Skip to main content
Log in

An Overview of Mixed Finite Elements for the Analysis of Inelastic Bidimensional Structures

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

As inelastic structures are ubiquitous in many engineering fields, a central task in computational mechanics is to develop accurate, robust and efficient tools for their analysis. Motivated by the poor performances exhibited by standard displacement-based finite element formulations, attention is here focused on the use of mixed methods as approximation technique, within the small strain framework, for the mechanical problem of inelastic bidimensional structures. Despite a great flexibility characterizes mixed element formulations, several theoretical and numerical aspects have to be carefully taken into account in the design of a high-performance element. The present work aims at providing the basis for methodological analysis and comparison in such aspects, within the unified mathematical setting supplied by generalized standard material model and with special interest towards elastoplastic media. A critical review of the state-of-the-art computational methods is delivered in regard to variational formulations, selection of interpolation spaces, numerical solution strategies and numerical stability. Though those arguments are interrelated, a topic-oriented presentation is resorted to, for the very rich available literature to be properly examined. Finally, the performances of several significant mixed finite element formulations are investigated in numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allman DJ (1988) A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int J Numer Methods Eng 26(3):717–730. https://doi.org/10.1002/nme.1620260314

    Article  MATH  Google Scholar 

  2. Aminpour MA (1992) An assumed-stress hybrid 4-node shell element with drilling degrees of freedom. Int J Numer Methods Eng 33(1):19–38. https://doi.org/10.1002/nme.1620330103

    Article  MathSciNet  MATH  Google Scholar 

  3. Armero F (2004) Elastoplastic and viscoplastic deformations in solids and structures. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 2. Wiley, Chichester, pp 227–266. https://doi.org/10.1002/0470091355.ecm029

    Chapter  Google Scholar 

  4. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the stokes equations. Calcolo 21(4):337–344. https://doi.org/10.1007/BF02576171

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold DN, Boffi D, Falk RS, Gastaldi L (2001) Finite element approximation on quadrilateral meshes. Commun Numer Methods Eng 17(11):805–812. https://doi.org/10.1002/cnm.450

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold DN, Boffi D, Falk RS (2002) Approximation by quadrilateral finite elements. Math Comput 71(239):909–922. https://doi.org/10.1090/S0025-5718-02-01439-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  8. Bathe KJ (2001) The inf–sup condition and its evaluation for mixed finite element methods. Comput Struct 79(2):243–252. https://doi.org/10.1016/S0045-7949(00)00123-1

    Article  MathSciNet  Google Scholar 

  9. Bergmann VL, Mukherjee S (1990) A hybrid strain finite element for plates and shells. Int J Numer Methods Eng 30(2):233–257. https://doi.org/10.1002/nme.1620300203

    Article  MATH  Google Scholar 

  10. Bilotta A, Casciaro R (2002) Assumed stress formulation of high order quadrilateral elements with an improved in-plane bending behaviour. Comput Methods Appl Mech Eng 191(15–16):1523–1540. https://doi.org/10.1016/S0045-7825(01)00334-6

    Article  MATH  Google Scholar 

  11. Bilotta A, Casciaro R (2007) A high-performance element for the analysis of 2D elastoplastic continua. Comput Methods Appl Mech Eng 196(4–6):818–828. https://doi.org/10.1016/j.cma.2006.06.009

    Article  MATH  Google Scholar 

  12. Bilotta A, Leonetti L, Garcea G (2011) Three field finite elements for the elastoplastic analysis of 2D continua. Finite Elem Anal Des 47(10):1119–1130. https://doi.org/10.1016/j.finel.2011.05.002

    Article  MathSciNet  Google Scholar 

  13. Bilotta A, Leonetti L, Garcea G (2012) An algorithm for incremental elastoplastic analysis using equality constrained sequential quadratic programming. Comput Struct 102–103:97–107. https://doi.org/10.1016/j.compstruc.2012.03.004

    Article  Google Scholar 

  14. Bilotta A, Garcea G, Leonetti L (2016) A composite mixed finite element model for the elasto-plastic analysis of 3D structural problems. Finite Elem Anal Des 113:43–53. https://doi.org/10.1016/j.finel.2016.01.002

