dennis JM (2003) Partitioning with space-filling curves on the cubed-sphere. In: Proceedings of the workshop on massively parallel processing at IPDPS03, Nice, France

  88. Dettmer W, Perić D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195:5754–5779

    MATH  Google Scholar 

  89. Deveci M, Rajamanickam S, Devine K, Çatalyürek U (2016) Multi-jagged: a scalable parallel spatial partitioning algorithm. IEEE Trans Parallel Distrib Syst 27(3):803–817

    Google Scholar 

  90. Diamessis PJ, Lin YC, Domaradzki JA (2008) Effective numerical viscosity in spectral multidomain penalty method-based simulations of localized turbulence. J Comput Phys 227:8145–8164

    MATH  Google Scholar 

  91. Diehl D, Kremser J, Kröner D, Rohde C (2016) Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl Math Comput 272:309–335

    MathSciNet  MATH  Google Scholar 

  92. Discacciati M, Gervasio P, Quarteroni A (2013) The interface control domain decomposition (ICDD) method for elliptic problems. SIAM J Control Optim 51:3434–3458

    MathSciNet  MATH  Google Scholar 

  93. Discacciati M, Gervasio P, Quarteroni A (2014) Interface control domain decomposition methods for heterogeneous problems. Int J Numer Meth Fluids 76:471–496

    MathSciNet  Google Scholar 

  94. Divo E, Kassab A (2006) Iterative domain decomposition meshless method modeling of incompressible viscous flows and conjugate heat transfer. Eng Anal Boundary Elem 30:465–478

    MATH  Google Scholar 

  95. Docherty SY, Borg MK, Lockerby DA, Reese JM (2014) Multiscale simulation of heat transfer in a rarefied gas. Int J Heat and Fluid Flow 50:114–125

    Google Scholar 

  96. Dohrmann CR (2003) A preconditioner for substructuring based on constrained energy minimization. SIAM J Sci Comput 25:246–258

    MathSciNet  MATH  Google Scholar 

  97. Dolbow J, Khaleel MA, Mitchell J (2004) Multiscale mathematics initiative: a roadmap. Technical report PNNL-14966

  98. Dolean V, Jolivet P, Nataf F (2015) An introduction to domain decomposition methods: algorithms, theory and parallel implementation. Master, France

  99. Dolean V, Lanteri S (2001) A domain decomposition approach to finite volume solutions of the Euler equations on unstructured triangular meshes. Int J Numer Methods Fluids 37:625–656

    MATH  Google Scholar 

  100. Dolean V, Nataf F, Lanteri S (2002) Construction of interface conditions for solving the compressible Euler equations by non-overlapping domain decomposition methods. Int J Numer Methods Fluids 40:1485–1492

    MathSciNet  MATH  Google Scholar 

  101. Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L, White A (eds) (2003) Sourcebook of parallel computing. Morgan Kaufmann Publishers Inc, San Francisco

    Google Scholar 

  102. Dryja M, Widlund OB (1989) Some domain decomposition algorithms for elliptic problems. Academic Press, New York

    MATH  Google Scholar 

  103. Dryja M, Widlund OB (1995) Schwarz methods of Neumann–Neumann type for three-dimensional elliptic finite element problems. Commun Pure Appl Math 48(2):121–155

    MathSciNet  MATH  Google Scholar 

  104. Duchaine F, Jauré S, Poitou D, Quémerais E, Staffelbach G, Morel T, Gicquel L (2015) Analysis of high performance conjugate heat transfer with the openpalm coupler. Comput Sci Discov 8(1):015003

    Google Scholar 

  105. Engquist B, Zhao HK (1998) Absorbing boundary conditions for domain decomposition. Appl Numer Mathods 27(4):341–365

    MathSciNet  MATH  Google Scholar 

  106. Ersson M, Hoglund L, Tilliander A, Jonsson L, Jonsson P (2008) Dynamic coupling of computational fluid dynamics and thermodynamics software: applied on a top blown converter. ISIJ Int 48(2):147–153

    Google Scholar 

  107. Estep D, Tavener S, Wildey T (2008) A posteriori analysis and improved accuracy for an operator decomposition solution of a conjugate heat transfer problem. SIAM J Numer Anal 46(4):2068–2089

    MathSciNet  MATH  Google Scholar 

  108. Ewing RE (1990) A survey of domain decomposition techniques and their implementation. Adv Water Resour 13:117–125

    Google Scholar 

  109. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D (2001) FETI-DP: a dualprimal unified FETI method-part I: a faster alternative to the two-level FETI method. Int J Numer Methods Eng 50(7):1523–1544

    MATH  Google Scholar 

  110. Farhat C, Maman N, Brown G (1995) Mesh partitioning for implicit computations via iterative domain decomposition: impact and optimization of the subdomain aspect ratio. Int J Numer Methods Eng 38:989–1000

    MATH  Google Scholar 

  111. Fast P, Shelley MJ (2004) A moving overset grid method for interface dynamics applied to non-Newtonian Hele–Shaw flow. J Comput Phys 1995:117–142

    MathSciNet  MATH  Google Scholar 

  112. Florez WF, Janna FC (2001) Multi-domain dual reciprocity for the solution of inelastic non Newtonian flow problems. Comput Mech 27:396–411

    MATH  Google Scholar 

  113. Formaggia L, Gerbeaub J, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Meth Appl Mech Eng 191(6–7):561–582

    MathSciNet  MATH  Google Scholar 

  114. Foster NF (2015) Accuracy of high-order CFD and overset interpolation in finite volume/difference codes. Technical report AIAA paper 2015-3424

  115. Fu L, Gao ZH, Xu K, Xu F (2014) A multi-block viscous flow solver based on GPU parallel methodology. Comput Fluids 95:19–39

    MathSciNet  MATH  Google Scholar 

  116. Fujima K, Masamura K, Goto C (2002) Development of the 2D/3D hybrid model for tsunami numerical simulation. Coast Eng J 44:373–397

    Google Scholar 

  117. Galbraith MC, Benek JA, Orkwis PD, Turner MG (2014) A discontinuous Galerkin Chimera scheme. Comput Fluids 98:27–53

    MathSciNet  MATH  Google Scholar 

  118. Gander MJ (2008) Schwarz methods over the course of time. Electron Trans Numer Anal 31:228–255

    MathSciNet  MATH  Google Scholar 

  119. Gander MJ, Stuart AM (1998) Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J Sci Comput 19:2014–2031

    MathSciNet  MATH  Google Scholar 

  120. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York

    MATH  Google Scholar 

  121. Gee M, Küttler U, Wall W (2011) Truly monolithic algebraic multigrid for fluid–structure interaction. Int J Numer Methods Eng 85(8):987–1016

    MathSciNet  MATH  Google Scholar 

  122. Ghadimi M, Farshchi M (2012) Fourth order compact finite volume scheme on nonuniform grids with multi-blocking. Comput Fluids 56:1–16

    MathSciNet  MATH  Google Scholar 

  123. Ghias R, Mittal R, Dong H (2007) A sharp interface immersed boundary method for compressible viscous flows. J Comput Phys 225:528–553

    MathSciNet  MATH  Google Scholar 

  124. Ghnatios C, Hachemb E (2019) A stabilized mixed formulation using the proper generalized decomposition for fluid problems. Comput Methods Appl Mech Eng 346:769–787

    MathSciNet  MATH  Google Scholar 

  125. Giladi E, Keller HB (2002) Space-time domain decomposition for parabolic problems. Numer Math 93:279–313

    MathSciNet  MATH  Google Scholar 

  126. Glowinski R, Periaux J (1981) Numerical solution of partial differential equations using interfacing and/or overlapping grids of sub-domains. In: Application to Navier–Stokes equations and transonic potential flows for inviscid fluids. NASA-Ames Research Center, Mountain View

