Skip to main content

State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation

Abstract

Structural control systems have gained popularity for the ability to reduce the structural vibration response of civil structures subjected to different types of dynamic loads. Passive, semi-active, active and hybrid control systems have been widely utilized in various types of structures. This article presents one of the most economical and yet the most effective approaches used in structural vibration control. Herein, a comprehensive state-of-the-art review of the development and application of metallic dampers is discussed. The dampers are classified into five categories: steel, aluminum, lead, copper and shaped-memory alloy dampers. In addition, the details of various computational methods used in the analysis of metallic dampers are briefly explained. This article reveals that the use of metallic dampers is being advanced broadly owing to their low manufacturing costs, stable hysteresis behavior, resistance to ambient temperature, reliability and high energy dissipation capability. It is also concluded that mild steel is the most popular material among metallic dampers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. Ghaedi K, Ibrahim Z (2017) Earthquake prediction. In: Zouaghi T (ed) Earthquakes—tectonics, hazard risk mitigation. InTech, London, pp 205–227. https://doi.org/10.5772/65511

    Chapter  Google Scholar 

  2. Spencer BF Jr, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 129:845–856

    Article  Google Scholar 

  3. Saaed TE, Nikolakopoulos G, Jonasson J-E, Hedlund H (2013) A state-of-the-art review of structural control systems. J Vib Control 21:919–937. https://doi.org/10.1177/1077546313478294

    Article  Google Scholar 

  4. Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skelton RE, Soong TT, Member S, Spencer BF, Yao JTP (1997) Structural control: past, present, and future. J. Eng. Mech. 123:897–971

    Article  Google Scholar 

  5. Soong TT, Spencer BF (2002) Supplemental energy dissipation: state-of-the-art and state-of-the- practice. Eng Struct 24:243–259. https://doi.org/10.1016/S0141-0296(01)00092-X

    Article  Google Scholar 

  6. Symans MD, Charney FA, Whittaker AS, Constantinou MC, Kircher CA, Johnson MW, McNamara RJ (2008) Energy dissipation systems for seismic applications: current practice and recent developments. J Struct Eng 134:3–21. https://doi.org/10.1061/(asce)0733-9445(2008)134:1(3)

    Article  Google Scholar 

  7. Li H, Huo L (2010) Advances in structural control in civil engineering in China. Math Probl Eng. https://doi.org/10.1155/2010/936081

    Article  MATH  Google Scholar 

  8. Fisco NR, Adeli H (2011) Smart structures: part I—active and semi-active control. Sci Iran 18:275–284. https://doi.org/10.1016/j.scient.2011.05.034

    Article  Google Scholar 

  9. Fisco NR, Adeli H (2011) Smart structures: part II—hybrid control systems and control strategies. Sci Iran 18:285–295. https://doi.org/10.1016/j.scient.2011.05.035

    Article  Google Scholar 

  10. Korkmaz S (2011) A review of active structural control: challenges for engineering informatics. Comput Struct 89:2113–2132. https://doi.org/10.1016/j.compstruc.2011.07.010

    Article  Google Scholar 

  11. El-Khoury O, Adeli H (2013) Recent advances on vibration control of structures under dynamic loading. Arch Comput Methods Eng 20:353–360. https://doi.org/10.1007/s11831-013-9088-2

    Article  Google Scholar 

  12. Ghaedi K, Ibrahim Z, Adeli H, Javanmardi A (2017) Invited Review: recent developments in vibration control of building and bridge structures. J VibroEng 19:3564–3580. https://doi.org/10.21595/jve.2017.18900

    Article  Google Scholar 

  13. Gutierrez Soto M, Adeli H (2013) Tuned mass dampers. Arch Comput Methods Eng. 20:419–431. https://doi.org/10.1007/s11831-013-9091-7

    Article  Google Scholar 

  14. Di Sarno L, Elnashai AS (2005) Innovative strategies for seismic retrofitting of steel and composite structures. Earthq Eng Struct Dyn 7:115–135. https://doi.org/10.1002/pse.195

    Article  Google Scholar 

  15. Dargush GF, Sant RS (2005) Evolutionary aseismic design and retrofit of structures with passive energy dissipation. Earthq Eng Struct Dyn 34:1601–1626. https://doi.org/10.1002/eqe.497