    Article  Google Scholar 

  15. Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications, Springer series in computational mathematics, vol 44. Springer, Berlin

    Book  Google Scholar 

  16. Bolzon G (2017) Complementarity problems in structural engineering: an overview. Arch Comput Methods Eng 24(1):23–36. https://doi.org/10.1007/s11831-015-9158-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Borja RI (2013) Plasticity: modeling and computation. Springer, Berlin. https://doi.org/10.1007/978-3-642-38547-6

    Book  MATH  Google Scholar 

  18. Capsoni A, Corradi L (1997) A mixed finite element model for plane strain elastic–plastic analysis, part I. Formulation and assessment of the overall behaviour. Comput Methods Appl Mech Eng 141(1–2):67–79. https://doi.org/10.1016/S0045-7825(96)01098-5

    Article  MATH  Google Scholar 

  19. Caylak I, Mahnken R (2014) Stabilized mixed triangular elements with area bubble functions at small and large deformations. Comput Struct 138(1):172–182. https://doi.org/10.1016/j.compstruc.2014.01.006

    Article  Google Scholar 

  20. Cen S, Fu XR, Zhou MJ (2011) 8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes. Comput Methods Appl Mech Eng 200(29–32):2321–2336. https://doi.org/10.1016/j.cma.2011.04.014

    Article  MathSciNet  MATH  Google Scholar 

  21. Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics: part I: formulation. Comput Methods Appl Mech Eng 199(37–40):2559–2570. https://doi.org/10.1016/j.cma.2010.04.006

    Article  MathSciNet  MATH  Google Scholar 

  22. Cervera M, Chiumenti M, Codina R (2015) Mixed stabilized finite element methods in nonlinear solid mechanics: part III: compressible and incompressible plasticity. Comput Methods Appl Mech Eng 285(1):752–775. https://doi.org/10.1016/j.cma.2014.11.040

    Article  MathSciNet  MATH  Google Scholar 

  23. Cervera M, Lafontaine N, Rossi R, Chiumenti M (2016) Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity. Comput Mech 58(3):511–532. https://doi.org/10.1007/s00466-016-1305-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Chapelle D, Bathe KJ (1993) The inf–sup test. Comput Struct 47(4–5):537–545. https://doi.org/10.1016/0045-7949(93)90340-J

    Article  MathSciNet  MATH  Google Scholar 

  25. Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195(33–36):4095–4105. https://doi.org/10.1016/j.cma.2005.07.016

    Article  MATH  Google Scholar 

  26. Choo YS, Choi N, Lee BC (2006) Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method. Finite Elem Anal Des 42(11):1002–1008. https://doi.org/10.1016/j.finel.2006.03.006

    Article  Google Scholar 

  27. Comi C, Perego U (1995) A unified approach for variationally consistent finite elements in elastoplasticity. Comput Methods Appl Mech Eng 121(1–4):323–344. https://doi.org/10.1016/0045-7825(94)00703-P

    Article  MathSciNet  MATH  Google Scholar 

  28. Contrafatto L, Ventura G (2004) Numerical analysis of augmented Lagrangian algorithms in complementary elastoplasticity. Int J Numer Methods Eng 60(14):2263–2287. https://doi.org/10.1002/nme.1042

    Article  MATH  Google Scholar 

  29. Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  30. Darilmaz K, Kumbasar N (2006) An 8-node assumed stress hybrid element for analysis of shells. Comput Struct 84:1990–2000. https://doi.org/10.1016/j.compstruc.2006.08.003

    Article  Google Scholar 

  31. Eve RA, Reddy BD, Rockafellar RT (1990) An internal variable theory of plasticity based on the maximum plastic work inequality. Q Appl Math 48:59–83

    Article  Google Scholar 

  32. Felippa CA (2011) Introduction to finite element methods. University of Colorado at Boulder. http://www.colorado.edu/engineering/cas/courses. d/IFEM.d

