Skip to main content

Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification

Abstract

Masonry structures, although classically suitable to withstand gravitational loads, are sensibly vulnerable if subjected to extraordinary actions such as earthquakes, exhibiting cracks even for events of moderate intensity compared to other structural typologies like as reinforced concrete or steel buildings. In the last half-century, the scientific community devoted a consistent effort to the computational analysis of masonry structures in order to develop tools for the prediction (and the assessment) of their structural behavior. Given the complexity of the mechanics of masonry, different approaches and scales of representation of the mechanical behavior of masonry, as well as different strategies of analysis, have been proposed. In this paper, a comprehensive review of the existing modeling strategies for masonry structures, as well as a novel classification of these strategies are presented. Although a fully coherent collocation of all the modeling approaches is substantially impossible due to the peculiar features of each solution proposed, this classification attempts to make some order on the wide scientific production on this field. The modeling strategies are herein classified into four main categories: block-based models, continuum models, geometry-based models, and macroelement models. Each category is comprehensively reviewed. The future challenges of computational analysis of masonry structures are also discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Como M (2013) Statics of historic masonry constructions. Springer, Berlin

    Google Scholar 

  2. Hendry AW (1998) Structural masonry. Macmillan Education, London

    Google Scholar 

  3. Page A (1981) The biaxial compressive strength of brick masonry. Proc Inst Civ Eng 71(3):893–906

    Google Scholar 

  4. Page A, Samarasinghe W, Hendry A (1982) The in-plane failure of masonry. A review. Proc Br Ceram Soc 30:90

    Google Scholar 

  5. Page A (1983) The strength of brick masonry under biaxial tension-compression. Int J Mason Constr 3(1):26–31

    Google Scholar 

  6. Magenes G, Calvi GM (1997) In-plane seismic response of brick masonry walls. Earthq Eng Struct Dyn 26(11):1091–1112

    Google Scholar 

  7. Calderini C, Cattari S, Lagomarsino S (2009) In-plane strength of unreinforced masonry piers. Earthq Eng Struct Dyn 38(2):243–267

    Google Scholar 

  8. Beyer K (2012) Peak and residual strengths of brick masonry spandrels. Eng Struct 41:533–547

    Google Scholar 

  9. Petry S, Beyer K (2014) Influence of boundary conditions and size effect on the drift capacity of URM walls. Eng Struct 65:76–88

    Google Scholar 

  10. Messali F, Rots J (2018) In-plane drift capacity at near collapse of rocking unreinforced calcium silicate and clay masonry piers. Eng Struct 164:183–194

    Google Scholar 

  11. D’Altri AM, de Miranda S, Castellazzi G, Sarhosis V (2018) A 3D detailed micro-model for the in-plane and out-of-plane numerical analysis of masonry panels. Comput Struct 206:18–30

    Google Scholar 

  12. Facconi L, Minelli F, Vecchio FJ (2018) Predicting uniaxial cyclic compressive behavior of brick masonry: new analytical model. J Struct Eng 144(2):04017213

    Google Scholar 

  13. Sassoni E, Mazzotti C, Pagliai G (2014) Comparison between experimental methods for evaluating the compressive strength of existing masonry buildings. Constr Build Mater 68:206–219

    Google Scholar 

  14. Kržan M, Gostič S, Cattari S, Bosiljkov V (2015) Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bull Earthq Eng 13(1):203–236

    Google Scholar 

  15. Esposito R, Messali F, Ravenshorst GJP, Schipper HR, Rots JG (2019) Seismic assessment of a lab-tested two-storey unreinforced masonry Dutch terraced house. Bull Earthq Eng 17(8):4601–4623. https://doi.org/10.1007/s10518-019-00572-w

    Article  Google Scholar 

  16. Messali F, Esposito R, Jafari S, Ravenshorst G, Korswagen P, Rots JG (2018) A multiscale experimental characterization of dutch unreinforced masonry buildings. In: Proceedings of the 16th European conference on earthquake engineering, 16ECEE

  17. Borri A, Castori G, Corradi M, Speranzini E (2011) Shear behavior of unreinforced and reinforced masonry panels subjected to in situ diagonal compression tests. Constr Build Mater 25(12):4403–4414

    Google Scholar 

  18. Lumantarna R, Biggs DT, Ingham JM (2014) Compressive, flexural bond, and shear bond strengths of in situ New Zealand unreinforced clay brick masonry constructed using lime mortar between the 1880s and 1940s. J Mater Civ Eng 26(4):559–566

    Google Scholar 

  19. McCann D, Forde M (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int 34(2):71–84

    Google Scholar 

  20. Bosiljkov V, Bokan-Bosiljkov V, Strah B, Velkavr J, Cotič P (2010) Review of innovative techniques for the knowledge of cultural assets (geometry, technologies, decay). PERPETUATE (EC-FP7 project), Deliverable D6

  21. Borri A, Corradi M, Castori G, De Maria A (2015) A method for the analysis and classification of historic masonry. Bull Earthq Eng 13(9):2647–2665

    Google Scholar 

  22. Tondelli M, Rota M, Penna A, Magenes G (2012) Evaluation of uncertainties in the seismic assessment of existing masonry buildings. J Earthq Eng 16(sup1):36–64

    Google Scholar 

  23. Recommendations for the analysis, conservation and structural restoration of architectural heritage, International scientific committee for analysis and restoration of structures of architectural heritage, ratified as ICOMOS document by the General Assembly in Zimbabwe (2003)

  24. Eurocode 8 - Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings, Brussels, Belgium (2005)

  25. Direttiva del Presidente del Consiglio dei Ministri 9 febbraio 2011. Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le costruzioni di cui al D.M. 14/01/2008

  26. Guide for the structural rehabilitation of heritage buildings, prepared by CIB commission W023—Wall structures (2010)

  27. Cattari S, Lagomarsino S, Bosiljkov V, D’Ayala D (2015) Sensitivity analysis for setting up the investigation protocol and defining proper confidence factors for masonry buildings. Bull Earthq Eng 13(1):129–151

    Google Scholar 

  28. Haddad J, Cattari S, Lagomarsino S (2019) Sensitivity and preliminary analyses for the seismic assessment of Ardinghelli Palace. In: Structural analysis of historical constructions. Springer, Berlin, pp 2412–2421

  29. Chiozzi A, Grillanda N, Milani G, Tralli A (2018) UB-ALMANAC: an adaptive limit analysis NURBS-based program for the automatic assessment of partial failure mechanisms in masonry churches. Eng Fail Anal 85:201–220

    Google Scholar 

  30. Castellazzi G, D’Altri A, Bitelli G, Selvaggi I, Lambertini A (2015) From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors 15(8):18360–18380