    Article  Google Scholar 

  16. DesRoches R, Delemont M (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Eng Struct 24:325–332. https://doi.org/10.1016/S0141-0296(01)00098-0

    Article  Google Scholar 

  17. Javanmardi A (2014) Non-linear test of precast subframe subjected to cyclic lateral loadings. Universiti Teknologi Malaysia

  18. Javanmardi A, Abadi R, Marsono AK, Tap M, Ibrahim Z, Ahmad A (2015) Correlation of stiffness and natural frequency of precast frame system. Appl Mech Mater 735:141–144. https://doi.org/10.4028/www.scientific.net/AMM.735.141

    Article  Google Scholar 

  19. Ghaedi K, Ibrahim Z, Jameel M, Javanmardi A, Khatibi H (2018) Seismic response analysis of fully base isolated adjacent buildings with segregated foundations. Adv Civ Eng. https://www.hindawi.com/journals/ace/aip/4517940/

  20. Javanmardi, A., Ibrahim, Z., & Ghaedi, K. (2018, October). Development of a new hybrid precast beam-to-column connection. In IOP Conference Series: Materials Science and Engineering (Vol. 431, No. 11, p. 112002). IOP Publishing.

  21. Prucz JC, Kokkinos F, Spyrakos CC (1989) Advanced joining concepts for passive vibration control. J Aerosp Eng 1:193–205

    Article  Google Scholar 

  22. Ali HM, Abdel-Ghaffar AM (1995) Modeling of rubber and lead passive-control bearings for seismic analysis. J Struct Eng 121:1134–1144. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:7(1134)

    Article  Google Scholar 

  23. Tirca LD, Foti D, Diaferio M (2003) Response of middle-rise steel frames with and without passive dampers to near-field ground motions. Eng Struct 25:169–179. https://doi.org/10.1016/S0141-0296(02)00132-3

    Article  Google Scholar 

  24. Ibrahim RA (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314:371–452. https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  25. Parulekar YM, Reddy GR (2009) Passive response control systems for seismic response reduction: a state-of-the-art review. Int J Struct Stab Dyn 9:151–177

    Article  Google Scholar 

  26. Martinelli P, Mulas MG (2010) An innovative passive control technique for industrial precast frames. Eng Struct 32:1123–1132. https://doi.org/10.1016/j.engstruct.2009.12.038

    Article  Google Scholar 

  27. Javanmardi A, Ghaedi K, Ibrahim Z, Khatibi H (2016) Nonlinear seismic behavior of a based isolated cable-stayed bridge. In: Shahid Beheshti University (ed) 4th international congress on civil engineering, architecture and urban development, Civilica, Tehran. https://www.civilica.com/Paper-ICSAU04-ICSAU04_0204.html

  28. Javanmardi A, Ibrahim Z, Ghaedi K, Jameel M, Khatibi H, Suhatril M (2017) Seismic response characteristics of a base isolated cable-stayed bridge under moderate and strong ground motions. Arch Civ Mech Eng 17:419–432. https://doi.org/10.1016/j.acme.2016.12.002

    Article  Google Scholar 

  29. Javanmardi A, Ibrahim Z, Ghaedi K, Jameel M, Usman H, Gordan M (2018) Seismic response of a base isolated cable-stayed bridge under near-fault ground motion excitations. Sci Res J 15:1–14

    Article  Google Scholar 

  30. Javanmardi A, Ibrahim Z, Ghaedi K, Khan NB, Ghadim HB (2018) Seismic isolation retrofitting solution for an existing steel cable-stayed bridge. PLoS ONE 13:1–22. https://doi.org/10.1371/journal.pone.0200482

    Article  Google Scholar 

  31. Wang JN, Munfakh GA (2014) Buildings and bridges equipped with passive dampers under seismic actions: modeling and analysis. Encycl Earthq Eng. https://doi.org/10.1007/978-3-642-36197-5

    Article  Google Scholar 

  32. Skinner RI, Kelly JM, Heine AJ (1974) Hysteretic dampers for earthquake-resistant structures. Earthq Eng Struct Dyn 3:287–296. https://doi.org/10.1002/eqe.4290030307