  33. Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech-Trans ASME 50(4b):1010–1020. https://doi.org/10.1115/1.3167184

    Article  MATH  Google Scholar 

  34. Goldfarb D, Idnani A (1983) A numerically stable dual method for solving strictly convex quadratic programs. Math Program 27(1):1–33. https://doi.org/10.1007/BF02591962

    Article  MathSciNet  MATH  Google Scholar 

  35. Halphen B, Nguyen QS (1975) Sur les matériaux standards généralisés. J Méc 14:39–63

    MATH  Google Scholar 

  36. Han W, Reddy BD (1999) Plasticity: mathematical theory and numerical analysis. Springer, New York. https://doi.org/10.1007/b97851

    Book  MATH  Google Scholar 

  37. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  38. Hueck U, Reddy BD, Wriggers P (1994) On the stabilization of the rectangular 4-node quadrilateral element. Int J Numer Methods Biomed 10(7):555–563. https://doi.org/10.1002/cnm.1640100707

    Article  MATH  Google Scholar 

  39. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15(9):1413–1418. https://doi.org/10.1002/nme.1620150914

    Article  MathSciNet  MATH  Google Scholar 

  40. Hughes TJR, Brezzi F (1989) On drilling degrees of freedom. Comput Methods Appl Mech Eng 72(1):105–121. https://doi.org/10.1016/0045-7825(89)90124-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Hughes TJR, Franca LP (1987) A new finite element formulation for computational fluid dynamics: VII. The stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput Methods Appl Mech Eng 65(1):85–96. https://doi.org/10.1016/0045-7825(87)90184-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Ibrahimbegovic A (1990) A novel membrane finite element with an enhanced displacement interpolation. Finite Elem Anal Des 7(2):167–179. https://doi.org/10.1016/0168-874X(90)90008-3

    Article  MathSciNet  MATH  Google Scholar 

  43. Ibrahimbegovic A, Taylor RL, Wilson EL (1990) A robust quadrilateral membrane finite element with drilling degrees of freedom. Int J Numer Methods Eng 30(3):445–457. https://doi.org/10.1002/nme.1620300305

    Article  MATH  Google Scholar 

  44. Irons BM (1966) Engineering applications of numerical integration in stiffness methods. AIAA J 4(11):2035–2037. https://doi.org/10.2514/3.3836

    Article  MATH  Google Scholar 

  45. Karaoulanis FE (2013) Implicit numerical integration of nonsmooth multisurface yield criteria in the principal stress space. Arch Comput Methods Eng 20(3):263–308. https://doi.org/10.1007/s11831-013-9087-3

    Article  MathSciNet  MATH  Google Scholar 

  46. Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75(3):237–250. https://doi.org/10.1016/S0045-7949(99)00134-0

    Article  Google Scholar 

  47. Koiter WT (1960) General theorems for elastic–plastic solids, progress in solid mechanics, vol 6. North-Holland, Amsterdam

    Google Scholar 

  48. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626. https://doi.org/10.1002/nme.1771

    Article  MathSciNet  MATH  Google Scholar 

  49. Leonetti L, Aristodemo M (2015) A composite mixed finite element model for plane structural problems. Finite Elem Anal Des 94:33–46. https://doi.org/10.1016/j.finel.2014.09.004

    Article  Google Scholar 

  50. Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32. https://doi.org/10.1016/j.finel.2011.08.009

    Article  Google Scholar 

  51. Madeo A, Casciaro R, Zagari G, Zinno R, Zucco G (2014) A mixed isostatic 16 dof quadrilateral membrane element with drilling rotations, based on airy stresses. Finite Elem Anal Des 89:52–66. https://doi.org/10.1016/j.finel.2014.05.013

    Article  MathSciNet  Google Scholar 

  52. Mahnken R, Caylak I, Laschet G (2008) Two mixed finite element formulations with area bubble functions for tetrahedral elements. Comput Methods Appl Mech Eng 197(9–12):1147–1165. https://doi.org/10.1016/j.cma.2007.10.007