    Google Scholar 

  31. Castellazzi G, D’Altri AM, de Miranda S, Ubertini F (2017) An innovative numerical modeling strategy for the structural analysis of historical monumental buildings. Eng Struct 132:229–248

    Google Scholar 

  32. Korumaz M, Betti M, Conti A, Tucci G, Bartoli G, Bonora V, Korumaz AG, Fiorini L (2017) An integrated terrestrial laser scanner (TLS), deviation analysis (DA) and finite element (FE) approach for health assessment of historical structures. A minaret case study. Eng Struct 153:224–238

    Google Scholar 

  33. D’Altri AM, Milani G, de Miranda S, Castellazzi G, Sarhosis V (2018) Stability analysis of leaning historic masonry structures. Autom Constr 92:199–213

    Google Scholar 

  34. Cerone M, Croci G, Viskovic A (2000) The structural behaviour of colosseum over the centuries. In: More than two thousand years in the history of architecture

  35. Macchi G, Ruggeri G, Eusebio M, Moncecchi M (1993) Structural assessment of the leaning tower of pisa. In: IABSE reports. IABSE Internationa Association for Bridge, pp 401–401

  36. DeJong MJ, Belletti B, Hendriks MA, Rots JG (2009) Shell elements for sequentially linear analysis: lateral failure of masonry structures. Eng Struct 31(7):1382–1392

    Google Scholar 

  37. Rots JG, Belletti B, Invernizzi S (2008) Robust modeling of RC structures with an “event-by-event” strategy. Eng Fract Mech 75(3–4):590–614

    Google Scholar 

  38. Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, Oxford

    MATH  Google Scholar 

  39. Clough RW, Penzien J (2003) Dynamics of Structures, (revised). Computers and Structures, Inc., Berkeley, Calif

  40. Heyman J (1966) The stone skeleton. Int J Solids Struct 2(2):249–279

    Google Scholar 

  41. Angelillo M (ed) (2014) Mechanics of masonry structures. Springer, Vienna

  42. Huerta S (2001) Mechanics of masonry vaults: The equilibrium approach. SAHC 2001

  43. Giuffrè A, Carocci C (1993) Statica e dinamica delle costruzioni murarie storiche. pp 539–598

  44. Marmo F, Rosati L (2017) Reformulation and extension of the thrust network analysis. Comput Struct 182:104–118

    Google Scholar 

  45. Chiozzi A, Milani G, Tralli A (2017) A genetic algorithm NURBS-based new approach for fast kinematic limit analysis of masonry vaults. Comput Struct 182:187–204

    Google Scholar 

  46. Bauer S, Lackner R (2015) Gradient-based adaptive discontinuity layout optimization for the prediction of strength properties in matrix-inclusion materials. Int J Solids Struct 63:82–98

    Google Scholar 

  47. Lourenço PB (2002) Computations on historic masonry structures. Progress Struct Eng Mater 4(3):301–319

    Google Scholar 

  48. Roca P, Cervera M, Gariup G, Pela’ L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17(3):299–325

    MATH  Google Scholar 

  49. Lagomarsino S, Cattari S (2015) PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull Earthq Eng 13(1):13–47

    Google Scholar 

  50. Page AW (1978) Finite element model for masonry. J Struct Div 104(8):1267–1285

    Google Scholar 

  51. Dolatshahi KM, Yekrangnia M (2015) Out-of-plane strength reduction of unreinforced masonry walls because of in-plane damages. Earthq Eng Struct Dyn 44(13):2157–2176

    Google Scholar 

  52. Minga E, Macorini L, Izzuddin BA (2018) A 3D mesoscale damage-plasticity approach for masonry structures under cyclic loading. Meccanica 53(7):1591–1611

    MathSciNet  Google Scholar 

  53. D’Altri AM, Messali F, Rots J, Castellazzi G, de Miranda S (2019) A damaging block-based model for the analysis of the cyclic behaviour of full-scale masonry structures. Eng Fract Mech 209:423–448. https://doi.org/10.1016/j.engfracmech.2018.11.046

    Article  Google Scholar 

  54. Lotfi HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80

    Google Scholar 

  55. Rots J (1991) Numerical simulation of cracking in structural masonry. Heron 36(2):49–63

    Google Scholar 

  56. Rots JG (1997) Structural masonry: an experimental/numerical basis for practical design rules. AA Balkema, Leiden

    Google Scholar 

  57. Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Google Scholar 

  58. Sandoval C, Arnau O (2016) Experimental characterization and detailed micro-modeling of multi-perforated clay brick masonry structural response. Mater Struct 50(1):34

    Google Scholar 

  59. Calderón S, Sandoval C, Arnau O (2017) Shear response of partially-grouted reinforced masonry walls with a central opening: testing and detailed micro-modelling. Mater Des 118:122–137

    Google Scholar 

  60. Senthivel R, Lourenço P (2009) Finite element modelling of deformation characteristics of historical stone masonry shear walls. Eng Struct 31(9):1930–1943

    Google Scholar 

  61. Oliveira DV, Lourenço PB (2004) Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Comput Struct 82(17–19):1451–1461

    Google Scholar 

  62. Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq Eng Struct Dyn 26(4):423–439

    Google Scholar 

  63. Alfano G, Sacco E (2006) Combining interface damage and friction in a cohesive-zone model. Int J Numer Methods Eng 68(5):542–582

    MathSciNet  MATH  Google Scholar 

  64. Parrinello F, Failla B, Borino G (2009) Cohesive–frictional interface constitutive model. Int J Solids Struct 46(13):2680–2692

    MATH  Google Scholar 

  65. Formica G, Sansalone V, Casciaro R (2002) A mixed solution strategy for the nonlinear analysis of brick masonry walls. Comput Methods Appl Mech Eng 191(51–52):5847–5876

    MATH  Google Scholar 

  66. Malomo D, Pinho R, Penna A (2018) Using the applied element method for modelling calcium silicate brick masonry subjected to in-plane cyclic loading. Earthq Eng Struct Dyn 47(7):1610–1630

    Google Scholar 

  67. Casolo S (2000) Modelling the out-of-plane seismic behaviour of masonry walls by rigid elements. Earthq Eng Struct Dyn 29(12):1797–1813

    Google Scholar 

  68. Orduña A (2017) Non-linear static analysis of rigid block models for structural assessment of ancient masonry constructions. Int J Solids Struct 128:23–35

    Google Scholar 

  69. Baraldi D, Cecchi A (2016) Discrete approaches for the nonlinear analysis of in plane loaded masonry walls: molecular dynamic and static algorithm solutions. Eur J Mech-A/Solids 57:165–177