  127. Goldfeld P (2003) Balancing Neumann–Neumann for (in)compressible linear elasticity and (generalized) Stokes parallel implementation. In: Herrera I, Keyes DE, Widlund OB, Yates R (eds) Fourteenth international conference on domain decomposition methods

  128. Golse F, Jin S, Levermore CD (2003) A domain decomposition analysis for a two-scale linear transport problem. ESAIM Math Model Numer Anal 37:869–892

    MathSciNet  MATH  Google Scholar 

  129. Gopalakrishnan P, Tafti D (2013) Development of parallel DEM for the open source code MFIX. Powder Technol 235:33–41

    Google Scholar 

  130. Graham IG, Lechner PO, Scheichl R (2007) Domain decomposition for multiscale PDEs. Numer Math 106:589–626

    MathSciNet  MATH  Google Scholar 

  131. Grahn A, Kliem S, Rohde U (2015) Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX. Ann Nucl Energy 84:197–203

    Google Scholar 

  132. Greco M, Colicchio G, Faltinsen OM (2014) A domain-decomposition strategy for a compressible multi-phase flow interacting with a structure. Int J Numer Methods Eng 98:840–858

    MathSciNet  MATH  Google Scholar 

  133. Griebel M, Rttgers A (2014) Multiscale simulations of three-dimensional viscoelastic flows in a square–square contraction. Non-Newtonian Fluid Mech 205:41–63

    Google Scholar 

  134. Grinberg L, Karniadakis G (2010) A new domain decomposition method with overlapping patches for ultrascale simulations: application to biological flows. J Comput Phys 229:5541–5563

    MathSciNet  MATH  Google Scholar 

  135. Gropp WD, Keyes DE (1992) Domain decomposition methods in computational fluid dynamics. Int J Numer Methods Fluids 14:147–165

    MATH  Google Scholar 

  136. Guermond JL, Lu H (2000) A domain decomposition method for simulating advection dominated, external incompressible viscous ows. Comput Fluids 29:525–546

    Google Scholar 

  137. Ha S, Ngo L, Saeed M, Jeon B, Choi H (2017) A comparative study between partitioned and monolithic methods for the problems with 3D fluid–structure interaction of blood vessels. J Mech Sci Technol 31(1):281–287

    Google Scholar 

  138. Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J Comput Phys 227:3595–3624

    MathSciNet  MATH  Google Scholar 

  139. Hapla V, Horak D (2012) Tfeti coarse space projectors parallelization strategies. In: Wyrzykowski R, Dongarra J, Karczewski K, Waśniewski J (eds) Parallel processing and applied mathematics. Springer, Berlin, pp 152–162

    Google Scholar 

  140. Havé P, Masson R, Nataf F, Szydlarski M, Xiang H, Zhao T (2013) Algebraic domain decomposition methods for highly heterogeneous problems. SIAM J Sci Comput 35(3):C284–C302

    MathSciNet  MATH  Google Scholar 

  141. He P (2016) A high order finite difference solver for massively parallel simulations of stably stratified turbulent channel flows. Comput Fluids 127:161–173

    MathSciNet  MATH  Google Scholar 

  142. Heinrichs W (2006) Least-squares spectral collocation with the overlapping Schwarz method for the incompressible Navier–Stokes equations. Numer Algorithms 43:61–73

    MathSciNet  MATH  Google Scholar 

  143. Helmig R, Flemisch B, Wolff M, Ebigbo A, Class H (2013) Model coupling for multiphase flow in porous media. Adv Water Resour 51:52–66

    Google Scholar 

  144. Henn T, Thter G, Drfler W, Nirschl H, Krause MJ (2016) Parallel dilute particulate flow simulations in the human nasal cavity. Comput Fluids 124:197–207

    MathSciNet  MATH  Google Scholar 

  145. Henshaw WD, Chesshire G (1987) Multigrid on composite meshes. SIAM J Sci Stat Comput 8:914–923

    MathSciNet  MATH  Google Scholar 

  146. Henshaw WD, Watson TJ (1994) A fourth-order accurate method for the incompressible Navier Stokes equations on overlapping grids. J Comput Phys 113:13–25

    MathSciNet  MATH  Google Scholar 

  147. Hessenius KA, Pulliam TP (1982) A zonal approach to solution of the Euler equations. Technical report AIAA paper 82-0969

  148. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    MathSciNet  MATH  Google Scholar 

  149. Hesthaven JS (1998) A stable penalty method for the compressible Navier–Stokes equations: III. Multidimensional domain decomposition schemes. SIAM J Sci Comput 20:62–93

    MathSciNet  MATH  Google Scholar 

  150. Hill C, DeLuca C, Balaji C, Suarez M, Silva AD (2004) The architecture of the earth system modeling framework. Comput Sci Eng 6(1):18–28

    Google Scholar 

  151. Hoang TTP, Japhet C, Kern M, Roberts JE (2017) Space-time domain decomposition for advection–diffusion problems in mixed formulations. Math Comput Simul 137:366–389

    MathSciNet  MATH  Google Scholar 

  152. Horgue P, Soulaine C, Franc J, Guibert R, Debenest G (2015) An open-source toolbox for multiphase flow in porous media. Comput Phys Commun 187:217–226

    MATH  Google Scholar 

  153. Houzeaux G, Borrell R, Cajas J, Vázquez M (2018) Extension of the parallel sparse matrix vector product (SpMV) for the implicit coupling of PDEs on non-matching meshes. Comput Fluids 173:216–225

    MathSciNet  MATH  Google Scholar 

  154. Houzeaux G, Cajas JC, Discacciati M, Eguzkitza B, Gargallo-Peiró A, Rivero M, Vázquez M (2017) Domain decomposition methods for domain composition purpose: Chimera, overset, gluing and sliding mesh methods. Arch Comput Methods Eng 24(4):1033–1070

    MathSciNet  MATH  Google Scholar 

  155. Houzeaux G, Codina R (2001) Transmission conditions with constraints in finite element domain decomposition methods for flow problems. Commun Numer Methods Eng 17:179–190

    MATH  Google Scholar 

  156. Houzeaux G, Codina R (2003) A Chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier–Stokes equations. Comput Methods Appl Mech Eng 192(31):3343–3377

    MathSciNet  MATH  Google Scholar 

  157. Houzeaux G, Codina R (2003) An iteration-by-subdomain overlapping Dirichlet/Robin domain decomposition method for advection–diffusion problems. J Comput Appl Math 158(2):243–276

    MathSciNet  MATH  Google Scholar 

  158. Houzeaux G, Codina R (2004) A Dirichlet/Neumann domain decomposition method for incompressible turbulent flows on overlapping subdomains. Comput Fluids 33:771–782

    MATH  Google Scholar 

  159. Houzeaux G, Eguzkitza B, Aubry R, Owen H, Vázquez M (2014) A Chimera method for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 75:155–183

    MathSciNet  MATH  Google Scholar 

  160. Houzeaux G, Garcia M, Cajas JC, Artigues A, Olivares E, Labarta J, Váquez M (2016) Dynamic load balance applied to particle transport in fluids. Int J Comput Fluid Dyn 30(6):408–418

    MathSciNet  Google Scholar 

  161. Houzeaux G, Garcia-Gasulla M, Cajas J, Artigues A, Olivares E, Labarta J, Vázquez M (2016) Dynamic load balance applied to particle transport in fluids. Int J Comput Fluid Dyn 30(6):408–418

    MathSciNet  Google Scholar 

  162. Hubbard B, Chen HC (1994) A Chimera scheme for incompressible viscous flows with application to submarine hydrodynamics. Technical report AIAA paper 94-2210

  163. Hwang FN, Cai XC, Cheng YL, Tsao CW (2013) A parallel fully coupled implicit domain decomposition method for numerical simulation of microfluidic mixing in 3D. Int J Comput Math 90:615–629

    MathSciNet  MATH  Google Scholar 

  164. Hwang FN, Cai XC (2007) A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms. Comput Methods Appl Mech Eng 196:1603–1611