    Article  Google Scholar 

  33. Kobori T, Miura Y, Fukuzawa E (1992) Development and application of hysteresis steel dampers. In: Tenth world conference on earthquake engineering, pp 2341–2346

  34. Nakashima M, Saburi K, Tsuji B (1996) Energy input and dissipation behaviour of structures with hysteretic dampers. Earthq Eng Struct Dyn 25:483–496. https://doi.org/10.1002/(SICI)1096-9845(199605)25:5%3c483:AID-EQE564%3e3.0.CO;2-K

    Article  Google Scholar 

  35. FEMA-416 (2007) Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency, Washington, DC (USA)

  36. Bannantine JA, Comer JJ, Handrock JL (1990) Fundamental of metal fatigue analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  37. Azevedo J, Calado L (1994) Hysteretic behaviour of steel members: analytical models and experimental tests. J Constr Steel Res 29:71–94. https://doi.org/10.1016/0143-974X(94)90057-4

    Article  Google Scholar 

  38. Miller D, Doh J-H (2014) A simple hybrid damping device with energy-dissipating and re-centering characteristics for special structures. Struct Des Tall Spec Build. 24:421–439. https://doi.org/10.1002/tal

    Article  Google Scholar 

  39. Kelly JM, Skinner RI, Heine AJ (1972) Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bull N Z Natl Soc Earthq Eng 5:63–88

    Google Scholar 

  40. Tyler RG (1978) Tapered steel energy dissipators for earthquake resistant structures. Bull N Z Natl Soc Earthq Eng 11:282–294

    Google Scholar 

  41. Pinelli JP, Craig JI, Goodno BJ, Hsu C-C (1993) Passive control of building response using energy dissipating cladding connections. Earthq Spectra 9:529–546. https://doi.org/10.1193/1.1585728

    Article  Google Scholar 

  42. Y Takeda, Y Kimura, K Yoshioka, N Furuya, Y Takemoto (1976) An experimental study on braces encased in steel tube and mortal. In: Annual meeting architectural Institute of Japan, pp 1041–1042

  43. Wada A, Saeki E, Takeuchi T, Watanabe A (1989) Development of unbonded brace, Column, Nippon Steel Publication, p 115

  44. Black C, Makris N, Aiken ID (2004) Component testing, seismic evaluation and characterization of buckling-restrained braces. Pacific Earthquake Engineering Research Center. J Struct Eng 130:880–894. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880)

  45. Black C, Makris N, Aiken ID (2002) Component testing, stability analysis and characterization of buckling-restrained unbonded braces (TM). Pacific Earthquake Engineering Research Center.

  46. Zhao J, Wu B, Ou J (2011) A novel type of angle steel buckling-restrained brace: cyclic behavior and failure mechanism. Earthq Eng Struct Dyn 40:1083–1102. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  47. Hao X-Y, Li H-N, Li G, Makino T (2014) Experimental investigation of steel structure with innovative H-type steel unbuckling braces. Struct Des Tall Spec Build 24:421–439. https://doi.org/10.1002/tal

    Article  Google Scholar 

  48. Dongbin Z, Xin N, Peng P, Mengzi W, Kailai D, Yabin C (2016) Experimental study and finite element analysis of a buckling-restrained brace consisting of three steel tubes with slotted holes in the middle tube. J Constr Steel Res 124:1–11. https://doi.org/10.1016/j.jcsr.2016.05.003

    Article  Google Scholar 

  49. Bergman DM (1987) Evaluation of cyclic testing of steel-plate devices for added damping and stiffness. Department of Civil Engineering, University of Michigan

  50. Tsai K-C, Chen H-W, Hong C-P, Su Y-F (1993) Design of steel triangular plate energy absorbers for seismic-resistant construction. Earthq Spectra 9:505–528. https://doi.org/10.1193/1.1585727

    Article  Google Scholar 

  51. Shih M-H, Sung W-P, Go C-G (2004) Investigation of newly developed added damping and stiffness device with low yield strength steel. J Zhejiang Univ Sci 5:326–334. https://doi.org/10.1631/jzus.2004.0326

