Skip to main content

Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis

Abstract

This is the first part of a two-part article on computer modeling of wind turbines. We describe the recent advances made by our teams in ALE-VMS and ST-VMS computational aerodynamic and fluid–structure interaction (FSI) analysis of wind turbines. The ALE-VMS method is the variational multiscale version of the Arbitrary Lagrangian–Eulerian method. The VMS components are from the residual-based VMS method. The ST-VMS method is the VMS version of the Deforming-Spatial-Domain/Stabilized Space–Time method. The ALE-VMS and ST-VMS serve as the core methods in the computations. They are complemented by special methods that include the ALE-VMS versions for stratified flows, sliding interfaces and weak enforcement of Dirichlet boundary conditions, ST Slip Interface (ST-SI) method, NURBS-based isogeometric analysis, ST/NURBS Mesh Update Method (STNMUM), Kirchhoff–Love shell modeling of wind-turbine structures, and full FSI coupling. The VMS feature of the ALE-VMS and ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow, and the moving-mesh feature of the ALE and ST frameworks enables high-resolution computation near the rotor surface. The ST framework, in a general context, provides higher-order accuracy. The ALE-VMS version for sliding interfaces and the ST-SI enable moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the sliding interface or the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-SI also enables prescribing the fluid velocity at the turbine rotor surface as weakly-enforced Dirichlet boundary condition. The STNMUM enables exact representation of the mesh rotation. The analysis cases reported include both the horizontal-axis and vertical-axis wind turbines, stratified and unstratified flows, standalone wind turbines, wind turbines with tower or support columns, aerodynamic interaction between two wind turbines, and the FSI between the aerodynamics and structural dynamics of wind turbines. Comparisons with experimental data are also included where applicable. The reported cases demonstrate the effectiveness of the ALE-VMS and ST-VMS computational analysis in wind-turbine aerodynamics and FSI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53

References

  1. 1.

    Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, to appear in a special volume to be published by Springer

  2. 2.

    Renewable power generation costs in 2012: An overview, Report, International Renewable Energy Agency, 2012, Available at: http://www.irena.org/Publications/

  3. 3.

    Annual energy outlook 2014, doe/eia-0383(2014), Report, U.S. Energy Information Administration, April 2014, Available at: http://www.eia.gov/forecasts/aeo/

  4. 4.

    Eu energy in figures, statistical pocketbook, (2014) Report, European Commission 2014. https://doi.org/10.2833/24150

  5. 5.

    Levelized cost of electricity renewable energy technologies, Study, Fraunhofer Institute for Solar Energy Systems ISE, November 2013

  6. 6.

    Sørensen NN, Michelsen JA, Schreck S (2002) Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel. Wind Energy 5:151–169

    Google Scholar 

  7. 7.

    Pape AL, Lecanu J (2004) 3D Navier–Stokes computations of a stall-regulated wind turbine. Wind Energy 7:309–324

    Google Scholar 

  8. 8.

    Zahle F, Sørensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12:594–619

    Google Scholar 

  9. 9.

    Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207–235. https://doi.org/10.1002/fld.2400

    Article  MATH  Google Scholar 

  10. 10.

    Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:333–344. https://doi.org/10.1007/s00466-011-0589-2

    Article  MATH  Google Scholar 

  11. 11.

    Li Y, Kim-Jong Paik PMC, Xing T (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37:285–298

    Google Scholar 

  12. 12.

    Guttierez E, Primi S, Taucer F, Caperan P, Tirelli D, Mieres J, Calvo I, Rodriguez J, Vallano F, Galiotis G, Mouzakis D (2003) A wind turbine tower design based on fibre-reinforced composites, Technical report, Joint Research Centre - Ispra, European Laboratory for Structural Assessment (ELSA), Institute For Protection and Security of the Citizen (IPSC), European Commission

  13. 13.

    Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30:2101–2114

    Google Scholar 

  14. 14.

    Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen HA (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42:285–330

    Google Scholar 

  15. 15.

    Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76:52–61

    Google Scholar 

  16. 16.

    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for pre-bending of wind turbine blades. Int J Numer Methods Eng 89:323–336

    MATH  Google Scholar 

  18. 18.

    Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    MATH  Google Scholar 

  19. 19.

    Schreck S, Lundquist J, Shaw W (2008) US department of energy workshop report: research needs for wind resource characterization, Technical Report NREL/TP-500-43521, National Renewable Energy Laboratory

  20. 20.

    Barthelmie1 R, Frandsen S, Rathmann O, Hansen K, Politis E, Prospathopoulos J, Schepers J, Rados K, Cabezn D, Schlez W, Neubert A, Heath M (2011) Flow and wakes in large wind farms: Final report for upwind wp8, Technical Report Report number Ris-R-1765(EN), Danmarks Tekniske Universitet, Ris Nationallaboratoriet for Bredygtig Energ

  21. 21.

    Westerhellweg A, Caadillas B, Kinder F, Neumann T (2014) Wake measurements at alpha ventus dependency on stability and turbulence intensity. J Phys: Conf Ser (Online). https://doi.org/10.1088/1742-6596/555/1/012106

    Google Scholar 

  22. 22.

    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195:5257–5297

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Bazilevs Y, da Veiga LB, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16:1031–1090

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183

    MATH  Google Scholar 

  26. 26.

    Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    MATH  Google Scholar 

  28. 28.

    Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198:1726–1741

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Auricchio F, Beirão da Veiga L, Lovadina C, Reali A (2010) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput Methods Appl Mech Eng 199:314–323

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Wang W, Zhang Y (2010) Wavelets-based NURBS simplification and fairing. Comput Methods Appl Mech Eng 199:290–300

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Srinivasan V, Radhakrishnan S, Subbarayan G (2010) Coordinated synthesis of hierarchical engineering systems. Comput Methods Appl Mech Eng 199:392–404

    MATH  Google Scholar 

  35. 35.

    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41:371–378

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840. https://doi.org/10.1016/j.cma.2009.06.019

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order nurbs elements. Comput Methods Appl Mech Eng 197:2732–2762

    MATH  Google Scholar 

  42. 42.

    Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373

    MATH  Google Scholar 

  43. 43.

    Benson DJ, Bazilevs Y, De Luycker E, Hsu M-C, Scott M, Hughes TJR, Belytschko T (2010) A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. Int J Numer Methods Eng 83:765–785

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2010) Isogeometric shell analysis: The Reissner-Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178

    Google Scholar 

  50. 50.

    Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150

    MATH  Google Scholar 

  51. 51.

    Cirak F, Ortiz M, Schröder P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Numer Methods Eng 47:2039–2072

    MATH  Google Scholar 

  52. 52.

    Cirak F, Ortiz M (2001) Fully C 1-conforming subdivision elements for finite deformation thin shell analysis. Int J Numer Methods Eng 51:813–833

    MATH  Google Scholar 

  53. 53.

    Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schröder P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput-Aided Des 34:137–148

    Google Scholar 

  54. 54.

    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799

    MATH  Google Scholar 

  57. 57.

    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36:9–15

    MATH  Google Scholar 

  59. 59.

    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari S, Sarkar S (2015) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25(12):2349–2375

    MathSciNet  MATH  Google Scholar 

  61. 61.

    Yan J, Korobenko A, Tejada-Martinez A, Golshan R, Bazilevs Y (2017) A new variational multiscale formulation for stratified incompressible turbulent flows. Comput Fluids 158:150–156

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Korobenko A, Yan J, Gohari S, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Hsu M-C, Akkerman I, Bazilevs Y (2014) Finite element simulation of wind turbine aerodynamics: validation study using NREL phase VI experiment. Wind Energy 17:461–481

    Google Scholar 

  66. 66.

    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398. https://doi.org/10.1007/s11831-014-9119-7

    MathSciNet  Article  MATH  Google Scholar 

  68. 68.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2015) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783. https://doi.org/10.1002/nme.4738

    Article  MATH  Google Scholar 

  69. 69.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011. https://doi.org/10.1115/1.4024415

    Article  Google Scholar 

  70. 70.

    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006. https://doi.org/10.1115/1.4027466

    Article  Google Scholar 

  71. 71.

    Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174. https://doi.org/10.1016/j.compfluid.2016.03.008

    MathSciNet  Article  MATH  Google Scholar 

  72. 72.

    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25:2349–2375. https://doi.org/10.1142/S0218202515400114

    MathSciNet  Article  MATH  Google Scholar 

  73. 73.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Google Scholar 

  74. 74.

    Bazilevs Y, Gohean JR, Hughes TJR, Moser RD (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550

    MathSciNet  MATH  Google Scholar 

  75. 75.

    Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    MathSciNet  MATH  Google Scholar 

  76. 76.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16

    MathSciNet  MATH  Google Scholar 

  77. 77.

    Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Google Scholar 

  78. 78.

    Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47:593–599

    MathSciNet  Google Scholar 

  79. 79.

    Long CC, Marsden AL, Bazilevs Y (2013) Fluid–structure interaction simulation of pulsatile ventricular assist devices. Comput Mech 52:971–981. https://doi.org/10.1007/s00466-013-0858-3

    Article  MATH  Google Scholar 

  80. 80.

    Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y (2014) Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech 54:911–919. https://doi.org/10.1007/s00466-013-0931-y

    MathSciNet  Article  MATH  Google Scholar 

  81. 81.

    Long CC, Marsden AL, Bazilevs Y (2014) Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk. Comput Mech 54:921–932. https://doi.org/10.1007/s00466-013-0967-z

    MathSciNet  Article  MATH  Google Scholar 

  82. 82.

    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071. https://doi.org/10.1007/s00466-014-1059-4

    MathSciNet  Article  MATH  Google Scholar 

  83. 83.

    Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://doi.org/10.1007/s00466-015-1166-x

    Article  MATH  Google Scholar 

  84. 84.

    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    MathSciNet  MATH  Google Scholar 

  85. 85.

    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905

    Google Scholar 

  86. 86.

    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Google Scholar 

  87. 87.

    Wang C, Wu MCH, Xu F, Hsu M-C, Bazilevs Y (2017) Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis. Comput Fluids 142:3–14. https://doi.org/10.1016/j.compfluid.2015.12.004

    MathSciNet  Article  MATH  Google Scholar 

  88. 88.

    Wu MCH, Kamensky D, Wang C, Herrema AJ, Xu F, Pigazzini MS, Verma A, Marsden AL, Bazilevs Y, Hsu M-C (2017) Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: application to a hydraulic arresting gear. Comput Methods Appl Mech Eng, Published online. https://doi.org/10.1016/j.cma.2016.09.032

    MathSciNet  Google Scholar 

  89. 89.

    Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166. https://doi.org/10.1016/j.compfluid.2016.06.016

    MathSciNet  Article  MATH  Google Scholar 

  90. 90.

    Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090. https://doi.org/10.1007/s00466-014-1090-5

    Article  MATH  Google Scholar 

  91. 91.

    Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211. https://doi.org/10.1016/j.compfluid.2015.07.013

    MathSciNet  Article  MATH  Google Scholar 

  92. 92.

    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid–structure interaction techniques. Comput Mech 48:247–267. https://doi.org/10.1007/s00466-011-0571-z

    MathSciNet  Article  MATH  Google Scholar 

  93. 93.

    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001. https://doi.org/10.1142/S0218202512300013

    MathSciNet  Article  MATH  Google Scholar 

  94. 94.

    Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255. https://doi.org/10.1142/S0218202515400072

    MathSciNet  Article  MATH  Google Scholar 

  95. 95.

    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44. https://doi.org/10.1016/S0065-2156(08)70153-4

    MathSciNet  Article  MATH  Google Scholar 

  96. 96.

    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575. https://doi.org/10.1002/fld.505

    MathSciNet  Article  MATH  Google Scholar 

  97. 97.

    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900. https://doi.org/10.1002/fld.1430

    Article  MATH  Google Scholar 

  98. 98.

    Mittal S, Tezduyar TE (1992) A finite element study of incompressible flows past oscillating cylinders and aerofoils. Int J Numer Methods Fluids 15:1073–1118. https://doi.org/10.1002/fld.1650150911

    Article  Google Scholar 

  99. 99.

    Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid–structure interactions. Int J Numer Methods Fluids 21:933–953. https://doi.org/10.1002/fld.1650211011

    Article  MATH  Google Scholar 

  100. 100.

    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332. https://doi.org/10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  101. 101.

    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027. https://doi.org/10.1016/j.cma.2004.09.014

    MathSciNet  Article  MATH  Google Scholar 

  102. 102.

    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49. https://doi.org/10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  103. 103.

    Tezduyar TE, Sathe S, Schwaab M, Pausewang J, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43:133–142. https://doi.org/10.1007/s00466-008-0260-8

    Article  MATH  Google Scholar 

  104. 104.

    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    MathSciNet  MATH  Google Scholar 

  105. 105.

    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169. https://doi.org/10.1007/s11831-012-9070-4

    MathSciNet  Article  MATH  Google Scholar 

  106. 106.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London ISBN: 978-0470978771

    MATH  Google Scholar 

  107. 107.

    Takizawa K, Fritze M, Montes D, Spielman T, Tezduyar TE (2012) Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50:835–854. https://doi.org/10.1007/s00466-012-0761-3

    Article  Google Scholar 

  108. 108.

    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364. https://doi.org/10.1007/s00466-013-0880-5

    Article  MATH  Google Scholar 

  109. 109.

    Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069. https://doi.org/10.1007/s00466-014-1074-5

    Article  Google Scholar 

  110. 110.

    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338. https://doi.org/10.1142/S0218202513400058

    MathSciNet  Article  MATH  Google Scholar 

  111. 111.

    Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220. https://doi.org/10.1007/s00466-014-1052-y

    Article  Google Scholar 

  112. 112.

    Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476. https://doi.org/10.1007/s00466-014-1069-2

    MathSciNet  Article  MATH  Google Scholar 

  113. 113.

    Takizawa K, Tezduyar TE, Kolesar R (2015) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179. https://doi.org/10.1007/s00466-014-1108-z

    Article  MATH  Google Scholar 

  114. 114.

    Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647–657. https://doi.org/10.1007/s00466-011-0614-5

    Article  MATH  Google Scholar 

  115. 115.

    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15. https://doi.org/10.1007/s00466-013-0888-x

    Article  MATH  Google Scholar 

  116. 116.

    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21:481–508. https://doi.org/10.1007/s11831-014-9113-0

    MathSciNet  Article  MATH  Google Scholar 

  117. 117.

    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211. https://doi.org/10.1007/s00466-014-0999-z

    MathSciNet  Article  Google Scholar 

  118. 118.

    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406. https://doi.org/10.1142/S0218202515400126

    MathSciNet  Article  MATH  Google Scholar 

  119. 119.

    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. https://doi.org/10.1115/1.4005073

    Article  MATH  Google Scholar 

  120. 120.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760. https://doi.org/10.1007/s00466-012-0759-x

    Article  MATH  Google Scholar 

  121. 121.

    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134. https://doi.org/10.1016/j.compfluid.2012.11.008

    MathSciNet  Article  MATH  Google Scholar 

  122. 122.

    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778. https://doi.org/10.1007/s00466-012-0758-y

    Article  MATH  Google Scholar 

  123. 123.

    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233. https://doi.org/10.1007/s00466-014-0980-x

    MathSciNet  Article  Google Scholar 

  124. 124.

    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971. https://doi.org/10.1007/s00466-013-0935-7

    MathSciNet  Article  MATH  Google Scholar 

  125. 125.

    Takizawa K, Tezduyar TE, Buscher A (2015) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141. https://doi.org/10.1007/s00466-014-1095-0

    Article  Google Scholar 

  126. 126.

    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486. https://doi.org/10.1142/S0218202514500250

    MathSciNet  Article  MATH  Google Scholar 

  127. 127.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2012) Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50:675–686. https://doi.org/10.1007/s00466-012-0760-4

    MathSciNet  Article  MATH  Google Scholar 

  128. 128.

    Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073. https://doi.org/10.1007/s00466-012-0790-y

    MathSciNet  Article  MATH  Google Scholar 

  129. 129.

    Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T (2014) FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput Mech 54:1035–1045. https://doi.org/10.1007/s00466-014-1017-1

    Article  MATH  Google Scholar 

  130. 130.

    Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018) Aorta flow analysis and heart valve flow and structure analysis, to appear in a special volume to be published by Springer

  131. 131.

    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986. https://doi.org/10.1007/s00466-014-1046-9

    Article  MATH  Google Scholar 

  132. 132.

    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018) Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation, lecture notes in applied and computational mechanics. Springer, Berlin. pp 77–99 ISBN: 978-3-319-59547-4

    Google Scholar 

  133. 133.

    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2017) Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Comput Fluids 158:176–188. https://doi.org/10.1016/j.compfluid.2016.11.012

    MathSciNet  Article  MATH  Google Scholar 

  134. 134.

    Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248. https://doi.org/10.1142/s0218202513400022

    MathSciNet  Article  MATH  Google Scholar 

  135. 135.

    Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977. https://doi.org/10.1007/s00466-016-1272-4

    MathSciNet  Article  MATH  Google Scholar 

  136. 136.

    Takizawa K, Tezduyar TE, Hattori H (2017) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117. https://doi.org/10.1016/j.compfluid.2016.02.019

    MathSciNet  Article  MATH  Google Scholar 

  137. 137.

    Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20. https://doi.org/10.1016/j.compfluid.2016.02.021

    MathSciNet  Article  MATH  Google Scholar 

  138. 138.

    Otoguro Y, Takizawa K, Tezduyar TE (2017) Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200. https://doi.org/10.1016/j.compfluid.2017.04.017

    MathSciNet  Article  MATH  Google Scholar 

  139. 139.

    Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries, to appear in a special volume to be published by Springer

  140. 140.

    Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134. https://doi.org/10.1016/j.compfluid.2016.05.006

    MathSciNet  Article  MATH  Google Scholar 

  141. 141.

    Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, to appear in a special volume to be published by Springer

  142. 142.

    Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200. https://doi.org/10.1016/j.compfluid.2016.05.027

    MathSciNet  Article  MATH  Google Scholar 

  143. 143.

    Takizawa K, Tezduyar TE, Kanai T (2017) Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity. Math Models Methods Appl Sci 27:771–806. https://doi.org/10.1142/S0218202517500166

    MathSciNet  Article  MATH  Google Scholar 

  144. 144.

    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    MATH  Google Scholar 

  145. 145.

    Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157–177. https://doi.org/10.1016/0045-7825(94)00082-4

    Article  MATH  Google Scholar 

  146. 146.

    Takizawa K, Tezduyar TE (2014) Space–time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91–99. https://doi.org/10.1007/s00466-013-0895-y

    MathSciNet  Article  Google Scholar 

  147. 147.

    Osawa Y, Kalro V, Tezduyar T (1999) Multi-domain parallel computation of wake flows. Comput Methods Appl Mech Eng 174:371–391. https://doi.org/10.1016/S0045-7825(98)00305-3

    Article  MATH  Google Scholar 

  148. 148.

    Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Sweden

    MATH  Google Scholar 

  149. 149.

    Brenner SC, Scott LR (2002) The mathematical theory of finite element methods, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  150. 150.

    Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, Berlin

    MATH  Google Scholar 

  151. 151.

    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284. https://doi.org/10.1016/0045-7825(84)90157-9

    MathSciNet  Article  MATH  Google Scholar 

  152. 152.

    Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325. https://doi.org/10.1016/0045-7825(86)90003-4

    Article  MATH  Google Scholar 

  153. 153.

    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99

    MATH  Google Scholar 

  154. 154.

    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430. https://doi.org/10.1016/S0045-7825(00)00211-5

    Article  MATH  Google Scholar 

  155. 155.

    Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method-A paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24

    MathSciNet  MATH  Google Scholar 

  156. 156.

    Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539–557

    MathSciNet  MATH  Google Scholar 

  157. 157.

    Shakib F, Hughes TJR, Johan Z (1989) A multi-element group preconditionined GMRES algorithm for nonsymmetric systems arising in finite element analysis. Comput Methods Appl Mech Eng 75:415–456

    MATH  Google Scholar 

  158. 158.

    Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58:305–328

    MathSciNet  MATH  Google Scholar 

  159. 159.

    Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368. https://doi.org/10.1007/s10915-008-9233-5

    MathSciNet  Article  MATH  Google Scholar 

  160. 160.

    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    MATH  Google Scholar 

  161. 161.

    Wilcox DC (1998) Turbulence modeling for CFD. DCW Industries, La Canada

    Google Scholar 

  162. 162.

    Golshan R, Tejada-Martínez A, Juha M, Bazilevs Y (2015) Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions. Comput Fluids 118:172–181

    MathSciNet  MATH  Google Scholar 

  163. 163.

    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753. https://doi.org/10.1016/j.cma.2005.08.023

    MathSciNet  Article  MATH  Google Scholar 

  164. 164.

    Tezduyar TE, Ganjoo DK (1986) Petrov–Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection-diffusion problems. Comput Methods Appl Mech Eng 59:49–71. https://doi.org/10.1016/0045-7825(86)90023-X

    Article  MATH  Google Scholar 

  165. 165.

    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422. https://doi.org/10.1016/0045-7825(93)90033-T

    Article  MATH  Google Scholar 

  166. 166.

    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206. https://doi.org/10.1016/j.compfluid.2005.02.011

    MathSciNet  Article  MATH  Google Scholar 

  167. 167.

    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632. https://doi.org/10.1016/j.cma.2005.05.032

    MathSciNet  Article  MATH  Google Scholar 

  168. 168.

    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing. Comput Fluids 36:147–159. https://doi.org/10.1016/j.compfluid.2005.07.009

    Article  MATH  Google Scholar 

  169. 169.

    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38:469–481. https://doi.org/10.1007/s00466-005-0025-6

    Article  MATH  Google Scholar 

  170. 170.

    Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456–468. https://doi.org/10.1007/s00466-006-0056-7

    Article  MATH  Google Scholar 

  171. 171.

    Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356–364. https://doi.org/10.1007/s00466-006-0045-x

    MathSciNet  Article  MATH  Google Scholar 

  172. 172.

    Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121–126. https://doi.org/10.1016/j.compfluid.2005.07.004

    Article  MATH  Google Scholar 

  173. 173.

    Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57:1189–1209. https://doi.org/10.1002/fld.1743

    MathSciNet  Article  MATH  Google Scholar 

  174. 174.

    Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing. Int J Numer Methods Fluids 54:695–706. https://doi.org/10.1002/fld.1447

    MathSciNet  Article  MATH  Google Scholar 

  175. 175.

    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608. https://doi.org/10.1002/fld.1484

    MathSciNet  Article  MATH  Google Scholar 

  176. 176.

    Corsini A, Menichini C, Rispoli F, Santoriello A, Tezduyar TE (2009) A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms. J Appl Mech 76:021211. https://doi.org/10.1115/1.3062967

    Article  Google Scholar 

  177. 177.

    Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing. J Appl Mech 76:021209. https://doi.org/10.1115/1.3057496

    Article  Google Scholar 

  178. 178.

    Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159–167. https://doi.org/10.1007/s00466-009-0441-0

    MathSciNet  Article  MATH  Google Scholar 

  179. 179.

    Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254–270. https://doi.org/10.1002/fld.2451

    MathSciNet  Article  MATH  Google Scholar 

  180. 180.

    Corsini A, Rispoli F, Tezduyar TE (2012) Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique. J Appl Mech 79:010910. https://doi.org/10.1115/1.4005060

    Article  Google Scholar 

  181. 181.

    Corsini A, Rispoli F, Sheard AG, Tezduyar TE (2012) Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50:695–705. https://doi.org/10.1007/s00466-012-0789-4

    MathSciNet  Article  MATH  Google Scholar 

  182. 182.

    Kler PA, Dalcin LD, Paz RR, Tezduyar TE (2013) SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput Mech 51:171–185. https://doi.org/10.1007/s00466-012-0712-z

    MathSciNet  Article  MATH  Google Scholar 

  183. 183.