    MathSciNet  MATH  Google Scholar 

  165. Iafrati A, Campana EF (2003) A domain decomposition approach to compute wave breaking (wave-breaking flows). Int J Numer Methods Fluids 41:419–445

    MathSciNet  MATH  Google Scholar 

  166. Introni C, Quintard M, Duval F (2011) Effective surface modeling for momentum and heat transfer over rough surfaces: application to a natural convection problem. Int J Heat Mass Transf 54:3622–3641

    MATH  Google Scholar 

  167. Isaev S, Baranov PA, Zhukova YV, Sudakov A (2014) Enhancement of heat transfer in unsteady laminar oil flow past a heated cylinder at Re = 150. Thermophys Aeromech 21:531–544

    Google Scholar 

  168. Japhet C (1998) Optimized Krylov–Ventcell method. Application to convection-diffusion problems. In: Bjørstad PE, Keyes DE (eds) Domain decomposition methods in sciences and enginnering. Ninth international conference on domain decomposition methods, June 4–7, 1996. Ullensvang at the Hardanger Fjord, Norway, pp 382–389

  169. Jenkins E, Lee H (2008) A domain decomposition method for the Oseen-viscoelastic flow equations. Appl Math Comput 195:127–141

    MathSciNet  MATH  Google Scholar 

  170. Jiang B (2009) A parallel domain decomposition method for coupling of surface and groundwater flows. Comput Methods Appl Mech Eng 198:947–957

    MathSciNet  MATH  Google Scholar 

  171. Jin S, Minev P, Nandakumar K (2009) A scalable parallel algorithm for the direct numerical simulation of three-dimensional incompressible particulate flow. Int J Comput Fluid Dyn 23:427–437

    MathSciNet  MATH  Google Scholar 

  172. Johansen A, Klahr H, Henning T (2011) High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. Astron Astrophys 529:A62

    Google Scholar 

  173. Jones A, Utyuzhnikov S (2015) Application of a near-wall domain decomposition method to turbulent flows with heat transfer. Comput Fluids 119:87–100

    MathSciNet  MATH  Google Scholar 

  174. Jordi A, Georgas N, Blumberg A (2017) A parallel domain decomposition algorithm for coastal ocean circulation models based on integer linear programming. Ocean Dyn 67:639–649

    Google Scholar 

  175. Kanarachos AE, Pantelelis NG, Provatidis CG (1994) Recent developments in the algebraic multiblock method for Euler equations. Comput Methods Appl Mech Eng 111:235–254

    MathSciNet  MATH  Google Scholar 

  176. Kanschat G, Lazarov R, Maoc Y (2017) Geometric multigrid for Darcy and Brinkman models of flows in highly heterogeneous porous media: a numerical study. J Comput Phys 310:174–185

    MathSciNet  MATH  Google Scholar 

  177. Kanschat G, Rivire B (2010) A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J Comput Phys 229:5933–5943

    MathSciNet  MATH  Google Scholar 

  178. Karypis G (2013) METIS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Version 5.1.0. University of Minnesota. Technical report

  179. Karypis G, Kumar V (1999) A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Appl 20:359–392

    MATH  Google Scholar 

  180. Keller CA, Long MS, Yantosca RM, Da Silva AM, Pawson S, Jacob DJ (2014) HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models. Geosci Model Dev 7(4):1409–1417

    Google Scholar 

  181. Kelly JF, Giraldo FX (2012) Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode. J Comput Phys 231:7988–8008

    MathSciNet  MATH  Google Scholar 

  182. Keskar J, Lyn DA (1999) Computations of a laminar backward-facing step flow at Re 800 with a spectral domain decomposition method. Int J Numer Methods Fluids 29:411–427

    MATH  Google Scholar 

  183. Kessler DA, Oran ES, Kaplan CR (2010) Towards the development of a multiscale, multiphysics method for the simulation of rarefied gas flows. J Fluid Mech 661:262–293

    MathSciNet  MATH  Google Scholar 

  184. Keyes DE (2012) Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl 27(1):4–86

    Google Scholar 

  185. Khan SUD, Khan SUD, Peng M (2014) Flow blockage accident or loss of flow accident by using comparative approach of NK/TH coupling codes and RELAP5 code. Ann Nucl Energy 64:311–319

    Google Scholar 

  186. Khawar J, Ul-Haque A, Chaudhry SR (2007) Validation of 2D multi-block high-speed compressible turbulent flow solver. Int J Comput Methods 4(1):33–57

    MATH  Google Scholar 

  187. Kim CS, Kiris C, Kwak D, David T (2005) Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J Biomech Eng 128:194–202

    Google Scholar 

  188. Kim JW, Sandberg RD (2012) Efficient parallel computing with a compact finite difference scheme. Comput Fluids 58:70–87

    MathSciNet  MATH  Google Scholar 

  189. Kim SH, Yamashiro M, Yoshida A (2010) A simple two-way coupling method of BEM and VOF model for random wave calculations. Coast Eng J 57(11):1018–1028

    Google Scholar 

  190. Klettner CA, Eames I (2013) Viscous free surface simulations with the characteristic based split scheme. Comput Fluids 71:487–495

    MathSciNet  MATH  Google Scholar 

  191. Knoll DA, Keyes DE (2004) Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys 193:357–397

    MathSciNet  MATH  Google Scholar 

  192. Kopriva DA (1994) Multidomain spectral solution of compressible viscous flows. J Comput Phys 115:184–199

    MathSciNet  MATH  Google Scholar 

  193. Korobenko A, Bazilevs Y, Takizawa K, Tezduyar T (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar T (ed) Frontiers in computational fluid-structure interaction and flow simulation. Springer, Berlin

    Google Scholar 

  194. Koros̆ec P, S̆ilc J, Robic̆ B (2004) Solving the mesh-partitioningproblem with an ant-colony algorithm. Parallel Comput 30:785–801

    Google Scholar 

  195. Kotsalis EM, Walther JH, Kaxiras E, Koumoutsakos P (2009) Control algorithm for multiscale flow simulations of water. Phys Rev E 79:045701-1–045701-4

    Google Scholar 

  196. Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–87

    MathSciNet  MATH  Google Scholar 

  197. Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29:849–875

    MATH  Google Scholar 

  198. Künze R, Lunati I (2012) An adaptive multiscale method for density-driven instabilities. J Comput Phys 231:5557–5570

    MathSciNet  Google Scholar 

  199. Küttler U, Gee M, Förster C, Comerford A, Wall W (2010) Coupling strategies for biomedical fluidstructure interaction problems. Int J Numer Methods Biomed Eng 26(3–4):305–321

    MathSciNet  MATH  Google Scholar 

  200. Küttler U, Wall W (2008) Fixed-point fluidstructure interaction solvers with dynamic relaxation. Comput Mech 43:61–72

    MATH  Google Scholar 

  201. Meakin RL, Street RL (1988) Simulation of environmental flow problems in geometrically complex domains. Part 2: a domain-splitting method. Comput Methods Appl Mech Eng 68:311–331

    MATH  Google Scholar 

  202. Labourasse E, Sagaut P (2004) Advance in RANS-LES coupling, a review and an insight on the NLDE approach. Arch Comput Methods Eng 11(3):199–256

    MathSciNet  MATH  Google Scholar 

  203. Langer U, Yang H (2017) Recent development of robust monolithic fluid–structure interaction solvers. Radon series on computational and applied mathematics. deGruyter, Berlin, pp 169–192

    Google Scholar 

  204. Lani A, Sjogreen B, Yee HC, Henshaw W (2013) Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, Part II: hypersonic nonequilibrium flows. Commun Comput Phys 13(2):583–602

    MATH  Google Scholar 

  205. Lanteri S (1996) Parallel solutions of compressible flows using overlapping and non-overlapping mesh partitioning strategies. Parallel Comput 22:943–968