    Article  Google Scholar 

  52. Shih M-H, Sung WP (2005) A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness. Comput Struct 83:895–908. https://doi.org/10.1016/j.compstruc.2004.11.012

    Article  Google Scholar 

  53. Han Q, Jia J, Xu Z, Bai Y, Song N (2014) Experimental evaluation of hysteretic behavior of rhombic steel plate dampers. Adv Mech Eng 9:99. https://doi.org/10.1155/2014/185629

    Article  Google Scholar 

  54. Li H, Li G (2007) Experimental study of structure with “dual function” metallic dampers. Eng Struct 29:1917–1928. https://doi.org/10.1016/j.engstruct.2006.10.007

    Article  Google Scholar 

  55. Chan RWK, Albermani F (2008) Experimental study of steel slit damper for passive energy dissipation. Eng Struct 30:1058–1066. https://doi.org/10.1016/j.engstruct.2007.07.005

    Article  Google Scholar 

  56. Ghabraie K, Chan R, Huang X, Xie YM (2010) Shape optimization of metallic yielding devices for passive mitigation of seismic energy. Eng Struct 32:2258–2267. https://doi.org/10.1016/j.engstruct.2010.03.028

    Article  Google Scholar 

  57. Karavasilis TL, Kerawala S, Hale E (2012) Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings. J Constr Steel Res 70:358–367. https://doi.org/10.1016/j.jcsr.2011.10.010

    Article  Google Scholar 

  58. Jie Z, Li A, Tong G (2015) Analytical and experimental study on mild steel dampers with non-uniform vertical slits. Earthq Eng Eng Vib 14:111–123. https://doi.org/10.1007/s11803-015-0010-9

    Article  Google Scholar 

  59. Hedayat AA (2015) Prediction of the force displacement capacity boundary of an unbuckled steel slit damper. J Constr Steel Res 114:30–50. https://doi.org/10.1016/j.jcsr.2015.07.003

    Article  Google Scholar 

  60. Oh S-H, Kim Y-J, Ryu H-S (2009) Seismic performance of steel structures with slit dampers. Eng Struct 31:1997–2008. https://doi.org/10.1016/j.engstruct.2009.03.003

    Article  Google Scholar 

  61. Garivani S, Aghakouchak AA, Shahbeyk S (2016) Numerical and experimental study of comb-teeth metallic yielding dampers. Int J Steel Struct 16:177–196. https://doi.org/10.1007/s13296-016-3014-z

    Article  Google Scholar 

  62. Fan S, Ding Z, Du L, Shang C, Liu M (2016) Nonlinear finite element modeling of two-stage energy dissipation device with low-yield-point steel. Int J Steel Struct 16:1107–1122. https://doi.org/10.1007/s13296-016-0029-4

    Article  Google Scholar 

  63. Wang Y-P, Chien C-SC (2009) A study on using pre-bent steel strips as seismic energy-dissipative devices. Earthq Eng Struct Dyn 38:1009–1026. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  64. Hsu HL, Halim H (2017) Improving seismic performance of framed structures with steel curved dampers. Eng Struct 130:99–111. https://doi.org/10.1016/j.engstruct.2016.09.063

    Article  Google Scholar 

  65. Nakashima M, Iwai S, Iwata M, Takeuchi T, Konomi S, Akazawa T, Saburi K (1994) Energy dissipation behaviour of shear panels made of low yield steel. Earthq Eng Struct Dyn 23:1299–1313. https://doi.org/10.1002/eqe.4290231203

    Article  Google Scholar 

  66. Abebe DY, Jeong SJ, Getahune BM, Segu DZ, Choi JH (2015) Hysteretic characteristics of shear panel damper made of low yield point steel. Mater Res Innov 19:902–910. https://doi.org/10.1179/1432891714Z.0000000001219

    Article  Google Scholar 

  67. Chen Z, Ge H, Usami T (2005) Hysteretic performance of shear panel dampers. Adv Steel Struct 2:1223–1228

    Google Scholar 

  68. Chen Z, Ge H, Usami T (2006) Hysteretic model of stiffened shear panel dampers. J Struct Eng 132:478–483. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:3(478)

