Skip to main content
Log in

Basis of the Lattice Boltzmann Method for Additive Manufacturing

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing (or 3D printing) is constantly growing as an innovative process for the production of complex-shape components. Among the seven recognized 3D printing technologies, powder bed fusion (PBF) covers a very important role for the production of structurally functional components starting from different metal powder. However, being PBF a production process involving very high thermal gradients, non-negligible deformations and residual stresses may affect the 3D printed component. One of the characterizing aspects of PBF is the evolution of the melt pool and the heat exchange with the surrounding solid powder. In literature many attempts to simulate melt pool evolution have been carried out, however the only approaches leading to interesting results rely on the lattice Boltzmann method. In this work, starting from the Boltzmann’s equation, we derive the lattice Boltzmann equation and we introduce the needed assumptions in order to recover the lattice Boltzmann method. Finally, we apply the lattice Boltzmann method to study some interesting problems related to powder bed fusion process, including droplets wetting, thermal convection and solid–liquid phase change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Alexiades V (1992) Mathematical modeling of melting and freezing processes. CRC Press, Boca Raton

    Google Scholar 

  2. Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67(2):318–330

    MathSciNet  MATH  Google Scholar 

  3. ASTM International (2012) ASTM: standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken

  4. Attar E, Körner C (2011) Lattice Boltzmann model for thermal free surface flows with liquid solid phase transition. Int J Heat Fluid Flow 32(1):156–163

    Google Scholar 

  5. Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modeling of a two phase flow in the presence of boundaries: the contact angle. Phys Rev 74(2):021509

    MathSciNet  MATH  Google Scholar 

  6. Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246

    Google Scholar 

  7. Boussinesq J (1903) Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol 2. Gauthier-Villars, Paris

    MATH  Google Scholar 

  8. Burggraf O (1966) Analytical and numerical studies of the structure of steady separated flows. J Fluid Mech 24(1):113–151

    Google Scholar 

  9. Carnahan N, Starling K (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51(2):635–636

    Google Scholar 

  10. Cercignani C (1988) The Boltzmann equation. Springer, Berlin

    MATH  Google Scholar 

  11. Chakraborty S, Chatterjee D (2007) An enthalpy based hybrid Lattice Boltzmann method for modelling solid liquid phase transition in the presence of convective transport. J Fluid Mech 592:155–175

    MATH  Google Scholar 

  12. Chatterjee D (2009) An enthalpy based thermal lattice Boltzmann model for non isothermal systems. Europhys Lett 86(1):14004

    Google Scholar 

  13. Chatterjee D, Chakraborty S (2005) An enthalpy based lattice Boltzmann model for diffusion dominated solid liquid phase transformation. Phys Lett 341(1–4):320–330

    MATH  Google Scholar 

  14. Clever R, Busse F (1974) Transition to time-dependent convection. J Fluid Mech 65(4):625–645

    MATH  Google Scholar 

  15. Coopers P (2014) 3D printing and the new shape of industrial manufacturing

  16. D’Humières D (2002) Multiple relaxation time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond A Math Phys Eng Sci 360(1792):437–451

    MathSciNet  MATH  Google Scholar 

  17. Eshraghi M, Felicelli S (2012) An implicit lattice Boltzmann model for heat conduction with phase change. Int J Heat Mass Transf 55(9–10):2420–2428

    Google Scholar 

  18. Frisch U, D’Humieres D, Hasslacher B, Lallemand P, Pomeau Y, Rivet JP (1986) Lattice gas hydrodynamics in two and three dimensions. Technical report, Los Alamos National Lab., NM (USA); Observatoire de Nice, 06 (France); Ecole Normale Superieure, 75-Paris (France)

  19. Fyta M, Melchionna S, Kaxiras E, Succi S (2006) Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Multiscale Model Simul 5(4):1156–1173

    MathSciNet  MATH  Google Scholar 

  20. Ganeriwala R, Zohdi T (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter 18(2):21

    Google Scholar 

  21. Geller S, Krafczyk M, Tölke J, Turek S, Hron J (2006) Benchmark computations based on lattice Boltzmann, finite element and finite volume methods for laminar flows. Comput Fluids 35(8–9):888–897

    MATH  Google Scholar 

  22. Ghia U, Ghia K, Shin C (1982) High Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411

    MATH  Google Scholar 

  23. Gong S, Cheng P (2012) A lattice Boltzmann method for simulation of liquid vapor phase change heat transfer. Int J Heat Mass Transf 55(17–18):4923–4927