    MathSciNet  MATH  Google Scholar 

  70. Baraldi D, Cecchi A (2017) A full 3D rigid block model for the collapse behaviour of masonry walls. Eur J Mech-A/Solids 64:11–28

    MathSciNet  MATH  Google Scholar 

  71. Macorini L, Izzuddin B (2011) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Methods Eng 85(12):1584–1608

    MATH  Google Scholar 

  72. Chisari C, Macorini L, Amadio C, Izzuddin B (2015) An inverse analysis procedure for material parameter identification of mortar joints in unreinforced masonry. Comput Struct 155:97–105

    Google Scholar 

  73. Chisari C, Macorini L, Amadio C, Izzuddin BA (2018) Identification of mesoscale model parameters for brick-masonry. Int J Solids Struct 146:224–240

    Google Scholar 

  74. Minga E, Macorini L, Izzuddin B (2018) Enhanced mesoscale partitioned modelling of heterogeneous masonry structures. Int J Numer Methods Eng 113(13):1950–1971

    MathSciNet  Google Scholar 

  75. Zhang Y, Macorini L, Izzuddin BA (2016) Mesoscale partitioned analysis of brick-masonry arches. Eng Struct 124:142–166

    Google Scholar 

  76. Aref AJ, Dolatshahi KM (2013) A three-dimensional cyclic meso-scale numerical procedure for simulation of unreinforced masonry structures. Comput Struct 120:9–23

    Google Scholar 

  77. Wilding BV, Dolatshahi KM, Beyer K (2017) Influence of load history on the force-displacement response of in-plane loaded unreinforced masonry walls. Eng Struct 152:671–682

    Google Scholar 

  78. Dolatshahi KM, Aref AJ (2016) Multi-directional response of unreinforced masonry walls: experimental and computational investigations. Earthq Eng Struct Dyn 45(9):1427–1449

    Google Scholar 

  79. Dolatshahi KM, Nikoukalam MT, Beyer K (2018) Numerical study on factors that influence the in-plane drift capacity of unreinforced masonry walls. Earthq Eng Struct Dyn 47(6):1440–1459

    Google Scholar 

  80. Kuang JS, Yuen Y (2013) Simulations of masonry-infilled reinforced concrete frame failure. Proc Inst Civ Eng: Eng Comput Mech 166(4):179

    Google Scholar 

  81. Miglietta PC, Bentz EC, Grasselli G (2017) Finite/discrete element modelling of reversed cyclic tests on unreinforced masonry structures. Eng Struct 138:159–169

    Google Scholar 

  82. Sarhosis V, Bagi K, Lemos JV, Milani G (2016) Computational modeling of masonry structures using the discrete element method. IGI Global, Pennsylvania

    Google Scholar 

  83. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  84. Cundall PA (1980) UDEC-A generalised distinct element program for modelling jointed rock., tech. rep., Cundall (Peter) Associates Virginia Water (England)

  85. Çaktı E, Saygılı Ö, Lemos JV, Oliveira CS (2016) Discrete element modeling of a scaled masonry structure and its validation. Eng Struct 126:224–236

    Google Scholar 

  86. Papantonopoulos C, Psycharis I, Papastamatiou D, Lemos J, Mouzakis H (2002) Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthq Eng Struct Dyn 31(9):1699–1717

    Google Scholar 

  87. Bui T, Limam A, Sarhosis V, Hjiaj M (2017) Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint masonry wall constructions. Eng Struct 136:277–294

    Google Scholar 

  88. Sarhosis V, Sheng Y (2014) Identification of material parameters for low bond strength masonry. Eng Struct 60:100–110

    Google Scholar 

  89. Lemos JV (2007) Discrete element modeling of masonry structures. Int J Archit Herit 1(2):190–213

    Google Scholar 

  90. Tóth AR, Orbán Z, Bagi K (2009) Discrete element analysis of a stone masonry arch. Mech Res Commun 36(4):469–480

    MATH  Google Scholar 

  91. Simon J, Bagi K (2016) Discrete element analysis of the minimum thickness of oval masonry domes. Int J Archit Herit 10(4):457–475

    Google Scholar 

  92. Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140:317–336

    Google Scholar 

  93. Lengyel G (2017) Discrete element analysis of gothic masonry vaults for self-weight and horizontal support displacement. Eng Struct 148:195–209

    Google Scholar 

  94. Foti D, Vacca V, Facchini I (2018) DEM modeling and experimental analysis of the static behavior of a dry-joints masonry cross vaults. Constr Build Mater 170:111–120

    Google Scholar 

  95. Shi G-H (1992) Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Eng Comput 9(2):157–168

    MathSciNet  Google Scholar 

  96. Thavalingam A, Bicanic N, Robinson J, Ponniah D (2001) Computational framework for discontinuous modelling of masonry arch bridges. Comput Struct 79(19):1821–1830

    Google Scholar 

  97. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    MathSciNet  MATH  Google Scholar 

  98. Moreau JJ (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mech Appl. Springer, Berlin, pp 1–82

  99. Rafiee A, Vinches M (2013) Mechanical behaviour of a stone masonry bridge assessed using an implicit discrete element method. Eng Struct 48:739–749

    Google Scholar 

  100. Rafiee A, Vinches M, Bohatier C (2008) Application of the nscd method to analyse the dynamic behaviour of stone arched structures. Int J Solids Struct 45(25–26):6269–6283

    MATH  Google Scholar 

  101. Lancioni G, Gentilucci D, Quagliarini E, Lenci S (2016) Seismic vulnerability of ancient stone arches by using a numerical model based on the non-smooth contact dynamics method. Eng Struct 119:110–121

    Google Scholar 

  102. Beatini V, Royer-Carfagni G, Tasora A (2017) A regularized non-smooth contact dynamics approach for architectural masonry structures. Comput Struct 187:88–100

    Google Scholar 

  103. Sarhosis V, Lemos J (2018) A detailed micro-modelling approach for the structural analysis of masonry assemblages. Comput Struct 206:66–81

    Google Scholar 

  104. Munjiza AA (2004) The combined finite-discrete element method. Wiley, Hoboken

    MATH  Google Scholar 

  105. Smoljanović H, Živaljić N, Nikolić Ž (2013) A combined finite-discrete element analysis of dry stone masonry structures. Eng Struct 52:89–100

    Google Scholar 

  106. Smoljanović H, Živaljić N, Nikolić Ž, Munjiza A (2018) Numerical analysis of 3D dry-stone masonry structures by combined finite-discrete element method. Int J Solids Struct 136:150–167