    Article  Google Scholar 

  69. Zhang C, Zhang Z, Zhang Q (2012) Static and dynamic cyclic performance of a low-yield-strength steel shear panel damper. J Constr Steel Res 79:195–203. https://doi.org/10.1016/j.jcsr.2012.07.030

    Article  Google Scholar 

  70. Deng K, Pan P, Sun J, Liu J, Xue Y (2014) Shape optimization design of steel shear panel dampers. J Constr Steel Res 99:187–193. https://doi.org/10.1016/j.jcsr.2014.03.001

    Article  Google Scholar 

  71. Chan RWK, Albermani F, Kitipornchai S (2008) Evaluation of yielding shear panel device for passive energy dissipation. J Constr Steel Res 91:14–25. https://doi.org/10.1016/j.jcsr.2013.08.013

    Article  Google Scholar 

  72. Chan RWK, Albermani F, Kitipornchai S (2013) Experimental study of perforated yielding shear panel device for passive energy dissipation. J Constr Steel Res 91:14–25. https://doi.org/10.1016/j.jcsr.2013.08.013

    Article  Google Scholar 

  73. Sahoo DR, Singhal T, Taraithia SS, Saini A (2015) Cyclic behavior of shear-and-flexural yielding metallic dampers. J Constr Steel Res 114:247–257. https://doi.org/10.1016/j.jcsr.2015.08.006

    Article  Google Scholar 

  74. Deng K, Pan P, Li W, Xue Y (2015) Development of a buckling restrained shear panel damper. J Constr Steel Res 106:311–321. https://doi.org/10.1016/j.jcsr.2015.01.004

    Article  Google Scholar 

  75. Kato S, Kim YB, Nakazawa S, Ohya T (2005) Simulation of the cyclic behavior of J-shaped steel hysteresis devices and study on the efficiency for reducing earthquake responses of space structures. J Constr Steel Res 61:1457–1473. https://doi.org/10.1016/j.jcsr.2005.03.006

    Article  Google Scholar 

  76. Deng K, Pan P, Wang C (2013) Development of crawler steel damper for bridges. J Constr Steel Res 85:140–150. https://doi.org/10.1016/j.jcsr.2013.03.009

    Article  Google Scholar 

  77. Özkaynak H (2017) Model proposal for steel cushions for use in reinforced concrete frames. KSCE J Civ Eng 21:2717–2727. https://doi.org/10.1007/s12205-017-0477-1

    Article  Google Scholar 

  78. Benavent-Climent A (2010) A brace-type seismic damper based on yielding the walls of hollow structural sections. Eng Struct 32:1113–1122. https://doi.org/10.1016/j.engstruct.2009.12.037

    Article  Google Scholar 

  79. Benavent-Climent A, Morillas L, Vico JM (2015) A study on using wide-flange section web under out-of-plane flexure for passive energy dissipation. Earthq Eng Struct Dyn 44:657–675. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  80. Maleki S, Bagheri S (2010) Pipe damper, part I: experimental and analytical study. J Constr Steel Res 66:1088–1095. https://doi.org/10.1016/j.jcsr.2010.03.010

    Article  Google Scholar 

  81. Maleki S, Mahjoubi S (2013) Dual-pipe damper. J Constr Steel Res 85:81–91. https://doi.org/10.1016/j.jcsr.2013.03.004

    Article  Google Scholar 

  82. Maleki S, Mahjoubi S (2014) Infilled-pipe damper. J Constr Steel Res 98:45–58. https://doi.org/10.1016/j.jcsr.2014.02.015

    Article  Google Scholar 

  83. Franco JM, Cahís X, Gracia L, López F (2010) Experimental testing of a new anti-seismic dissipator energy device based on the plasticity of metals. Eng Struct 32:2672–2682. https://doi.org/10.1016/j.engstruct.2010.04.037

    Article  Google Scholar 

  84. Javanmardi A, Ghaedi K, Ibrahim Z, Muthu KU (2018) Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers. In: IABSE conference—engineering the developing world, International Association for Bridge and Structural Engineering, Kuala Lumpur, Malaysia, pp 617–623

  85. Wang H, Zhou R, Zong ZH, Wang C, Li AQ (2012) Study on seismic response control of a single-tower self-anchored suspension bridge with elastic-plastic steel damper. Sci China Technol Sci 55:1496–1502. https://doi.org/10.1007/s11431-012-4826-5