    Google Scholar 

  24. Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39(4):325–342

    MathSciNet  MATH  Google Scholar 

  25. Guo Z, Shu C (2013) Lattice Boltzmann method and its applications in engineering, vol 3. World Scientific, Singapore

    MATH  Google Scholar 

  26. Guo Z, Zhao T (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev 66(3):036304

    Google Scholar 

  27. Hardy J, Pazzis OD, Pomeau Y (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev 13(5):1949

    Google Scholar 

  28. He X, Chen S, Doolen G (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300

    MathSciNet  MATH  Google Scholar 

  29. He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107(1–2):309–328

    MATH  Google Scholar 

  30. He X, Luo L (1997) Theory of the lattice boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev 56(6):6811

    Google Scholar 

  31. Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125

    Google Scholar 

  32. Higuera F, Succi S, Benzi R (1989) Lattice gas dynamics with enhanced collisions. Europhys Lett 9(4):345

    Google Scholar 

  33. Huang H, Li Z, Liu S, Lu X (2009) Shan-and-Chen type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int J Numer Methods Fluids 61(3):341–354

    MathSciNet  MATH  Google Scholar 

  34. Huang R, Wu H, Cheng P (2013) A new lattice Boltzmann model for solid liquid phase change. Int J Heat Mass Transf 59:295–301

    Google Scholar 

  35. Kao P, Yang R (2007) Simulating oscillatory flows in Rayleigh Benard convection using the lattice Boltzmann method. Int J Heat Mass Transf 50(17–18):3315–3328

    MATH  Google Scholar 

  36. Klassen A, Bauereiß A, Körner C (2014) Modelling of electron beam absorption in complex geometries. J Phys 47(6):065307

    Google Scholar 

  37. Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys 47(27):275303

    Google Scholar 

  38. Körner C (2008) Lattice Boltzmann model for free surface flow. In: Integral foam molding of light metals. Springer, pp 163–170

  39. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987

    Google Scholar 

  40. Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121(1–2):179–196

    MathSciNet  MATH  Google Scholar 

  41. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen E (2017) The lattice Boltzmann method. Springer, Berlin

    MATH  Google Scholar 

  42. Kruth JP, Mercelis P, Vaerenbergh JV, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Google Scholar 

  43. Ladd A, Verberg R (2001) Lattice Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251

    MathSciNet  MATH  Google Scholar 

  44. Landau L, Lifschitz E (1987) Fluid mechanics. Pergamon Press, Oxford

    Google Scholar 

  45. Latt J (2008) Choice of units in lattice Boltzmann simulations. http://lbmethod.org/_media/howtos:lbunits.pdf. Accessed 15 Jan 2019

  46. Liu C, Lin K, Mai C, Lin C (2010) Thermal boundary conditions for thermal lattice Boltzmann simulations. Comput Math Appl 59(7):2178–2193

    MathSciNet  MATH  Google Scholar 

  47. Liu S, Zhu H, Peng G, Yin J, Zeng X (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328

    Google Scholar 

  48. Lu L, Sridhar N, Zhang Y (2018) Phase field simulation of powder bed-based additive manufacturing. Acta Mater 144:801–809

    Google Scholar 

  49. Luo C, Qiu J, Yan Y, Yang J, Uher C, Tang X (2018) Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. J Mater Process Technol 261:74–85

    Google Scholar 

  50. Markl M (2015) Numerical modeling and simulation of selective electron beam melting using a coupled lattice Boltzmann and discrete element method

  51. Markl M, Korner C (2016) Multiscale modeling of powder bed based additive manufacturing. Annu Rev Mater Res 46:93–123

    Google Scholar 

  52. McNamara G, Garcia A, Alder B (1995) Stabilization of thermal lattice Boltzmann models. J Stat Phys 81(1–2):395–408

    MATH  Google Scholar 

  53. McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett 61(20):2332

    Google Scholar 

  54. Meakin P, Jullien R (1987) Restructuring effects in the rain model for random deposition. J Phys 48(10):1651–1662

    Google Scholar 

  55. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265

    Google Scholar 

  56. Miller W, Succi S (2002) A lattice Boltzmann model for anisotropic crystal growth from melt. J Stat Phys 107(1–2):173–186

    MATH  Google Scholar 

  57. Mohamad A (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer, Berlin

    MATH  Google Scholar 

  58. Noble D, Torczynski J (1998) A lattice Boltzmann method for partially saturated computational cells. Int J Mod Phys 9(08):1189–1201

    Google Scholar 

  59. Palmer B, Rector D (2000) Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J Comput Phys 161(1):1–20

    MathSciNet  MATH  Google Scholar 

  60. Qian Y, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys Lett 17(6):479

    MATH  Google Scholar 

  61. Rai A, Markl M, Körner C (2016) A coupled cellular automaton-lattice Boltzmann model for grain structure simulation during additive manufacturing. Comput Mater Sci 124:37–48