    Article  MathSciNet  MATH  Google Scholar 

  53. Maier G (1968) Quadratic programming and theory of elastic-perfectly plastic structures. Meccanica 3(4):265–273. https://doi.org/10.1007/BF02186946

    Article  MathSciNet  MATH  Google Scholar 

  54. Maier G (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow-laws: a finite element, linear programming approach. Meccanica 4(3):250–260. https://doi.org/10.1007/BF02133439

    Article  MATH  Google Scholar 

  55. Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. AIAA J 1(7):1631–1637. https://doi.org/10.2514/3.1869

    Article  Google Scholar 

  56. Mendes LAM, Castro LMSS (2009) Hybrid-mixed stress finite element models in elastoplastic analysis. Finite Elem Anal Des 45(12):863–875. https://doi.org/10.1016/j.finel.2009.06.021

    Article  MathSciNet  Google Scholar 

  57. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955. https://doi.org/10.1016/S0020-7683(03)00346-9

    Article  MathSciNet  MATH  Google Scholar 

  58. Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to texture analysis of polycrystals. J Mech Phys Solids 50(10):2123–2167. https://doi.org/10.1016/S0022-5096(02)00016-9

    Article  MathSciNet  MATH  Google Scholar 

  59. Mielke A (2004) Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM J Math Anal 36(2):384–404. https://doi.org/10.1137/S0036141003429906

    Article  MathSciNet  MATH  Google Scholar 

  60. Moharrami H, Mahini MR, Cocchetti G (2015) Elastoplastic analysis of plane stress/strain structures via restricted basis linear programming. Comput Struct 146:1–11. https://doi.org/10.1016/j.compstruc.2014.08.007

    Article  Google Scholar 

  61. Mosler J (2010) Variationally consistent modeling of finite strain plasticity theory with non-linear kinematic hardening. Comput Methods Appl Mech Eng 199(45–48):2753–2764. https://doi.org/10.1016/j.cma.2010.03.025

    Article  MathSciNet  MATH  Google Scholar 

  62. Neuenhofer A, Filippou FC (1997) Evaluation of nonlinear frame finite-element models. J Struct Eng 123(7):958–966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)

    Article  Google Scholar 

  63. Nocedal J, Wright S (2006) Numerical optimization. Springer, New York. https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  64. Nodargi NA, Bisegna P (2015a) Mixed tetrahedral elements for the analysis of structures with material and geometric nonlinearities. Proc Appl Math Mech 15(1):219–220. https://doi.org/10.1002/pamm.201510100

    Article  Google Scholar 

  65. Nodargi NA, Bisegna P (2015b) State update algorithm for isotropic elastoplasticity by incremental energy minimization. Int J Numer Methods Eng 105(3):163–196. https://doi.org/10.1002/nme.4966

    Article  MathSciNet  MATH  Google Scholar 

  66. Nodargi NA, Bisegna P (2017) A novel high-performance mixed membrane finite element for the analysis of inelastic structures. Comput Struct 182:337–353. https://doi.org/10.1016/j.compstruc.2016.10.002

    Article  Google Scholar 

  67. Nodargi NA, Artioli E, Caselli F, Bisegna P (2014) State update algorithm for associative elastic–plastic pressure-insensitive materials by incremental energy minimization. Fract Struct Integr 29:111–127. https://doi.org/10.3221/IGF-ESIS.29.11

    Article  Google Scholar 

  68. Nodargi NA, Caselli F, Artioli E, Bisegna P (2016) A mixed tetrahedral element with nodal rotations for large-displacement analysis of inelastic structures. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5232

    Article  MathSciNet  Google Scholar 

  69. Petryk H (2003) Incremental energy minimization in dissipative solids. C R Mec 331(7):469–474. https://doi.org/10.1016/S1631-0721(03)00109-8

    Article  MATH  Google Scholar 

  70. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions derivation of element stiffness matrices by assumed stress distributions. AIAA J 2(7):1333–1336. https://doi.org/10.2514/3.2546

    Article  Google Scholar 

  71. Pian THH (1995) State-of-the-art development of hybrid/mixed finite element method. Finite Elem Anal Des 21(1–2):5–20. https://doi.org/10.1016/0168-874X(95)00024-2