    Google Scholar 

  107. Smoljanović H, Nikolić Ž, Živaljić N (2015) A combined finite-discrete numerical model for analysis of masonry structures. Eng Fract Mech 136:1–14

    Google Scholar 

  108. Ali SS, Page AW (1988) Finite element model for masonry subjected to concentrated loads. J Struct Eng 114(8):1761–1784

    Google Scholar 

  109. Petracca M, Pelà L, Rossi R, Zaghi S, Camata G, Spacone E (2017) Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Constr Build Mater 149:296–314

    Google Scholar 

  110. Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194–214

    Google Scholar 

  111. Serpieri R, Albarella M, Sacco E (2017) A 3D microstructured cohesive-frictional interface model and its rational calibration for the analysis of masonry panels. Int J Solids Struct 122:110–127

    Google Scholar 

  112. Baggio C, Trovalusci P (1998) Limit analysis for no-tension and frictional three-dimensional discrete systems. J Struct Mech 26(3):287–304

    Google Scholar 

  113. Baggio C, Trovalusci P (2000) Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Struct Eng Mech 10(2):181

    Google Scholar 

  114. Ferris M, Tin-Loi F (2001) Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int J Mech Sci 43(1):209–224

    MATH  Google Scholar 

  115. Sutcliffe D, Yu H, Page A (2001) Lower bound limit analysis of unreinforced masonry shear walls. Comput Struct 79(14):1295–1312

    Google Scholar 

  116. Orduña A, Lourenço PB (2005) Three-dimensional limit analysis of rigid blocks assemblages. Part I: Torsion failure on frictional interfaces and limit analysis formulation. Int J Solids Struct 42(18–19):5140–5160

    MATH  Google Scholar 

  117. Orduña A, Lourenço PB (2005) Three-dimensional limit analysis of rigid blocks assemblages. Part II: load-path following solution procedure and validation. Int J Solids Struct 42(18–19):5161–5180

    MATH  Google Scholar 

  118. Gilbert M, Casapulla C, Ahmed H (2006) Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Comput Struct 84(13–14):873–887

    Google Scholar 

  119. Portioli F, Casapulla C, Cascini L, D’Aniello M, Landolfo R (2013) Limit analysis by linear programming of 3D masonry structures with associative friction laws and torsion interaction effects. Arch Appl Mech 83(10):1415–1438

    MATH  Google Scholar 

  120. Portioli F, Casapulla C, Gilbert M, Cascini L (2014) Limit analysis of 3D masonry block structures with non-associative frictional joints using cone programming. Comput Struct 143:108–121

    Google Scholar 

  121. Milani G (2008) 3d upper bound limit analysis of multi-leaf masonry walls. Int J Mech Sci 50(4):817–836

    MATH  Google Scholar 

  122. Milani G, Beyer K, Dazio A (2009) Upper bound limit analysis of meso-mechanical spandrel models for the pushover analysis of 2d masonry frames. Eng Struct 31(11):2696–2710

    Google Scholar 

  123. Milani G, Zuccarello F, Olivito R, Tralli A (2007) Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded. Comput Mech 40(6):911–931

    MATH  Google Scholar 

  124. Cavicchi A, Gambarotta L (2006) Two-dimensional finite element upper bound limit analysis of masonry bridges. Comput Struct 84(31–32):2316–2328

    Google Scholar 

  125. Abdulla KF, Cunningham LS, Gillie M (2017) Simulating masonry wall behaviour using a simplified micro-model approach. Eng Struct 151:349–365

    Google Scholar 

  126. Zhai C, Wang X, Kong J, Li S, Xie L (2017) Numerical simulation of masonry-infilled rc frames using xfem. J Struct Eng 143(10):04017144

    Google Scholar 

  127. Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24(3):150–162

    MathSciNet  MATH  Google Scholar 

  128. Maier G, Nappi A (1990) A theory of no-tension discretized structural systems. Eng Struct 12(4):227–234

    Google Scholar 

  129. Angelillo M (1994) A finite element approach to the study of no-tension structures. Finite Elements Anal Des 17(1):57–73

    MATH  Google Scholar 

  130. Alfano G, Rosati L, Valoroso N (2000) A numerical strategy for finite element analysis of no-tension materials. Int J Numer Methods Eng 48(3):317–350

    MATH  Google Scholar 

  131. Cuomo M, Ventura G (2000) A complementary energy formulation of no tension masonry-like solids. Comput Methods Appl Mech Eng 189(1):313–339

    MathSciNet  MATH  Google Scholar 

  132. Lucchesi M, Padovani C, Pasquinelli G (2000) Thermodynamics of no-tension materials. Int J Solids Struct 37(45):6581–6604

    MATH  Google Scholar 

  133. Bruggi M (2014) Finite element analysis of no-tension structures as a topology optimization problem. Struct Multidiscip Optim 50(6):957–973

    MathSciNet  Google Scholar 

  134. Bruggi M, Taliercio A (2015) Analysis of no-tension structures under monotonic loading through an energy-based method. Comput Struct 159:14–25

    Google Scholar 

  135. Bruggi M, Taliercio A (2018) Analysis of 3D no-tension masonry-like walls. In: European mechanics society ESMC 2018

  136. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concret Res 6(6):773–781

    Google Scholar 

  137. Rots JG, De Borst R (1987) Analysis of mixed-mode fracture in concrete. J Eng Mech 113(11):1739–1758

    Google Scholar 

  138. Dragon A, Mroz Z (1979) A continuum model for plastic-brittle behaviour of rock and concrete. Int J Eng Sci 17(2):121–137

    MATH  Google Scholar 

  139. Løland K (1980) Continuous damage model for load-response estimation of concrete. Cem Concret Res 10(3):395–402

    Google Scholar 

  140. Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Google Scholar 

  141. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Google Scholar 

  142. Lotfi H, Shing P (1991) An appraisal of smeared crack models for masonry shear wall analysis. Comput Struct 41(3):413–425

    Google Scholar 

  143. Toti J, Gattulli V, Sacco E (2015) Nonlocal damage propagation in the dynamics of masonry elements. Comput Struct 152:215–227

    Google Scholar 

  144. D’Altri AM, Castellazzi G, de Miranda S (2018) Collapse investigation of the Arquata del Tronto medieval fortress after the 2016 Central Italy seismic sequence. J Build Eng 18:245–251

    Google Scholar 

  145. Bartoli G, Betti M, Vignoli A (2016) A numerical study on seismic risk assessment of historic masonry towers: a case study in San Gimignano. Bull Earthq Eng 14(6):1475–1518

    Google Scholar 

  146. Castellazzi G, D’Altri AM, de Miranda S, Chiozzi A, Tralli A (2018) Numerical insights on the seismic behavior of a non-isolated historical masonry tower. Bull Earthq Eng 16(2):933–961