    Article  Google Scholar 

  86. Yamazaki S, Usami T, Nonaka T (2016) Developing a new hysteretic type seismic damper (BRRP) for steel bridges. Eng Struct 124:286–301. https://doi.org/10.1016/j.engstruct.2016.06.033

    Article  Google Scholar 

  87. Ghaedi K, Ibrahim Z, Javanmardi A, Rupakhety R (2018) Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads. J Earthq Eng 00:1–19. https://doi.org/10.1080/13632469.2018.1515796

    Article  Google Scholar 

  88. Ghaedi K, Ibrahim Z, Javanmardi A (2018, October). A new metallic bar damper device for seismic energy dissipation of civil structures. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, vol 431, No 12, p 122009

    Article  Google Scholar 

  89. Motamedi M, Nateghi-A F (2018) Study on mechanical characteristics of accordion metallic damper. J Constr Steel Res 142:68–77. https://doi.org/10.1016/j.jcsr.2017.12.010

    Article  Google Scholar 

  90. Aghlara R, Tahir MM (2018) A passive metallic damper with replaceable steel bar components for earthquake protection of structures. Eng Struct 159:185–197. https://doi.org/10.1016/j.engstruct.2017.12.049

    Article  Google Scholar 

  91. Aghlara R, Tahir MM, Bin Adnan A (2018) Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures. J Constr Steel Res 148:351–360. https://doi.org/10.1016/j.jcsr.2018.06.004

    Article  Google Scholar 

  92. De Matteis G, Mazzolani FM, Panico S (2007) Pure aluminium shear panels as dissipative devices in moment-resisting steel frames. Int Assoc Earthq Eng 36:841–859. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  93. De Matteis G, Brando G, Mazzolani FM (2011) Hysteretic behaviour of bracing-type pure aluminium shear panels by experimental tests. Earthq Eng Struct Dyn 40:1143–1162. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  94. Rai DC, Annam PK, Pradhan T (2013) Seismic testing of steel braced frames with aluminum shear yielding dampers. Eng Struct 46:737–747. https://doi.org/10.1016/j.engstruct.2012.08.027

    Article  Google Scholar 

  95. Robinson WH, Greenbank LR (1976) An extrusion energy absorber suitable for the protection of structures during an earthquake. Earthq Eng Struct Dyn 4:251–259. https://doi.org/10.1002/eqe.4290040306

    Article  Google Scholar 

  96. Soydan C, Yuksel E, Irtem E (2014) The behavior of a steel connection equipped with the lead extrusion damper. Adv Struct Eng 17:25–39. https://doi.org/10.1260/1369-4332.17.1.25

    Article  Google Scholar 

  97. Curadelli RO, Riera JD (2007) Design and testing of a lead damper for seismic applications. Proc Inst Mech Eng Part C J Mech Eng Sci 221(2007):159–164. https://doi.org/10.1243/0954406jmes254

    Article  Google Scholar 

  98. Cheng S, Du S, Yan X, Guo Q, Xin Y (2017) Experimental study and numerical simulation of clapboard lead damper. Proc Inst Mech Eng Part C J Mech Eng Sci 231:1688–1698. https://doi.org/10.1177/0954406215621339

    Article  Google Scholar 

  99. de la Llera JC, Esguerra C, Almazán JL (2004) Earthquake behavior of structures with copper energy dissipators. Earthq Eng Struct Dyn 33:329–358. https://doi.org/10.1002/eqe.354

    Article  Google Scholar 

  100. Briones B, de la Llera JC (2014) Analysis, design and testing of an hourglass-shaped ETP-copper energy dissipation device. Eng Struct 79:309–321

    Article  Google Scholar 

  101. Casciati F, Faravelli L, Petrini L (1998) Energy dissipation in shape memory alloy devices. Comput Civ Infrastruct Eng 13:433–442. https://doi.org/10.1111/0885-9507.00121

    Article  Google Scholar 

  102. Sepúlveda J, Boroschek R, Herrera R, Moroni O, Sarrazin M (2008) Steel beam-column connection using copper-based shape memory alloy dampers. J Constr Steel Res 64:429–435. https://doi.org/10.1016/j.jcsr.2007.09.002