    Article  MathSciNet  MATH  Google Scholar 

  72. Pian THH (2000) Some notes on the early history of hybrid stress finite element method. Int J Numer Methods Eng 47(1–3):419–425. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<419::AID-NME778>3.0.CO;2-#

  73. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20(9):1685–1695. https://doi.org/10.1002/nme.1620200911

    Article  MATH  Google Scholar 

  74. Piltner R (2000) An alternative version of the pian-sumihara element with a simple extension to non-linear problems. Comput Mech 26(5):483–489. https://doi.org/10.1007/s004660000

    Article  MATH  Google Scholar 

  75. Piltner R, Taylor RL (1995) A quadrilateral mixed finite element with two enhanced strain modes. Int J Numer Methods Eng 38(11):1783–1808. https://doi.org/10.1002/nme.1620381102

    Article  MathSciNet  MATH  Google Scholar 

  76. Piltner R, Taylor RL (1999) A systematic construction of B-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems. Int J Numer Methods Eng 44(5):615–639. https://doi.org/10.1002/(SICI)1097-0207(19990220)44:5<615::AID-NME518>3.0.CO;2-U

    Article  MathSciNet  MATH  Google Scholar 

  77. Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41(3):267–283. https://doi.org/10.1016/j.finel.2004.05.004

    Article  Google Scholar 

  78. Pinsky PM (1987) A finite element formulation for elastoplasticity based on a three-field variational equation. Comput Methods Appl Mech Eng 61(1):41–60. https://doi.org/10.1016/0045-7825(87)90115-0

    Article  MATH  Google Scholar 

  79. Rebiai C, Belounarb L (2014) An effective quadrilateral membrane finite element based on the strain approach. Measurement 50:263–269. https://doi.org/10.1016/j.measurement.2013.12.043

    Article  Google Scholar 

  80. Reddy BD, Martin JB (1991) Algorithms for the solution of internal variable problems in plasticity. Comput Methods Appl Mech Eng 93(2):253–273. https://doi.org/10.1016/0045-7825(91)90154-X

    Article  MathSciNet  MATH  Google Scholar 

  81. Rezaiee-Pajand M, Karkon M (2013) An effective membrane element based on analytical solution. Eur J Mech A Solids 39:268–279. https://doi.org/10.1016/j.euromechsol.2012.12.004

    Article  MathSciNet  MATH  Google Scholar 

  82. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  Google Scholar 

  83. Saritas A, Soydas O (2012) Variational base and solution strategies for non-linear force-based beam finite elements. Int J Non-Linear Mech 47(3):54–64. https://doi.org/10.1016/j.ijnonlinmec.2012.01.003

    Article  Google Scholar 

  84. Scalet G, Auricchio F (2017) Computational methods for elastoplasticity: an overview of conventional and less-conventional approaches. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-017-9221-8

    Article  MATH  Google Scholar 

  85. Schröder J, Klaas O, Stein E, Miehe C (1997) A physically nonlinear dual mixed finite element formulation. Comput Methods Appl Mech Eng 144(1–2):77–92. https://doi.org/10.1016/S0045-7825(96)01169-3

    Article  MATH  Google Scholar 

  86. Schröder J, Igelbüscher M, Schwarz A, Starke G (2017) A Prange–Hellinger–Reissner type finite element formulation for small strain elasto-plasticity. Comput Methods Appl Mech Eng 317:400–418. https://doi.org/10.1016/j.cma.2016.12.005

    Article  MathSciNet  Google Scholar 

  87. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech-Trans ASME 53(1):51–54. https://doi.org/10.1115/1.3171737

    Article  MathSciNet  MATH  Google Scholar 

  88. Simo JC, Hughes TJR (1998) Computation inelasticity. Springer, New York

    MATH  Google Scholar 

  89. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638. https://doi.org/10.1002/nme.1620290802

    Article  MathSciNet  MATH  Google Scholar 

  90. Simo JC, Kennedy JG, Govindjee S (1988) Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Int J Numer Methods Eng 26(10):2161–2185. https://doi.org/10.1002/nme.1620261003