    Google Scholar 

  147. Valente M, Milani G (2016) Seismic assessment of historical masonry towers by means of simplified approaches and standard FEM. Constr Build Mater 108:74–104

    Google Scholar 

  148. Betti M, Vignoli A (2011) Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all’Impruneta (Italy). Constr Build Mater 25(12):4308–4324

    Google Scholar 

  149. Milani G, Valente M (2015) Failure analysis of seven masonry churches severely damaged during the 2012 Emilia-Romagna (Italy) earthquake: Non-linear dynamic analyses vs conventional static approaches. Eng Fail Anal 54:13–56

    Google Scholar 

  150. Fortunato G, Funari MF, Lonetti P (2017) Survey and seismic vulnerability assessment of the baptistery of san giovanni in tumba (Italy). J Cultural Heritage 26:64–78

    Google Scholar 

  151. Elyamani A, Roca P, Caselles O, Clapes J (2017) Seismic safety assessment of historical structures using updated numerical models: the case of Mallorca cathedral in spain. Eng Failure Anal 74:54–79

    Google Scholar 

  152. Betti M, Galano L (2012) Seismic analysis of historic masonry buildings: the vicarious palace in Pescia (Italy). Buildings 2(2):63–82

    Google Scholar 

  153. Tiberti S, Acito M, Milani G (2016) Comprehensive fe numerical insight into finale emilia castle behavior under 2012 emilia romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis. Eng Struct 117:397–421

    Google Scholar 

  154. Degli Abbati S, D’Altri AM, Ottonelli D, Castellazzi G, Cattari, S, de Miranda S, Lagomarsino S (2019) Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Comput Struct 213:51–71. https://doi.org/10.1016/j.compstruc.2018.12.001

    Article  Google Scholar 

  155. Pelà L, Aprile A, Benedetti A (2009) Seismic assessment of masonry arch bridges. Eng Struct 31(8):1777–1788

    Google Scholar 

  156. Zampieri P, Zanini MA, Modena C (2015) Simplified seismic assessment of multi-span masonry arch bridges. Bull Earthq Eng 13(9):2629–2646

    Google Scholar 

  157. Saloustros S, Pelà L, Cervera M (2015) A crack-tracking technique for localized cohesive-frictional damage. Eng Fract Mech 150:96–114

    Google Scholar 

  158. Saloustros S, Pelà L, Cervera M, Roca P (2018) An enhanced finite element macro-model for the realistic simulation of localized cracks in masonry structures: A large-scale application. Int J Archit Herit 12(3):432–447

    Google Scholar 

  159. Rots J, Messali F, Esposito R, Jafari S, Mariani V (2016) Computational modeling of masonry with a view to groningen induced seismicity. In: 10th international conference on Structural Analysis of Historical Constructions, SAHC, pp 13–15

  160. Lourénço PB, De Borst R, Rots JG (1997) A plane stress softening plasticity model for orthotropic materials. Int J Numer Methods Eng 40(21):4033–4057

    MATH  Google Scholar 

  161. Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652

    Google Scholar 

  162. Lopez J, Oller S, Onate E, Lubliner J (1999) A homogeneous constitutive model for masonry. Int J Numer Methods Eng 46(10):1651–1671

    MathSciNet  MATH  Google Scholar 

  163. Berto L, Saetta A, Scotta R, Vitaliani R (2002) An orthotropic damage model for masonry structures. Int J Numer Methods Eng 55(2):127–157

    MATH  Google Scholar 

  164. Pelà L, Cervera M, Roca P (2011) Continuum damage model for orthotropic materials: application to masonry. Comput Methods Appl Mech Eng 200(9–12):917–930

    MathSciNet  MATH  Google Scholar 

  165. Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967

    Google Scholar 

  166. Pelà L, Cervera M, Oller S, Chiumenti M (2014) A localized mapped damage model for orthotropic materials. Eng Fract Mech 124:196–216

    Google Scholar 

  167. Reyes E, Gálvez J, Casati M, Cendón D, Sancho J, Planas J (2009) An embedded cohesive crack model for finite element analysis of brickwork masonry fracture. Eng Fract Mech 76(12):1930–1944

    Google Scholar 

  168. Milani G, Casolo S, Naliato A, Tralli A (2012) Seismic assessment of a medieval masonry tower in northern Italy by limit, nonlinear static, and full dynamic analyses. Int J Archit Herit 6(5):489–524

    Google Scholar 

  169. Pantò B, Cannizzaro F, Caddemi S, Caliò I (2016) 3d macro-element modelling approach for seismic assessment of historical masonry churches. Adv Eng Softw 97:40–59

    Google Scholar 

  170. Pantò B, Caliò I, Lourenço P (2018) A 3D discrete macro-element for modelling the out-of-plane behaviour of infilled frame structures. Eng Struct 175:371–385

    Google Scholar 

  171. Anthoine A (1995) Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int J Solids Struct 32(2):137–163

    MATH  Google Scholar 

  172. Cavalagli N, Cluni F, Gusella V (2011) Strength domain of non-periodic masonry by homogenization in generalized plane state. Eur J Mech-A/Solids 30(2):113–126

    MATH  Google Scholar 

  173. Taliercio A (2014) Closed-form expressions for the macroscopic in-plane elastic and creep coefficients of brick masonry. Int J Solids Struct 51(17):2949–2963

    Google Scholar 

  174. Stefanou I, Sab K, Heck J-V (2015) Three dimensional homogenization of masonry structures with building blocks of finite strength: a closed form strength domain. Int J Solids Struct 54:258–270

    Google Scholar 

  175. Milani G (2011) Simple lower bound limit analysis homogenization model for in-and out-of-plane loaded masonry walls. Constr Build Mater 25(12):4426–4443

    Google Scholar 

  176. Sacco E, Addessi D, Sab K (2018) New trends in mechanics of masonry. Meccanica 53(7):1565–1569

    MathSciNet  Google Scholar 

  177. Bertolesi E, Milani G, Casolo S (2018) Homogenization towards a mechanistic rigid body and spring model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures. Meccanica 53(7):1819–1855

    MathSciNet  Google Scholar 

  178. Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2016) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57(2):257–276

    MathSciNet  MATH  Google Scholar 

  179. Leonetti L, Greco F, Trovalusci P, Luciano R, Masiani R (2018) A multiscale damage analysis of periodic composites using a couple-stress/Cauchy multidomain model: application to masonry structures. Compos Part B: Eng 141:50–59

    Google Scholar 

  180. Pietruszczak S, Niu X (1992) A mathematical description of macroscopic behaviour of brick masonry. Int J Solids Struct 29(5):531–546