    MathSciNet  MATH  Google Scholar 

  206. Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7:159–193

    MathSciNet  MATH  Google Scholar 

  207. Lax PD (1957) Hyperbolic systems of conservation laws II. Commun Pure Appl Math 10:537–566

    MathSciNet  MATH  Google Scholar 

  208. Layton W, Tran H, Trenchea C (2013) Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater–surface water flows. SIAM J Numer Anal 51(2):248–272

    MathSciNet  MATH  Google Scholar 

  209. Leiva J, Blanco P, Buscaglia G (2010) Iterative strong coupling of dimensionally heterogeneous models. Int J Numer Methods Eng 81:1558–1580

    MathSciNet  MATH  Google Scholar 

  210. Levy MN, Nair RD, Tufo HM (2007) High-order Galerkin methods for scalable global atmospheric models. Comput Geosci 33:1022–1035

    Google Scholar 

  211. Li BW, Chen SS (2015) Direct spectral domain decomposition method for 2D incompressible Navier–Stokes equations. Appl Math Mech Engl Ed 38:1073–1090

    MathSciNet  MATH  Google Scholar 

  212. Li KT, Huang AX, Zhang WL (2002) A dimension split method for the 3-D compressible Navier–Stokes equations in turbomachine. Commun Numer Methods Eng 18:1–14

    MathSciNet  MATH  Google Scholar 

  213. Li S, Chen R, Shao X (2019) Parallel two-level spacetime hybrid Schwarz method for solving linear parabolic equations. Appl Numer Math 139:120–135

    MathSciNet  MATH  Google Scholar 

  214. Liang S, Liu W, Yuan L (2014) Solving seven-equation model for compressible two-phase flow using multiple GPUs. Comput Fluids 99:156–171

    MathSciNet  MATH  Google Scholar 

  215. Liesen J, Tich P (2004) Convergence analysis of krylov subspace methods. GAMM-Mitteilungen 27(2):153–173

    MathSciNet  MATH  Google Scholar 

  216. Lin PT, Shadid JN, Tuminaro RS, Sala M, Hennigan GL, Pawlowski RP (2010) A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: drift-diffusion, flow/transport/reaction, resistive MHD. Int J Numer Methods Fluids 64:1148–1179

    MathSciNet  MATH  Google Scholar 

  217. Lions PL (1988) On the Schwarz alternating method, I. In: Glowinski R, Golub GH, Meurant GA, Periaux J (eds) First international symposium on domain decomposition methods for partial differential equations. SIAM, Philadelphia, pp 1–42

  218. Lions PL (1989) On the Schwarz alternating method, II. Domain decomposition methods. In: Chan T, Glowinski R, Periaux J, Widlund O (eds) SIAM, Philadelphia, pp 47–70

  219. Lions PL (1990) On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In: Chan T, Glowinski R, Periaux J, Widlund O (eds) Third international symposium on domain decomposition methods for partial differential equations. SIAM, Philadelphia, pp 202–223

  220. Liu G, Thompson KE (2002) A domain decomposition method for modelling Stokes flow in porous materials. Int J Numer Methods Fluids 38:1009–1025

    MATH  Google Scholar 

  221. Liu H (2009) Integrated modeling of insect flight: from morphology, kinematics to aerodynamics. J Comput Phys 228:439–459

    MathSciNet  MATH  Google Scholar 

  222. Liu H, Mu K, Ding H (2016) Simulation of incompressible multiphase flows with complex geometry using etching multiblock method. Appl Math Mech Engl Ed 37:1405–1418

    MathSciNet  MATH  Google Scholar 

  223. Liu HF, Zhou JG, Li M, Zhao YW (2013) Multi-block lattice Boltzmann simulations of solute transport in shallow water flows. Adv Water Res 58:24–40

    Google Scholar 

  224. Liu J, Chen SY, Nie XB, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 227:279–291

    MATH  Google Scholar 

  225. Louchart O, Randriamampiania A, Leonardi E (1998) Spectral domain decomposition technique for the incompressible Navier–Stokes equaitons. Numer Heat Transf Part A 34:495–518

    Google Scholar 

  226. Louchart O, Randriamampianina A (2000) A spectral iterative domain decomposition technique for the incompressible Navier–Stokes equations. Appl Numer Math 33:233–240

    MathSciNet  MATH  Google Scholar 

  227. Lu T, Zhang F, Jin JM (2016) Multiphysics simulation of 3-D ICs with integrated microchannel cooling. IEEE Trans Compon Packag Manuf Technol 06(11):1620–1629

    Google Scholar 

  228. Lube G, Knopp T, Gritzki R, Rsler M, Seifert J (2008) Application of domain decomposition methods to indoor air flow simulation. Int J Comput Math 85:1551–1562

    MathSciNet  MATH  Google Scholar 

  229. Maday Y, Magoules F (2006) Absorbing interface conditions for domain decomposition methods: a general presentation. Comput Methods Appl Mech Eng 195:3880–3900

    MathSciNet  MATH  Google Scholar 

  230. Mandel J (1993) Balanced domain decomposition. Commun Numer Methods Eng 9:233–241

    MATH  Google Scholar 

  231. Manna M, Benocci C, Simons E (2005) Large eddy simulation of turbulent flows via domain decomposition techniques. Part 1: theory. Int J Numer Methods Fluids 48:367–395

    MATH  Google Scholar 

  232. Mariano A, Kourafalou VH, Srinivasan A, Kanga H, Halliwell GR, Ryan E, Roffer M (2011) On the modeling of the 2010 Gulf of Mexico oil spill. Dyn Atmos Oceans 52:322–340

    Google Scholar 

  233. Martin V (2004) An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Comput Fluids 33(5–6):829–837

    MathSciNet  MATH  Google Scholar 

  234. Martin V (2005) An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl Numer Math 52(4):401–428

    MathSciNet  MATH  Google Scholar 

  235. Martin V (2009) Schwarz waveform relaxation algorithms for the linear viscous equatorial shallow water equations. SIAM J Sci Comput 31(5):3595–3625

    MathSciNet  MATH  Google Scholar 

  236. Mary I (2010) RANS/LES simulation of a separated flow in a 3D curved duct. In: Peng S, Doerffer P, Haase W (eds) Progress in hybrid RANS–LES modelling. Notes on numerical fluid mechanics and multidisciplinary design. Springer, Berlin, pp 205–211

    Google Scholar 

  237. Medic G, You D, Kalitzin G (2006) An approach for coupling RANS and LES in integrated computations of jet engines. Center for Turbulence Research, Annual Research Briefs. Technical report

  238. Mehl M, Uekermann B, Bijil H, Blom D, Gatzhammer B, Zuijlen AV (2016) Parallel coupling numerics for partitioned fluid–structure interaction simulations. Comput Math Appl 71:869–891

    MathSciNet  MATH  Google Scholar 

  239. Mehmani Y, Balhoff MT (2014) Bridging from pore to continuum: a hybrid mortar domain decomposition framework for subsurface flow and transport. Multiscale Model Simul 12(2):667–693

    MathSciNet  MATH  Google Scholar 

  240. Mehmani Y, Tchelepi HA (2018) Multiscale computation of pore-scale fluid dynamics: single-phase flow. J Comput Phys 375:1469–1487

    MathSciNet  MATH  Google Scholar 

  241. Meurant GA (1991) A domain decomposition method for parabolic problems. Appl Numer Math 8:427–441

    MathSciNet  MATH  Google Scholar 

  242. Miglio E, Perotto S, Saleri F (2005) Model coupling techniques for free-surface flow problems: Part I. Nonlinear Anal 63:e1885–e1896

    MATH  Google Scholar 

  243. Minami S, Kawai H, Yoshimura S (2012) A monolithic approach based on the balancing domain decomposition method for acoustic fluid–structure interaction. J Appl Mech 79(1):010,906