    Google Scholar 

  62. Raiskinmäki P, Koponen A, Merikoski J, Timonen J (2000) Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comput Mater Sci 18(1):7–12

    Google Scholar 

  63. Rauniyar S, Chou K (2019) Melt pool analysis and mesoscale simulation of laser powder bed fusion process (L-PBF) with Ti–6Al–4V powder particles. JOM 71(3):938–945

    Google Scholar 

  64. Rausch A, Küng V, Pobel C, Markl M, Körner C (2017) Predictive simulation of process windows for powder bed fusion additive manufacturing: influence of the powder bulk density. Materials 10(10):1117

    Google Scholar 

  65. Redlich O, Kwong J (1949) On the thermodynamics of solutions. An equation of state. Fugacities of gaseous solutions. Chem Rev 44(1):233–244

    Google Scholar 

  66. Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187

    MathSciNet  MATH  Google Scholar 

  67. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev 47(3):1815

    Google Scholar 

  68. Shan X, Chen H (1994) Simulation of non ideal gases and liquid gas phase transitions by the lattice Boltzmann equation. Phys Rev 49(4):2941

    Google Scholar 

  69. Strack O, Cook B (2007) Three dimensional immersed boundary conditions for moving solids in the lattice Boltzmann method. J Numer Methods Fluids 55(2):103–125

    MATH  Google Scholar 

  70. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  71. Sukop MC, Thorne Jr DT (2006) Lattice Boltzmann modeling. Springer, Heidelberg

  72. Tang G, Tao W, He Y (2005) Thermal boundary condition for the thermal lattice Boltzmann equation. Phys Rev 72(1):016703

    Google Scholar 

  73. Teixeira C, Chen H, Freed D (2000) Multi speed thermal lattice Boltzmann method stabilization via equilibrium under relaxation. Comput Phys Commun 129(1–3):207–226

    MATH  Google Scholar 

  74. Thies M (2005) Lattice Boltzmann modeling with free surfaces applied to in-situ gas generated foam formation. Ph.D. thesis, University of Erlangen-Nörnberg

  75. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of TI6Al4V. Acta Mater 58(9):3303–3312

    Google Scholar 

  76. Thürey N, Körner C, Rüde U (2005) Interactive free surface fluids with the lattice Boltzmann method. Technical report

  77. Van der Waals JD (1873) Over de Continuiteit van den Gas en Vloeistoftoestand, vol 1. Sijthoff, Leiden

    MATH  Google Scholar 

  78. Wang X, Kruth J(2000) Energy absorption and penetration in selective laser sintering: a ray tracing model. In: Proceedings of the international conference on mathematical modeling and computer simulation of metal technologies, pp 673–682

  79. Wolf-Gladrow D (2004) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, Berlin

    MATH  Google Scholar 

  80. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631

    Google Scholar 

  81. Yu D, Mei R, Luo L, Shyy W (2003) Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci 39(5):329–367

    Google Scholar 

  82. Yuan P, Gu D (2015) Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments. J Phys D Appl Phys 48(3):035303

    MathSciNet  Google Scholar 

  83. Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. PF 18(4):042101

    MathSciNet  MATH  Google Scholar 

  84. Zäh M, Lutzmann S (2010) Modelling and simulation of electron beam melting. Prod Eng 4(1):15–23

    Google Scholar 

  85. Zhao-Li G, Chu-Guang Z, Bao-Chang S (2002) Non equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin Phys 11(4):366

    Google Scholar 

  86. Zheng H, Shu C, Chew Y (2006) A lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys 218(1):353–371

    MathSciNet  MATH  Google Scholar 

  87. Zhou J (2004) Lattice Boltzmann methods for shallow water flows, vol 4. Springer, Berlin

    MATH  Google Scholar 

  88. Zohdi T (2014) Additive particle deposition and selective laser processing a computational manufacturing framework. Comput Mech 54(1):171–191

    Google Scholar 

  89. Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9(6):1591–1598

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union, Repubblica Italiana, Regione Lombardia and FESR for the project MADE4LO under the call “POR FESR 2014-2020 ASSE I - AZIONE I.1.B.1.3

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cattenone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cattenone, A., Morganti, S. & Auricchio, F. Basis of the Lattice Boltzmann Method for Additive Manufacturing. Arch Computat Methods Eng 27, 1109–1133 (2020). https://doi.org/10.1007/s11831-019-09347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09347-7

Navigation