    MATH  Google Scholar 

  181. Briccoli Bati S, Ranocchiai G, Rovero L (1999) A micromechanical model for linear homogenization of brick masonry. Mater Struct 32(1):22–30

    Google Scholar 

  182. Masiani R, Trovalusci P (1996) Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 31(4):421–432

    MATH  Google Scholar 

  183. Stefanou I, Sulem J, Vardoulakis I (2008) Three-dimensional Cosserat homogenization of masonry structures: elasticity. Acta Geotechnica 3(1):71–83

    Google Scholar 

  184. Cecchi A, Sab K (2002) A multi-parameter homogenization study for modeling elastic masonry. Eur J Mech-A/Solids 21(2):249–268

    MathSciNet  MATH  Google Scholar 

  185. Cecchi A, Sab K (2007) A homogenized reissner-mindlin model for orthotropic periodic plates: application to brickwork panels. Int J Solids Struct 44(18–19):6055–6079

    MATH  Google Scholar 

  186. Mistler M, Anthoine A, Butenweg C (2007) In-plane and out-of-plane homogenisation of masonry. Comput Struct 85(17–18):1321–1330

    Google Scholar 

  187. Drougkas A, Roca P, Molins C (2015) Analytical micro-modeling of masonry periodic unit cells-elastic properties. Int J Solids Struct 69:169–188

    Google Scholar 

  188. Cecchi A, Milani G, Tralli A (2005) Validation of analytical multiparameter homogenization models for out-of-plane loaded masonry walls by means of the finite element method. J Eng Mech 131(2):185–198

    Google Scholar 

  189. Kawa M, Pietruszczak S, Shieh-Beygi B (2008) Limit states for brick masonry based on homogenization approach. Int J Solids Struct 45(3–4):998–1016

    MATH  Google Scholar 

  190. De Buhan P, De Felice G (1997) A homogenization approach to the ultimate strength of brick masonry. J Mech Phys Solids 45(7):1085–1104

    MathSciNet  MATH  Google Scholar 

  191. Zucchini A, Lourenço P (2002) A micro-mechanical model for the homogenisation of masonry. Int J Solids Struct 39(12):3233–3255

    MATH  Google Scholar 

  192. Zucchini A, Lourenço PB (2004) A coupled homogenisation-damage model for masonry cracking. Comput Struct 82(11–12):917–929

    Google Scholar 

  193. Wei X, Hao H (2009) Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. Int J Impact Eng 36(3):522–536

    Google Scholar 

  194. Cecchi A, Sab K (2009) Discrete and continuous models for in plane loaded random elastic brickwork. Eur J Mech-A/Solids 28(3):610–625

    MATH  Google Scholar 

  195. Cavalagli N, Cluni F, Gusella V (2013) Evaluation of a statistically equivalent periodic unit cell for a quasi-periodic masonry. Int J Solids Struct 50(25–26):4226–4240

    Google Scholar 

  196. Milani G, Lourenço PB, Tralli A (2006) Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Comput Struct 84(3–4):166–180

    Google Scholar 

  197. Milani G, Lourenço P, Tralli A (2006) Homogenization approach for the limit analysis of out-of-plane loaded masonry walls. J Struct Eng 132(10):1650–1663

    Google Scholar 

  198. Cecchi A, Milani G, Tralli A (2007) A reissner-mindlin limit analysis model for out-of-plane loaded running bond masonry walls. Int J Solids Struct 44(5):1438–1460

    MATH  Google Scholar 

  199. Cecchi A, Milani G (2008) A kinematic fe limit analysis model for thick english bond masonry walls. Int J Solids Struct 45(5):1302–1331

    MATH  Google Scholar 

  200. Godio M, Stefanou I, Sab K, Sulem J, Sakji S (2017) A limit analysis approach based on Cosserat continuum for the evaluation of the in-plane strength of discrete media: application to masonry. Eur J Mech-A/Solids 66:168–192

    MathSciNet  MATH  Google Scholar 

  201. Milani G, Lourenço PB, Tralli A (2006) Homogenised limit analysis of masonry walls, Part II: structural examples. Comput Struct 84(3–4):181–195

    Google Scholar 

  202. Milani G, Lourenço P, Tralli A (2007) 3d homogenized limit analysis of masonry buildings under horizontal loads. Eng Struct 29(11):3134–3148

    Google Scholar 

  203. Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41(13):3625–3641

    MATH  Google Scholar 

  204. Casolo S, Pena F (2007) Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage. Earthq Eng Struct Dyn 36(8):1029–1048

    Google Scholar 

  205. Silva LC, Lourenço PB, Milani G (2017) Nonlinear discrete homogenized model for out-of-plane loaded masonry walls. J Struct Eng 143(9):04017099

    Google Scholar 

  206. Papa E (1996) A unilateral damage model for masonry based on a homogenisation procedure. Mech Cohes-Friction Mater Int J Exp Model Comput Mater Struct 1(4):349–366

    Google Scholar 

  207. Luciano R, Sacco E (1997) Homogenization technique and damage model for old masonry material. Int J Solids Struct 34(24):3191–3208

    MathSciNet  MATH  Google Scholar 

  208. Luciano R, Sacco E (1998) A damage model for masonry structures. Eur J Mech-A/Solids 17(2):285–303

    MATH  Google Scholar 

  209. Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part II: the continuum model and its applications. Earthq Eng Struct Dyn 26(4):441–462

    Google Scholar 

  210. Pietruszczak S, Ushaksaraei R (2003) Description of inelastic behaviour of structural masonry. Int J Solids Struct 40(15):4003–4019

    MATH  Google Scholar 

  211. Calderini C, Lagomarsino S (2006) A micromechanical inelastic model for historical masonry. J Earthq Eng 10(04):453–479

    Google Scholar 

  212. Zucchini A, Lourenço PB (2009) A micro-mechanical homogenisation model for masonry: application to shear walls. Int J Solids Struct 46(3–4):871–886

    MATH  Google Scholar 

  213. Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech-A/Solids 28(2):209–222

    MATH  Google Scholar 

  214. Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205:189–203

    MathSciNet  MATH  Google Scholar 

  215. Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059

    MATH  Google Scholar 

  216. Bacigalupo A, Gambarotta L (2010) Second-order computational homogenization of heterogeneous materials with periodic microstructure. ZAMM-J Appl Math Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 90(10–11):796–811

    MathSciNet  MATH  Google Scholar 

  217. Bacigalupo A, Gambarotta L (2012) Computational two-scale homogenization of periodic masonry: Characteristic lengths and dispersive waves. Comput Methods Appl Mech Eng 213:16–28