    Google Scholar 

  244. Minyard T, Kallinderis Y (1998) Octree partitioning of hybrid grids for parallel adaptive viscous flow simulations. Int J Numer Methods Fluids 26:57–78

    MATH  Google Scholar 

  245. Mohamed KM, Mohamad AA (2010) A review of the development of hybrid atomistic-continuum methods for dense fluids. Microfluid Nanofluid 8:283–302

    Google Scholar 

  246. Monjezi M, Dastanpour R, Saidi M, Pishevara A (2012) Prediction of particle deposition in the respiratory track using 3D–1D modeling. Sci Iran 19(6):1479–1486

    Google Scholar 

  247. Moridis GJ, Freeman CM (2014) The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems. Comput Geosci 65:56–71

    Google Scholar 

  248. Muradoglu M, Tryggvason G (2014) Simulations of soluble surfactants in 3D multiphase flow. J Comput Phys 274:737–757

    MATH  Google Scholar 

  249. Nardi A, Idiart A, Trinchero P, de Vries LM, Molinero J (2014) Interface COMSOL-PHREEQC(iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry. Comput Geosci 69:10–21

    Google Scholar 

  250. Nataf F, Rogier F, Sturler ED (1994) Optimal interface conditions for domain decomposition methods. Technical report 301. CMAP Ecole Polytechnique, Paris

  251. Navon IM, Cai Y (1993) Domain decomposition and parallel processing of a finite element model of the shallow water equations. Comput Methods Appl Mech Eng 106:179–212

    MathSciNet  MATH  Google Scholar 

  252. Nejadmalayeri A, Vezolainen A, Brown-Dymkoski E, Vasilyev OV (2015) Parallel adaptive wavelet collocation method for PDEs. J Comput Phys 298:237–253

    MathSciNet  MATH  Google Scholar 

  253. Neofytou P, Tsangaris S (2006) Flow effects of blood constitutive equations in 3D models of vascular anomalies. Int J Numer Methods Fluids 51:489–510

    MathSciNet  MATH  Google Scholar 

  254. Neumann P, Eckhardt W, Bungartz HJ (2014) Hybrid molecular-continuum methods: from prototypes to coupling software. Comput Math Appl 67:272–281

    MathSciNet  MATH  Google Scholar 

  255. Nguyen VT, Vu DT, Park W-G, Jung CM (2016) Navier–Stokes solver for water entry bodies with moving Chimera grid method in 6DOF motions. Comput Fluids 140:9–38

    MathSciNet  MATH  Google Scholar 

  256. Nichols RH, Buning PG (2016) Users manual for OVERFLOW 2.2, version 2.2l, February 2016. https://overflow.larc.nasa.gov/home/users-manual-for-overflow-2-2/

  257. Nordbotten JM, Bjørstad PE (2008) On the relationship between the multiscale finite-volume method and domain decomposition preconditioners. Comput Geosci 12(3):367–376

    MathSciNet  MATH  Google Scholar 

  258. Ono K, Uchida T (2019) High-performance parallel simulation of airflow for complex terrain surface. Model Simul Eng 2019:5231–839

    Google Scholar 

  259. Orszag SA (1980) Spectral methods for problems in complex geometries. J Comput Phys 37:70–92

    MathSciNet  MATH  Google Scholar 

  260. Owens RG, Phillips TN (1991) A spectral domain decomposition method for the planar non-Newtonian stick-slip problem. J Non-Newtonian Fluid Mech 4:43–79

    MATH  Google Scholar 

  261. OConnell ST, Thompson PA (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52:R5792–R5795

    Google Scholar 

  262. Paglieri L, Ambrosi D, Formaggia L, Quarteroni A, Scheinine AL (1997) Parallel computation for shallow water flow: a domain decomposition approach. Parallel Comput 23:1261–1277

    MathSciNet  MATH  Google Scholar 

  263. Paolucci S, Zikoski ZJ, Grenga T (2014) WAMR: an adaptive wavelet method for the simulation of compressible reacting flow. Part II. The parallel algorithm. J Comput Phys 272:842–864

    MATH  Google Scholar 

  264. Paraschivoiu M, Cai XC, Sarkis M, Young DP, Keyes DE (1999) Multi-domain multi-model formulation for compressible flows: Conservative interface coupling and parallel implicit solvers for 3D unstructured meshes. Technical report. AIAA paper 99-0784

  265. Parishani H, Ayala O, Rosa B, Wang LP, Grabowski WW (2015) Effects of gravity on the acceleration and pair statistics of inertial particles in homogeneous isotropic turbulence. Phys Fluids 27:033304-1–033304-24

    Google Scholar 

  266. Pärt-Enander E, Sjögreen B (1994) Conservative and non-conservative interpolation between overlapping grids for finite volume solutions of hyperbolic problems. Comput Fluids 23:551–574

    MathSciNet  MATH  Google Scholar 

  267. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    MATH  Google Scholar 

  268. Paulsen BT, Bredmose H, Bingham HB (2014) An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders. Coast Eng J 86:57–76

    Google Scholar 

  269. Pavarino L, Widlund O (2002) Balancing Neumann–Neumann methods for incompressible Stokes equations. Commun Pure Appl Math 55(3):302–335

    MathSciNet  MATH  Google Scholar 

  270. Pavarino LF (2005) Domain decomposition methods and scientific computing applications. Bollettino dell’Unione Matematica Italiana, Serie 8 8–B:21–54

    MathSciNet  MATH  Google Scholar 

  271. Paz RR, Nigro NM, Storti MA (2006) On the efficiency and quality of numerical solutions in CFD problems using the interface strip preconditioner for domain decomposition methods. Int J Numer Methods Fluids 52:89–118

    MathSciNet  MATH  Google Scholar 

  272. Paz RR, Storti MA (2005) An interface strip preconditioner for domain decomposition methods: application to hydrology. Int J Numer Methods Eng 62:1873–1894

    MathSciNet  MATH  Google Scholar 

  273. Pechstein C, Scheichl R (2009) Scaling up through domain decomposition. Appl Anal 88:1589–1608

    MathSciNet  MATH  Google Scholar 

  274. Pellegrini F (2018) PT-Scotch and libScotch 5.1 users guide

  275. Persson PO, Peraire J (2008) Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes. SIAM J Sci Comput 30(6):2709–2733

    MathSciNet  MATH  Google Scholar 

  276. Piacentini A, Morel T, Thévenin A, Duchaine F (2011) O-palm: an open source dynamic parallel coupler. In: Proceedings of the IV international conference on computational methods for coupled problems in science and engineering—coupled problems

  277. Pilkington J, Baden S (1994) Partitioning with space filling curves. CSE technical report CS94349, Department of Computer Science and Engineering, University of California

  278. Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech 34:349–374

    MathSciNet  MATH  Google Scholar 

  279. Powell C (2005) Parameter-free H(div) preconditioning for a mixed finite element formulation of diffusion problems. IMA J Numer Anal 25(4):783–796

    MathSciNet  MATH  Google Scholar 

  280. Purser RJ, Rancic M (1997) Conformal octagon: an attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteorol Atmos Phys 62:33–48

    Google Scholar 

  281. Qaddouri A, Laayouni L, Loisel Côté J, Gander MJ (2008) Optimized Schwarz methods with an overset grid for the shallow-water equations: preliminary results. Appl Numer Math 58:459–471

    MathSciNet  MATH  Google Scholar 

  282. Qiu J, Liu TG, Khoo BC (2008) Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the ghost fluid method. Commun Comput Phys 3(2):479–504

    MathSciNet  MATH  Google Scholar 

  283. Qu K, Tang H, Agrawal A (2019) Integration of fully 3D fluid dynamics and geophysical fluid dynamics models for multiphysics coastal ocean flows: simulation of local complex free-surface phenomena. Ocean Model 135:14–30