    Article  Google Scholar 

  103. Zhang Y, Zhu S (2007) A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation. Smart Mater Struct 16:1603–1613. https://doi.org/10.1088/0964-1726/16/5/014

    Article  Google Scholar 

  104. Dolce M, Cardone D, Marnetto R (2000) Implementation and testing of passive control devices based on shape memory alloys. Earthq Eng Struct Dyn 29:945–968. https://doi.org/10.1002/1096-9845(200007)29:7%3c945:AID-EQE958%3e3.0.CO;2-%23

    Article  Google Scholar 

  105. Dolce M, Cardone D, Ponzo FC, Valente C (2005) Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq Eng Struct Dyn 34:1687–1717. https://doi.org/10.1002/eqe.501

    Article  Google Scholar 

  106. Ma H, Cho C (2008) Feasibility study on a superelastic SMA damper with re-centring capability. Mater Sci Eng, A 473:290–296. https://doi.org/10.1016/j.msea.2007.04.073

    Article  Google Scholar 

  107. Ma H, Yam MCH (2011) Modelling of a self-centring damper and its application in structural control. J Constr Steel Res 67:656–666. https://doi.org/10.1016/j.jcsr.2010.11.014

    Article  Google Scholar 

  108. Mata P, Barbat AH, Oller S, Boroschek R (2008) Constitutive and geometric nonlinear models for the seismic analysis of RC structures with energy dissipators. Arch Comput Methods Eng 15:489–539. https://doi.org/10.1007/s11831-008-9024-z

    Article  MATH  Google Scholar 

  109. Ge H, Chen X, Matsui N (2011) Seismic demand on shear panel dampers installed in steel-framed bridge pier structures. J Earthq Eng 15:339–361. https://doi.org/10.1080/13632469.2010.491892

    Article  Google Scholar 

  110. Kim DK, Dargush GF, Hu JW (2013) Cyclic damage model for E-shaped dampers in the seismic isolation system. J Mech Sci Technol 27:2275–2281. https://doi.org/10.1007/s12206-013-0610-0

    Article  Google Scholar 

  111. A Javanmardi, Z Ibrahim, K Ghaedi, H Khatibi (2017) Numerical analysis of vertical pipe damper. In: 39th IABSE symposium engineering the future. International Association for Bridge and Structural Engineering, Vancouver, Canada, pp 2974–2980

  112. Vasdravellis G, Karavasilis TL, Uy B, Asce M (2012) Design rules, experimental evaluation, and fracture models for high-strength and stainless-steel hourglass shape energy dissipation devices. J Struct Eng 140:04014087. https://doi.org/10.1061/(asce)st.1943-541x.0001014

    Article  Google Scholar 

  113. Saffari H, Hedayat AA, Nejad MP (2013) Post-Northridge connections with slit dampers to enhance strength and ductility. J Constr Steel Res 80:138–152. https://doi.org/10.1016/j.jcsr.2012.09.023

    Article  Google Scholar 

  114. Maleki S, Bagheri S (2010) Pipe damper, part II: application to bridges. J Constr Steel Res 66:1096–1106. https://doi.org/10.1016/j.jcsr.2010.03.011

    Article  Google Scholar 

  115. Shen X, Camara A, Ye A (2015) Effects of seismic devices on transverse responses of piers in the Sutong Bridge. Earthq Eng Eng Vib 14:611–623. https://doi.org/10.1007/s11803-015-0049-7

    Article  Google Scholar 

  116. Vasseghi A (2011) Energy dissipating shear key for precast concrete girder bridges. Sci Iran 18:296–303. https://doi.org/10.1016/j.scient.2011.05.036

    Article  Google Scholar 

  117. Bayat M, Abdollahzadeh G (2011) Analysis of the steel braced frames equipped with ADAS devices under the far field records. Lat Am J Solids Struct 8:163–181. https://doi.org/10.1590/S1679-78252011000200004