    MathSciNet  MATH  Google Scholar 

  218. Addessi D, Marfia S, Sacco E, Toti J (2014) Modeling approaches for masonry structures. Open Civil Eng J 8(1):288–300. https://doi.org/10.2174/1874149501408010288

    Article  Google Scholar 

  219. Salerno G, de Felice G (2009) Continuum modeling of periodic brickwork. Int J Solids Struct 46(5):1251–1267

    MATH  Google Scholar 

  220. Casolo S (2006) Macroscopic modelling of structured materials: relationship between orthotropic Cosserat continuum and rigid elements. Int J Solids Struct 43(3–4):475–496

    MATH  Google Scholar 

  221. Addessi D, Sacco E, Paolone A (2010) Cosserat model for periodic masonry deduced by nonlinear homogenization. Eur J Mech-A/Solids 29(4):724–737

    Google Scholar 

  222. De Bellis ML, Addessi D (2011) A Cosserat based multi-scale model for masonry structures. Int J Multisc Comput Eng 9(5):543

    Google Scholar 

  223. Addessi D, Sacco E (2012) A multi-scale enriched model for the analysis of masonry panels. Int J Solids Struct 49(6):865–880

    Google Scholar 

  224. Mercatoris B, Massart T (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85(9):1177–1206

    MATH  Google Scholar 

  225. Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2017) Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput Methods Appl Mech Eng 315:273–301

    MathSciNet  MATH  Google Scholar 

  226. Brasile S, Casciaro R, Formica G (2007) Multilevel approach for brick masonry walls-part I: A numerical strategy for the nonlinear analysis. Comput Methods Appl Mech Eng 196(49–52):4934–4951

    MATH  Google Scholar 

  227. Brasile S, Casciaro R, Formica G (2007) Multilevel approach for brick masonry walls-part II: on the use of equivalent continua. Comput Methods Appl Mech Eng 196(49–52):4801–4810

    MATH  Google Scholar 

  228. Reccia E, Leonetti L, Trovalusci P, Cecchi A (2018) A multi-scale/multi-domain model for the failure analysis of masonry walls: a validation with a combined FEM/DEM approach. Int J Multisc Comput Eng 16:325–343

    Google Scholar 

  229. Greco F, Leonetti L, Luciano R, Blasi PN (2016) An adaptive multiscale strategy for the damage analysis of masonry modeled as a composite material. Compos Struct 153:972–988

    Google Scholar 

  230. Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366

    MathSciNet  MATH  Google Scholar 

  231. Quagliarini E, Maracchini G, Clementi F (2017) Uses and limits of the equivalent frame model on existing unreinforced masonry buildings for assessing their seismic risk: a review. J Build Eng 10:166–182

    Google Scholar 

  232. Augenti N (2006) Seismic behaviour of irregular masonry walls. In: Proceedings of the 1st European conference on earthquake engineering and seismology

  233. Berti M, Salvatori L, Orlando M, Spinelli P (2017) Unreinforced masonry walls with irregular opening layouts: reliability of equivalent-frame modelling for seismic vulnerability assessment. Bull Earthq Eng 15(3):1213–1239

    Google Scholar 

  234. Calderoni B, Cordasco EA, Sandoli A, Onotri V, Tortoriello G (2015) Problematiche di modellazione strutturale di edifici in muratura esistenti soggetti ad azioni sismiche in relazione all’utilizzo di software commerciali. Atti del XVI convegno ANIDIS. L’Aquila, Italia

  235. Dolce M (1991) Schematizzazione e modellazione degli edifici in muratura soggetti ad azioni sismiche. L’Industria delle costruzioni 25(242):44–57

    Google Scholar 

  236. Lagomarsino S, Penna A, Galasco A, Cattari S (2013) Tremuri program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799

    Google Scholar 

  237. Moon FL, Yi T, Leon RT, Kahn LF (2006) Recommendations for seismic evaluation and retrofit of low-rise URM structures. J Struct Eng 132(5):663–672

    Google Scholar 

  238. Parisi F, Augenti N (2013) Seismic capacity of irregular unreinforced masonry walls with openings. Earthq Eng Struct Dyn 42(1):101–121

    Google Scholar 

  239. Parisi F, Lignola GP, Augenti N, Prota A, Manfredi G (2013) Rocking response assessment of in-plane laterally-loaded masonry walls with openings. Eng Struct 56:1234–1248

    Google Scholar 

  240. Lagomarsino S, Camilletti D, Cattari S, Marino S (2018) In plane seismic response of irregular URM walls through equivalent frame and finite element models. In: Recent advances in earthquake engineering in Europe: 16th European conference on earthquake engineering-Thessaloniki 2018. Springer, pp 123–151

  241. Siano R, Roca P, Camata G, Pelà L, Sepe V, Spacone E, Petracca M (2018) Numerical investigation of non-linear equivalent-frame models for regular masonry walls. Eng Struct 173:512–529

    Google Scholar 

  242. Tomaževič M (1978) The computer program POR. Report ZRMK

  243. Calderoni B, Marone P, Pagano M (1987) Modelli per la verifica statica degli edifici in muratura in zona sismica. Ingegneria sismica 3:19–27

    Google Scholar 

  244. Magenes G, Fontana A (1998) Simplified non-linear seismic analysis of masonry buildings. Proc Br Masonry Soc 8:190–195

    Google Scholar 

  245. Kappos AJ, Penelis GG, Drakopoulos CG (2002) Evaluation of simplified models for lateral load analysis of unreinforced masonry buildings. J Struct Eng 128(7):890–897

    Google Scholar 

  246. Roca P, Molins C, Marí AR (2005) Strength capacity of masonry wall structures by the equivalent frame method. J Struct Eng 131(10):1601–1610

    Google Scholar 

  247. Penelis GG (2006) An efficient approach for pushover analysis of unreinforced masonry (URM) structures. J Earthq Eng 10(03):359–379

    Google Scholar 

  248. Belmouden Y, Lestuzzi P (2009) An equivalent frame model for seismic analysis of masonry and reinforced concrete buildings. Constr Build Mater 23(1):40–53

    Google Scholar 

  249. Pasticier L, Amadio C, Fragiacomo M (2008) Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the sap2000 v. 10 code. Earthq Eng Struct Dyn 37(3):467–485

    Google Scholar 

  250. Grande E, Imbimbo M, Sacco E (2011) A beam finite element for nonlinear analysis of masonry elements with or without fiber-reinforced plastic (frp) reinforcements. Int J Archit Herit 5(6):693–716

    Google Scholar 

  251. Addessi D, Mastrandrea A, Sacco E (2014) An equilibrated macro-element for nonlinear analysis of masonry structures. Eng Struct 70:82–93