    Google Scholar 

  284. Qu K, Tang HS, Agrawal A, Jiang CB, Deng B (2016) Evaluation of SIFOM–FVCOM system for high-fidelity simulation of small-scale coastal ocean flows. J Hydrodyn 28(6):994–1002

    Google Scholar 

  285. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. CMCS-BOOK-2009-019. Oxford University Press, Oxford

  286. Radu DG, Normandin M, Clermont JR (2002) A numerical approach for computing flows by local transformations and domain decomposition using an optimization algorithm. Comput Methods Appl Mech Eng 191:4401–4419

    MATH  Google Scholar 

  287. Rai MM (1984) A conservative treatment of zonal boundary for Euler equation calculations. Technical report AIAA paper 84-0164

  288. Ralph B, Carvel R (2018) Coupled hybrid modelling in fire safety engineering; a literature review. Fire Saf J 100:157–170

    Google Scholar 

  289. Rao P (2004) A parallel hydrodynamic model for shallow water equations. Appl Math Comput 150:291–302

    MathSciNet  MATH  Google Scholar 

  290. Raspo I (2003) A direct spectral domain decomposition method for the computation of rotating flows in a T-shape geometry. Comput Fluids 32:431–456

    MATH  Google Scholar 

  291. Raulli M, Maute K (2005) Optimization of fully coupled electrostatic–fluid–structure interaction problems. Comput Struct 83:221–233

    Google Scholar 

  292. Refloch A, Courbet B, Murrone A, Villedieu P, Laurent C, Gilbank P, Troyes J, Tessé L, Chaineray G, Dargaud JB, Quémerais E, Vuillot F (2011) CEDRE software. AerospaceLab 2:1–10

    Google Scholar 

  293. Rifai SM, Johan Z, Wang WP, Grisval JP, Hughes TJR, Ferencz RM (1999) Multiphysics simulation of flow-induced vibrations and aeroelasticity on parallel computing platforms. Comput Methods Appl Mech Eng 174:393–417

    MathSciNet  MATH  Google Scholar 

  294. Rivera CA, Heniche M, Glowinski R, Tanguy PA (2010) Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers. J Comput Phys 229:5123–5143

    MathSciNet  MATH  Google Scholar 

  295. Riviere B, Yotov I (2005) Locally conservative coupling of Stokes and Darcy flow. SIAM J Numer Anal 42(5):1959–1977

    MathSciNet  MATH  Google Scholar 

  296. Rokicki J, Ztak J, Drikakis D, Majewski J (2001) Parallel performance of overlapping mesh technique for compressible flows. Future Gener Comput Syst 18:3–15

    MATH  Google Scholar 

  297. Rome C, Glockner S (2005) An implicit multiblock coupling for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 47:1261–1267

    MATH  Google Scholar 

  298. Roux FX, Farhat C (1998) Parallel implementation of direct solution strategies for the coarse grid solvers in 2-level FETI method. Contemp Math 218:158–173

    MathSciNet  MATH  Google Scholar 

  299. Rubin SG, Celestina ML, Srinivasan K (2002) Adaptive and fixed segmented domain decomposition multigrid procedures for internal viscous flows. Comput Fluids 31:787–813

    MATH  Google Scholar 

  300. Rubin SG, Mummolo FJ (1974) Boundary-layer-induced potential flow on an elliptic cylinder. J Fluid Mech 66:145–157

    MATH  Google Scholar 

  301. Saad Y (2003) Iterative methods for sparse linear systems. SIAM Press, Philadelphia

    MATH  Google Scholar 

  302. Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    MATH  Google Scholar 

  303. Sætra ML, Brodtkorb AR, Lie KA (2015) Efficient GPU-implementation of adaptive mesh refinement for the shallow-water equations. J Sci Comput 63:23–48

    MathSciNet  MATH  Google Scholar 

  304. Salewski M, Fuchs L (2008) Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow. J Turbul 9(46):1–23

    Google Scholar 

  305. Salko RK, Schmidt RC, Avramova MN (2015) Optimization and parallelization of the thermal-hydraulic subchannel code CTF for high-fidelity multi-physics applications. Ann Nucl Energy 84:122–130

    Google Scholar 

  306. Sanders BF, Schubert JE (2019) PRIMo: parallel raster inundation model. Adv Water Resour 126:79–95

    Google Scholar 

  307. Sauer R, Luginsland T (2018) A monolithic fluid–structure interaction formulation for solid and liquid membranes including free-surface contact. Comput Methods Appl Mech Eng 341:1–31

    MathSciNet  MATH  Google Scholar 

  308. Schäfer M, Sternel D, Becker G, Pironkov P (2010) Efficient numerical simulation and optimization of fluid–structure interaction. In: Bungartz HJ, Mehl M, Schäfer M (eds) Fluid structure interaction II. Springer, Berlin, pp 131–158

    MATH  Google Scholar 

  309. Schreck E, Peric M (1993) Computation of fluid-flow with a parallel multigrid solver. Int J Numer Methods Fluids 16(4):303–327

    MATH  Google Scholar 

  310. Schwarz HA (1869) Über einige abbildungsaufgaben. Ges Abh 11:65–83

    Google Scholar 

  311. Serafino DD (1997) A parallel implementation of a multigrid multiblock Euler solver on distributed memory machines. Parallel Comput 23:2095–2113

    MATH  Google Scholar 

  312. Shadid J, Tuminaro R, Devine K, Hennigan G, Lin PT (2005) Performance of fully coupled domain decomposition preconditioners for finite element transport/reaction simulations. J Comput Phys 205:24–47

    MathSciNet  MATH  Google Scholar 

  313. Shadid JN, Smith TM, Cyr EC, Wildey TM, Pawlowski RP (2016) Stabilized fe simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities. J Comput Phys 321:321–341

    MathSciNet  MATH  Google Scholar 

  314. Shang Y (2015) A parallel finite element variational multiscale method based on fully overlapping domain decomposition for incompressible flows. Numer Methods Partial Differ Equ 31:856–875

    MathSciNet  MATH  Google Scholar 

  315. Shen Z, Wan D, Carrica PM (2015) Dynamic overset grids in Open FOAM with application to KCS self propulsion and maneuvering. Ocean Eng 108:287–306

    Google Scholar 

  316. Sherer SE, Scott JN (2005) High-order compact finite-difference methods on general overset grids. J Comput Phys 210:459–496

    MATH  Google Scholar 

  317. Shiu WS, Hwang FN, Cai XC (2015) Parallel domain decomposition method for finite element approximation of 3D steady state non-Newtonian fluids. Int J Numer Methods Fluids 78:502–520

    MathSciNet  Google Scholar 

  318. Sierakowski AJ (2016) GPU-centric resolved-particle disperse two-phase flow simulation using the physalis method. Comput Phys Commun 207:24–34

    MATH  Google Scholar 

  319. Singh G, Wheeler MF (2018) A space-time domain decomposition approach using enhanced velocity mixed finite element method. J Comput Phys 893–911:893–911

    MathSciNet  MATH  Google Scholar 

  320. Sitanggang K, Lynett P (2010) Multi-scale simulation with a hybrid Boussinesq-RANS hydrodynamic model. Int J Numer Methods Fluids 62:1013–1046

    MathSciNet  MATH  Google Scholar 

  321. Sitaraman J, Mavriplis D, Duque EP (2015) Wind farm simulations using a full rotor model for wind turbines. Technical report AIAA paper 2014-1086

  322. Sjøgreen B, Yee HC (2009) Variable high order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows. Commun Comput Phys 5(2–4):730–744

    MathSciNet  MATH  Google Scholar 

  323. Skillen A (2011) The overset grid method, applied to the solution of the incompressible Navier–Stokes equations in two and three spatial dimensions. PhD thesis, School of Mechanical, Aerospace and Civil Engineering, University of Manchester