    Article  MATH  Google Scholar 

  91. Simo JC, Kennedy JG, Taylor RL (1989) Complementary mixed finite element formulations for elastoplasticity. Comput Methods Appl Mech Eng 74(2):177–206. https://doi.org/10.1016/0045-7825(89)90102-3

    Article  MathSciNet  MATH  Google Scholar 

  92. de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, Chichester. https://doi.org/10.1002/9780470694626

    Book  Google Scholar 

  93. Spacone E, Filippou FC, Taucer FF (1996) Fibre beam-column model for non-linear analysis of R/C frames: part I. Formulation. Earthq Eng Struct Dyn 25(7):711–725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9

    Article  Google Scholar 

  94. Taylor RL (2000) A mixed-enhanced formulation tetrahedral finite elements. Int J Numer Methods Eng 47(1–3):205–227. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<205::AID-NME768>3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  95. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. Int J Numer Methods Eng 10(6):1211–1219. https://doi.org/10.1002/nme.1620100602

    Article  MATH  Google Scholar 

  96. Taylor RL, Simo JC, Zienkiewicz OC, Chan ACH (1986) The patch test—a condition for assessing FEM convergence. Int J Numer Methods Eng 22(1):39–62. https://doi.org/10.1002/nme.1620220105

    Article  MathSciNet  MATH  Google Scholar 

  97. Taylor RL, Filippou FC, Saritas A, Auricchio F (2003) A mixed finite element method for beam and frame problems. Comput Mech 31(1):192–203. https://doi.org/10.1007/s00466-003-0410-y

    Article  MATH  Google Scholar 

  98. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aerosp Sci 23(9):805–823. https://doi.org/10.2514/8.3664

    Article  MATH  Google Scholar 

  99. Washizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon Press, Oxford

    MATH  Google Scholar 

  100. Weissman SL, Jamjian M (1993) Two-dimensional elastoplasticity: approximation by mixed finite elements. Int J Numer Methods Eng 36(21):3703–3727. https://doi.org/10.1002/nme.1620362108

    Article  MATH  Google Scholar 

  101. Wilkins ML (1964) Calculation of elastic–plastic flow. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol 3. Academic Press, New York, pp 211–263

    Google Scholar 

  102. Wilson EL (1963) Finite element analysis of two-dimensional structures. PhD thesis, Department of Civil Engineering, University of California at Berkeley

  103. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ (ed) Numerical and computer methods in structural mechanics. Academic Press, New York, p 43

    Google Scholar 

  104. Wisniewski K, Turska E (2009) Improved 4-node Hu–Washizu elements based on skew coordinates. Comput Struct 87(7–8):407–424. https://doi.org/10.1016/j.compstruc.2009.01.011

    Article  Google Scholar 

  105. Xie X, Zhou T (2006) Accurate 4-node quadrilateral elements with a new version of energy-compatible stress mode. Int J Numer Methods Biomed 24(2):125–139. https://doi.org/10.1002/cnm.962

    Article  MathSciNet  MATH  Google Scholar 

  106. Yunus SM, Saigal S, Cook RD (1989) On improved hybrid finite elements with rotational degrees of freedom. Int J Numer Methods Eng 28(4):785–800. https://doi.org/10.1002/nme.1620280405

    Article  Google Scholar 

  107. Zienkiewicz OC, Irons BM, Ergatoudis J, Ahmad S, Scott FC (1969) Iso-parametric and associate element families for two- and three-dimensional analysis. In: Holland I, Bell K (eds) Finite element methods for stress analysis. Tapir, Trondheim

    Google Scholar 

  108. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method. Its basis and fundamentals, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere gratitude to Professor Paolo Bisegna for valuable comments and stimulating discussions on the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Nodargi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodargi, N.A. An Overview of Mixed Finite Elements for the Analysis of Inelastic Bidimensional Structures. Arch Computat Methods Eng 26, 1117–1151 (2019). https://doi.org/10.1007/s11831-018-9293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9293-0

Navigation