    Google Scholar 

  252. Addessi D, Liberatore D, Masiani R (2015) Force-based beam finite element (fe) for the pushover analysis of masonry buildings. Int J Archit Herit 9(3):231–243

    Google Scholar 

  253. Liberatore D, Addessi D (2015) Strength domains and return algorithm for the lumped plasticity equivalent frame model of masonry structures. Eng Struct 91:167–181

    Google Scholar 

  254. Lagomarsino S, Penna A, Galasco A, Cattari S (2012) TREMURI program: Seismic analyses of 3D masonry buildings. Release 2.0, University of Genoa (mailto: tremuri@gmail.com)

  255. Cattari S, Lagomarsino S (2013) Masonry structures

  256. Cattari S, Camilletti D, Lagomarsino S, Bracchi S, Rota M, Penna A (2018) Masonry italian code-conforming buildings. Part 2: nonlinear modelling and time-history analysis. J Earthq Eng 22(sup2):2010–2040

    Google Scholar 

  257. Raka E, Spacone E, Sepe V, Camata G (2015) Advanced frame element for seismic analysis of masonry structures: Model formulation and validation. Earthq Eng Struct Dyn 44(14):2489–2506

    Google Scholar 

  258. Chen S-Y, Moon F, Yi T (2008) A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng Struct 30(8):2242–2252

    Google Scholar 

  259. Gambarotta L, Lagomarsino S (1996) On the dynamic response of masonry panels. In: Proceedings of the national conference on masonry mechanics between theory and practice, Messina, 18–20 Sept 1996, pp 451–462

  260. Brencich A, Lagomarsino S (1998) A macroelement dynamic model for masonry shear walls. In: Computer methods in structural masonry, pp 67–75

  261. Penna A, Lagomarsino S, Galasco A (2014) A nonlinear macroelement model for the seismic analysis of masonry buildings. Earthq Eng Struct Dyn 43(2):159–179

    Google Scholar 

  262. Caliò I, Marletta M, Pantò B (2012) A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Eng Struct 40:327–338

    Google Scholar 

  263. Caliò I, Pantò B (2014) A macro-element modelling approach of infilled frame structures. Comput Struct 143:91–107

    Google Scholar 

  264. Chácara C, Cannizzaro F, Pantò B, Caliò I, Lourenço PB (2018) Assessment of the dynamic response of unreinforced masonry structures using a macroelement modeling approach. Earthq Eng Struct Dyn. https://doi.org/10.1002/eqe.3091

    Article  Google Scholar 

  265. Rinaldin G, Amadio C, Macorini L (2016) A macro-model with nonlinear springs for seismic analysis of urm buildings. Earthq Eng Struct Dyn 45(14):2261–2281

    Google Scholar 

  266. Mobarake AA, Khanmohammadi M, Mirghaderi S (2017) A new discrete macro-element in an analytical platform for seismic assessment of unreinforced masonry buildings. Eng Struct 152:381–396

    Google Scholar 

  267. Xu H, Gentilini C, Yu Z, Wu H, Zhao S (2018) A unified model for the seismic analysis of brick masonry structures. Constr Build Mater 184:733–751

    Google Scholar 

  268. O’Dwyer D (1999) Funicular analysis of masonry vaults. Comput Struct 73(1–5):187–197

    MATH  Google Scholar 

  269. Andreu A, Gil L, Roca P (2007) Computational analysis of masonry structures with a funicular model. J Eng Mech 133(4):473–480

    Google Scholar 

  270. Block P, Ciblac T, Ochsendorf J (2006) Real-time limit analysis of vaulted masonry buildings. Comput Struct 84(29–30):1841–1852

    Google Scholar 

  271. Block P, Ochsendorf J (2007) Thrust network analysis: a new methodology for three-dimensional equilibrium. J Int Assoc Shell Spat Struct 48(3):167–173

    Google Scholar 

  272. Block P, Lachauer L (2014) Three-dimensional (3d) equilibrium analysis of gothic masonry vaults. Int J Archit Herit 8(3):312–335

    Google Scholar 

  273. Block P, Lachauer L (2014) Three-dimensional funicular analysis of masonry vaults. Mech Res Commun 56:53–60

    Google Scholar 

  274. Fantin M, Ciblac T (2016) Extension of thrust network analysis with joints consideration and new equilibrium states. Int J Space Struct 31(2–4):190–202

    Google Scholar 

  275. Fraternali F (2010) A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mech Res Commun 37(2):198–204

    MATH  Google Scholar 

  276. Angelillo M, Babilio E, Fortunato A (2013) Singular stress fields for masonry-like vaults. Contin Mech Thermodyn 25(2–4):423–441

    MathSciNet  MATH  Google Scholar 

  277. Angelillo M (2015) Static analysis of a guastavino helical stair as a layered masonry shell. Compos Struct 119:298–304

    Google Scholar 

  278. Fraddosio A, Lepore N, Piccioni MD (2019) Lower bound limit analysis of masonry vaults under general load conditions. In: Structural Analysis of Historical Constructions. Springer, pp 1090–1098

  279. Marmo F, Masi D, Rosati L (2018) Thrust network analysis of masonry helical staircases. Int J Archit Herit 12:1–21

    Google Scholar 

  280. D’Altri AM, Castellazzi G, de Miranda S, Tralli A (2017) Seismic-induced damage in historical masonry vaults: a case-study in the 2012 Emilia earthquake-stricken area. J Build Eng 13:224–243

    Google Scholar 

  281. Giuffrè A (1991) Letture sulla meccanica delle murature storiche. Kappa

  282. Ordinanza del Presidente del Consiglio dei Ministri (OPCM). Norme tecniche per il progetto, la valutazione e l’adeguamento sismico degli edifici (2005)

  283. Circolare 2009. Circolare n. 617 del 02/02/2009. Istruzioni per l’applicazione delle nuove Norme Tecniche per le Costruzioni di cui al D.M. del 14/01/2008

  284. NTC2008, Norme Tecniche per le Costruzioni, D.M. 14/01/2008

  285. Milani G (2015) Upper bound sequential linear programming mesh adaptation scheme for collapse analysis of masonry vaults. Adv Eng Softw 79:91–110

    Google Scholar 

  286. Chiozzi A, Milani G, Grillanda N, Tralli A (2018) A fast and general upper-bound limit analysis approach for out-of-plane loaded masonry walls. Meccanica 53(7):1875–1898

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maria D’Altri.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Altri, A.M., Sarhosis, V., Milani, G. et al. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch Computat Methods Eng 27, 1153–1185 (2020). https://doi.org/10.1007/s11831-019-09351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09351-x