  324. Skillen A, Craft T, Revell A (2018) A review of embedded large eddy simulation for internal flows. Arch Comput Methods Eng 26:1–18

    MathSciNet  Google Scholar 

  325. Skogestad JO, Keilegavlen E, Nordbotten JM (2013) Domain decomposition strategies for nonlinear flow problems in porous media. J Comput Phys 234:439–451

    MathSciNet  Google Scholar 

  326. Skogestad JO, Keilegavlen E, Nordbotten JM (2016) Two-scale preconditioning for two-phase nonlinear flows in porous media. Transp Porous Med 114:485–503

    MathSciNet  Google Scholar 

  327. Soudah E, Rossi R, Idelsohn S, Oñate E (2014) A reduced-order model based on the coupled 1D–3D finite element simulations for an efficient analysis of hemodynamics problems. Comput Mech 54(4):1013–1022

    MathSciNet  MATH  Google Scholar 

  328. Souvaliotis A, Beris AN (1992) Applications of domain decomposition spectral collocation methods in viscoelastic flows through model porous media. J Rheol 36(7):1417–1453

    Google Scholar 

  329. Sprague MA, Satkauskas I (2015) Nesting an incompressible-flow code within a compressible-flow code: a two-dimensional study. Comput Fluids 115:75–85

    MathSciNet  MATH  Google Scholar 

  330. Srinivasan K, Rubin SG (1997) Solution-based grid adaptation through segmented multigrid domain decomposition. J Comput Phys 136:467–493

    MATH  Google Scholar 

  331. Stewart HB, Wendroff B (1984) Two-phase flow: models and methods. J Comput Phys 56:363–409

    MathSciNet  MATH  Google Scholar 

  332. Strikwerdat J, Scarbnick C (1993) A domain decomposition methid for incompressible viscous flow. SIAM J Sci Comput 14(1):49–67

    MathSciNet  Google Scholar 

  333. Subber W, Sarkar A (2014) A domain decomposition method of stochastic PDEs: an iterative solution techniques using a two-level scalable preconditioner. J Comput Phys 257:298–317

    MathSciNet  MATH  Google Scholar 

  334. Sun P (2012) A domain decomposition method for a two-phase transport model of polymer electrolyte fuel cell containing micro-porous layer. Int J Numer Methos Eng 91:1115–1136

    MathSciNet  Google Scholar 

  335. Tan KH, Borsboom MJA (1993) On generalized Schwarz coupling applied to advection-dominated problems. In: Keyes D, Xu J (eds) Domain decomposition methods in scientific and engineering computing, AMS, contemporary mathematics 180, October 27–30. Seventh international conference on domain decomposition, Pennsylvania State University, pp 125–130

  336. Tanaka S, Bunya S, Westerink JJ, Dawson C, Luettich R Jr (2011) Scalability of an unstructured grid continuous Galerkin based hurricane storm surge model. J Sci Comput 46:329–358

    MathSciNet  MATH  Google Scholar 

  337. Tang HS (2006) Study on a grid interface algorithm for solutions of incompressible Navier–Stokes equations. Comput Fluids 35:1372–1383

    MATH  Google Scholar 

  338. Tang HS, Dong WB, Agrawal A (2018) A phenomenon of artificial odd-even grid oscillation and its presence in domain decomposition computation: algebraic analysis and numerical illustration. J Comput Appl Math 333:404–427

    MathSciNet  MATH  Google Scholar 

  339. Tang HS, Jones C, Sotiropoulos F (2003) An overset grid method for 3D unsteady incompressible flows. J Comput Phys 191:567–600

    MATH  Google Scholar 

  340. Tang HS, Kraatz S, Wu XG, Cheng WL, Qu K, Polly J (2013) Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: method, implementation, and experiment. Ocean Eng 62:56–67

    Google Scholar 

  341. Tang HS, Lee CH (1996) On the consistency of conservative algorithms for internal interface in simulation of inviscid flow by zonal method. Chin J Comput Phys 13(4):445–453

    Google Scholar 

  342. Tang HS, Paik J, Sotiropoulos F, Khangaokar T (2008) Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. ASCE J Hydr Eng 134:1210–1224

    Google Scholar 

  343. Tang HS, Qu K, Wu XG (2014) An overset grid method for integration of fully 3D fluid dynamics and geophysical fluid dynamics models to simulate multiphysics coastal ocean flows. J Comput Phys 273:548–571

    MathSciNet  MATH  Google Scholar 

  344. Tang HS, Qu K, Wu XG, Zhang ZK (2016) Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: a numerical experiment on a transient sill flow. In: Dickopf T, Gander MJ, Halpern L, Krause R, Pavarino LF (eds) Domain decomposition methods in science and engineering XXII. Lecture notes in computational science and engineering, XXII. Springer, Berlin, pp 407–414

  345. Tang HS, Sotiropoulos F (1999) A second-order godunov method for wave problems in coupled solid–water–gas systems. J Comput Phys 151:790–815

    MathSciNet  MATH  Google Scholar 

  346. Tang HS, Wu XG (2010) Multi-scale coastal flow simulation using coupled CFD and GFD models. In: Swayne DA, Yang W, Voinov AA, Rizzoli A, Filatova T (eds) Modelling for environments sake, fifth biennial meeting, July 5–8 2010, Ottawa, Canada

  347. Tang HS, Zhang DL, Lee CH (1996) Comments on algorithms for grid interfaces in simulating Euler flows. Commun Nonlinear Sci Numer Simul 1:50–54

    Google Scholar 

  348. Tang HS, Zhou T (1999) On nonconservative algorithms for grid interfaces. SIAM J Numer Anal 37:173–193

    MathSciNet  MATH  Google Scholar 

  349. Tang HZ, Warnecke G (2007) On convergence of a domain decomposition method for a scalar conservation law. SIAM J Numer Anal 45(4):1453–1471

    MathSciNet  MATH  Google Scholar 

  350. Tang YH, Kudo S, Bian X, Lia Z, Karniadakis GE (2015) Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. J Comput Phys 297:13–31

    MathSciNet  MATH  Google Scholar 

  351. Tezduyar T, Sathe S (2007) Modelling of fluidstructure interactions with the spacetime finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900

    MATH  Google Scholar 

  352. Thais L, Tejada-Martinez AE, Gatski TB, Mompean G (2011) A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput Fluids 43:134–142

    MathSciNet  MATH  Google Scholar 

  353. Tidriri MD (1995) Domain decomposition for compressible Navier–Stokes equations with different discretization and formulations. J Comput Phys 119:271–282

    MathSciNet  MATH  Google Scholar 

  354. Tidriri MD (2001) Development and study of Newton–Krylov–Schwarz algorithms. Int J Comput Fluid Dyn 15:115–126

    MathSciNet  MATH  Google Scholar 

  355. Torres CE, Parishani H, Ayala O, Rossi LF, Wang LP (2013) Analysis and parallel implementation of a forced N-body problem. J Comput Phys 245:235–258

    MATH  Google Scholar 

  356. Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory. Springer, Berlin

    MATH  Google Scholar 

  357. Tran TT, Kim DH (2018) A CFD study of coupled aerodynamic–hydrodynamic loads on a semisubmersible floating offshore wind turbine. Wind Energy 21(1):70–85

    MathSciNet  Google Scholar 

  358. Tsai YM, Kuo HC, Chang YY, Tseng YH (2012) A new parallel domain-decomposed chebyshev collocation method for atmospheric and oceanic modeling. Terr Atmos Ocean Sci 439–450:439–450

    Google Scholar 

  359. Tukovic Z, Karac A, Cardiff P, Jasak H, Ivankovic A (2018) OpenFOAM finite volume solver for fluid–solid interaction. Trans FAMENA 42(3):1–31

    Google Scholar 

  360. Tuttafesta M, Colonna G, Pascazio G (2013) Computing unsteady compressible flows using Roe’s flux-difference splitting scheme on GPUs. Comput Phys Commun 184:1497–1510