    Article  Google Scholar 

  118. Mahjoubi S, Maleki S (2014) Seismic performance assessment of steel frames equipped with a novel passive damper using a new damper performance index. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  119. Kim J, Jeong J (2016) Seismic retrofit of asymmetric structures using steel plate slit dampers. J Constr Steel Res 120:232–244. https://doi.org/10.1016/j.jcsr.2016.02.001

    Article  Google Scholar 

  120. Mahmoudi M, Abdi MG (2012) Evaluating response modification factors of TADAS frames. J Constr Steel Res 71:162–170. https://doi.org/10.1016/j.jcsr.2011.10.015

    Article  Google Scholar 

  121. Chen Z, Dai Z, Huang Y, Bian G (2013) Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics. Eng Struct 48:245–254. https://doi.org/10.1016/j.engstruct.2012.09.008

    Article  Google Scholar 

  122. Benavent-Climent A, Mota-Páez S (2017) Earthquake retrofitting of R/C frames with soft first story using hysteretic dampers: energy-based design method and evaluation. Eng Struct 137:19–32. https://doi.org/10.1016/j.engstruct.2017.01.053

    Article  Google Scholar 

  123. Mohammadi RK, Nasri A, Ghaffary A (2017) TADAS dampers in very large deformations. Int J Steel Struct 17:515–524. https://doi.org/10.1007/s13296-017-6011-y

    Article  Google Scholar 

  124. Deng K, Pan P, Su Y, Xue Y (2015) Shape optimization of U-shaped damper for improving its bi-directional performance under cyclic loading. Eng Struct 93:27–35. https://doi.org/10.1016/j.engstruct.2015.03.006

    Article  Google Scholar 

  125. Usami T, Lu Z, Ge H (2005) A seismic upgrading method for steel arch bridges using buckling-restrained braces. Earthq Eng Struct Dyn 34:471–496. https://doi.org/10.1002/eqe.442

    Article  Google Scholar 

  126. Shen X, Wang X, Ye Q, Ye A (2017) Seismic performance of Transverse Steel Damper seismic system for long span bridges. Eng Struct 141:14–28. https://doi.org/10.1016/j.engstruct.2017.03.014

    Article  Google Scholar 

  127. Li G, Jiang Y, Zhang S, Zeng Y, Li Q (2015) Seismic design or retrofit of buildings with metallic structural fuses by the damage-reduction spectrum. Earthq Eng Eng Vib 14:85–96. https://doi.org/10.1007/s11803-015-0008-3

    Article  Google Scholar 

  128. Vargas R, Bruneau M (2007) Effect of supplemental viscous damping on the seismic response of structural systems with metallic dampers. J Struct Eng 133:1434–1444. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1434)

    Article  Google Scholar 

  129. Vargas R, Bruneau M (2009) Experimental response of buildings designed with metallic structural fuses. II. J Struct Eng 135:394–403. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(394)

    Article  Google Scholar 

  130. Mazzolani FM (2008) Innovative metal systems for seismic upgrading of RC structures. J Constr Steel Res 64:882–895. https://doi.org/10.1016/j.jcsr.2007.12.017

    Article  Google Scholar 

  131. Mazzolani FM, Della Corte G, D’Aniello M (2009) Experimental analysis of steel dissipative bracing systems for seismic upgrading. J Civ Eng Manag 15:7–19. https://doi.org/10.3846/1392-3730.2009.15.7-19

    Article  Google Scholar 

  132. I Nuzzo, D Losanno, G Serino, LMB Rotondo (2014) A seismic-resistant precast R. C. system equipped with shear link dissipators for residential buildings. In: Second international conference in advance civil, structural and environmental engineering, vol 2, pp 249–254. https://doi.org/10.15224/978-1-63248-030-9-52

  133. Tagawa H, Yamanishi T, Takaki A, Chan RWK (2016) Cyclic behavior of seesaw energy dissipation system with steel slit dampers. J Constr Steel Res 117:24–34. https://doi.org/10.1016/j.jcsr.2015.09.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supported given by University Malaya Research Grant (UMRG—Project No. RP004A/13AET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Javanmardi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Javanmardi, A., Ibrahim, Z., Ghaedi, K. et al. State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Arch Computat Methods Eng 27, 455–478 (2020). https://doi.org/10.1007/s11831-019-09329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09329-9