    MATH  Google Scholar 

  361. Tuttafesta M, Pascazio G, Colonna C (2016) Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics. Comput Phys Commun 207:243–257

    MATH  Google Scholar 

  362. Urquiza S, Blanco P, Vénere M, Feijóo R (2006) Multidimensional modelling for the carotid artery blood flow. Comput Methods Appl Mech Eng 195:4002–4017

    MathSciNet  MATH  Google Scholar 

  363. Utyuzhnikov S (2009) Domain decomposition for near-wall turbulent flows. Comput Fluids 38:1710–1717

    MathSciNet  MATH  Google Scholar 

  364. Velivelli AC, Bryden KM (2015) Domain decomposition based coupling between the lattice Boltzmann method and traditional CFD methods—Part II: numerical solution to the backward facing step flow. Adv Eng Softw 82:65–74

    Google Scholar 

  365. Verdugo F, Roth CJ, Yoshihara L, Wall WA (2017) Efficient solvers for coupled models in respiratory mechanics. Int J Numer Methods Biomed Eng 33:e02795

    Google Scholar 

  366. Visbal MR, Gaitonde DV (2001) Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J Comput Acoust 9(4):1259–1286

    MathSciNet  MATH  Google Scholar 

  367. von Terzi D, Rodi W, Fröhlich J (2008) Scrutinizing velocity and pressure coupling conditions for LES with downstream RANS calculations. In: Peng S, Haase W (eds) Notes on numerical fluid mechanics and multidisciplinary design. Springer, Berlin, pp 107–116

    Google Scholar 

  368. Wachs A (2011) PeliGRIFF, a parallel DEM–DLM/FD direct numerical simulation tool for 3D particulate flows. J Eng Math 71:131–155

    MathSciNet  MATH  Google Scholar 

  369. Wakama DN, Pacull F (2013) Memory efficient hybrid algebraic solvers for linear systems arising from compressible flows. Comput Fluids 80:158–167

    MathSciNet  MATH  Google Scholar 

  370. Waltz J (2004) Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids. Int J Numer Methods Fluids 46:37–57

    MATH  Google Scholar 

  371. Wang C, Nilsson H, Yang J, Petit O (2017) 3D–1D coupling for hydraulic system transient simulations. Comput Phys Commun 210:1–9

    MathSciNet  MATH  Google Scholar 

  372. Wang MY, Georgiadis JG (1996) Conjugate forced convection in crossflow over a cylinder array with volumetric heating. Int J Heat Mass Transf 39(7):1351–1361

    MATH  Google Scholar 

  373. Wang ZJ (1995) A fully conservative interface algorithm for overlapped grids. J Comput Phys 122:96–106

    MathSciNet  MATH  Google Scholar 

  374. Warner JC, Sherwooda CR, Signella RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34:1284–1306

    Google Scholar 

  375. Weibel E (1963) Morphometry of the human lung. Springer, Berlin

    Google Scholar 

  376. Wenzlau F, Mller TM (2009) Finite-difference modeling of wave propagation and diffusion in poroelastic media. Geophysics 74:T55–66

    Google Scholar 

  377. Wilson J, Davis C, Venayagamoorthy S, Heyliger P (2015) Comparisons of horizontal-axis wind turbine wake interaction models. ASME J Sol Energy Eng 137(3):031001-1–031001-8

    Google Scholar 

  378. Wright JA, Shyy W (1993) A pressure-based composite grid method for the Navier–Stokes equations. J Comput Phys 107:225–238

    MATH  Google Scholar 

  379. Wrona F, Adamidis PA, Iben U, Rabenseifner R, Munz CD (2003) Dynamic load balancing for the parallel simulation of cavitating flows. Springer, Venice

    Google Scholar 

  380. Wu XG, Tang HS (2010) Coupling of CFD model and FVCOM to predict small-scale coastal flows. J Hydrodyn 22:284–289

    Google Scholar 

  381. Wu ZN, Xu SS, Gao B, Zhuang LS (2007) Review of numerical computation of compressible flows with artificial interfaces. Comput Fluids 36:1657–1679

    MathSciNet  MATH  Google Scholar 

  382. Xiao JJ, Travis JR, Royl P, Necker G, Svishchev A, Jordan T (2016) Three-dimensional all-speed CFD code for safety analysis of nuclearreactor containment: status of GASFLOW parallelization, model development, validation and application. Nucl Eng Des 301:290–310

    Google Scholar 

  383. Xu K, Sun G (2009) Assessment of an interface conservative algorithm MFBI in a Chimera grid flow solver for multi-element airfoils. In: Proceedings of the world congress on engineering, London, UK

  384. Xu L, Liu TG (2011) Accuracies and conservation errors of various ghost fluid methods for multi-medium Riemann problem. J Comput Phys 230(12):4975–4990

    MathSciNet  MATH  Google Scholar 

  385. Xu YG, Wan DC (2012) Numerical simulation of fish swimming with rigid pectoral fins. J Hydrodyn 24:263–272

    Google Scholar 

  386. Yamakawa M, Kita Y, Matsuno K (2011) Domain decomposition method for unstructured meshes in an OpenMP computing environment. Comput Fluids 45:168–171

    MATH  Google Scholar 

  387. Yang DY, Park K, Kang YS (2001) Integrated finite element simulation for the hot extrusion of complicated AL alloy profiles. J Mater Process Technol 111:25–30

    Google Scholar 

  388. Yang HJ, Cai XC (2017) Two-level space-time domain decomposition methods for flow control problems. J Sci Comput 70:717–743

    MathSciNet  MATH  Google Scholar 

  389. Yao QH, Pan X (2014) Large scale simulation of hydrogen dispersion by a stabilized balancing domain decomposition method. J Appl Math. Article ID 686873

  390. Yiantsios S (2006) An application of domain decomposition methods with non-conforming spectral element/Fourier expansions for the incompressible Navier–Stokes equations. Comput Fluids 35:1302–1315

    MATH  Google Scholar 

  391. Yotov I (2001) A multilevel Newton–Krylov interface solver for multiphysics couplings of flow in porous media. Numer Linear Algebra Appl 8:551–570

    MathSciNet  MATH  Google Scholar 

  392. Yu DZ, Mei RW, Shyy W (2002) A multi-block lattice Boltzmann method for viscous fluid flows. Int J Numer Methods Fluids 39:99–120

    MATH  Google Scholar 

  393. Zahle F, Srensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12:594–619

    Google Scholar 

  394. Zang Y, Street RL (1995) A composite multigrid method for calculating unsteady incompressible flows in geometrically complex domains. Int J Numer Methods Fluids 20:341–361

    MATH  Google Scholar 

  395. Zhang B, Liang CL (2015) A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains. J Comput Phys 295:147–160

    MathSciNet  MATH  Google Scholar 

  396. Zhang Q, Cen S (2015) Multiphysics modeling: numerical methods and engineering applications, chpter 7. In: High performance computing for mulitphysics problems. Tsinghua University Press, Beijing, pp 227–231

  397. Zhao L, Zhang CH (2014) A parallel unstructured finite-volume method for all-speed flows. Numer Heat Transf Part B Fundam 65:336–358

    Google Scholar 

  398. Zingg DW, Johnston GW (1991) Interactive airfoil calculations with higher-order viscous-flow equations. AIAA J 29(7):1033–1040

    Google Scholar 

Download references

Acknowledgements

This paper is support by NSF (DMS \(\#\)1543876 and \(\#\) 1622459) and the NSERC Discovery Grant Program (RGPIN-2018-04881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human Participants or Animals

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H.S., Haynes, R.D. & Houzeaux, G. A Review of Domain Decomposition Methods for Simulation of Fluid Flows: Concepts, Algorithms, and Applications. Arch Computat Methods Eng 28, 841–873 (2021). https://doi.org/10.1007/s11831-019-09394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09394-0

Navigation