    Corsini A, Rispoli F, Sheard AG, Takizawa K, Tezduyar TE, Venturini P (2014) A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput Mech 54:1191–1202. https://doi.org/10.1007/s00466-014-1050-0

    MathSciNet  Article  MATH  Google Scholar 

  184. 184.

    Rispoli F, Delibra G, Venturini P, Corsini A, Saavedra R, Tezduyar TE (2015) Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing. Comput Mech 55:1201–1209. https://doi.org/10.1007/s00466-015-1160-3

    MathSciNet  Article  MATH  Google Scholar 

  185. 185.

    Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations. Comput Mech, published online, https://doi.org/10.1007/s00466-018-1557-x

    MathSciNet  MATH  Google Scholar 

  186. 186.

    Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput Mech 50:499–511

    MathSciNet  Google Scholar 

  187. 187.

    Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2018) Turbocharger turbine and exhaust manifold flow computation with the Space–time variational multiscale method and isogeometric analysis. Comput Fluids, published online. https://doi.org/10.1016/j.compfluid.2018.05.019

    MathSciNet  MATH  Google Scholar 

  188. 188.

    Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    MathSciNet  MATH  Google Scholar 

  189. 189.

    Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication), 2nd edn. Springer, New York

    MATH  Google Scholar 

  190. 190.

    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, London

    MATH  Google Scholar 

  191. 191.

    Bischoff M, Wall WA, Bletzinger K-U, Ramm E (2004) Models and finite elements for thin-walled structures. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, solids, structures and coupled problems, Chap. 3, vol 2. Wiley, London

  192. 192.

    Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  193. 193.

    Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905

    MathSciNet  MATH  Google Scholar 

  194. 194.

    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371–75

    MathSciNet  MATH  Google Scholar 

  195. 195.

    Melbø H, Kvamsdal T (2003) Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing. Comput Methods Appl Mech Eng 192:613–633

    MathSciNet  MATH  Google Scholar 

  196. 196.

    van Brummelen EH, Garg VV, Prudhomme S, van der Zee KG (2011) Flux evaluation in primal and dual boundary-coupled problems. J Appl Mech 79:010904

    Google Scholar 

  197. 197.

    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, pp 7–24

  198. 198.

    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36. https://doi.org/10.1109/2.237441

    Article  MATH  Google Scholar 

  199. 199.

    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94. https://doi.org/10.1016/0045-7825(94)00077-8

    Article  MATH  Google Scholar 

  200. 200.

    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130. https://doi.org/10.1007/BF02897870

    Article  MATH  Google Scholar 

  201. 201.

    Tezduyar T (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas–liquid and phase-change flows (CD-ROM). ASME Paper IMECE2001/HTD-24206, ASME, New York

  202. 202.

    Tezduyar TE (2003) Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows, In: Hafez MM (ed) Numerical simulations of incompressible flows. World Scientific, New Jersey, pp 221–239. https://doi.org/10.1142/9789812796837_0013

    MATH  Google Scholar 

  203. 203.

    Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032. https://doi.org/10.1016/j.cma.2003.12.046

    Article  MATH  Google Scholar 

  204. 204.

    Tezduyar TE, Sathe S, Senga M, Aureli L, Stein K, Griffin B (2005) Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques. In: Proceedings of the 10th international conference on numerical methods in continuum mechanics (CD-ROM), Zilina, Slovakia

  205. 205.

    Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Methods Eng 15:1862–1867

    MathSciNet  MATH  Google Scholar 

  206. 206.

    Rodrigues O (1840) Des lois geometriques qui regissent les deplacements dun systeme solide dans lespace, et de la variation des coordonnees provenant de ces deplacements consideres independamment des causes qui peuvent les produire. J Math 5:380–440

    Google Scholar 

  207. 207.

    Gayen B, Sarkar S, Taylor JR (2010) Large eddy simulation of a stratified boundary layer under an oscillatory current. J Fluid Mech 643:233–266

    MATH  Google Scholar 

  208. 208.

    Gayen B, Sarkar S (2011) Direct and large-eddy simulations of internal tide generation at a near-critical slope. J Fluid Mech 681:48–79

    MathSciNet  MATH  Google Scholar 

  209. 209.

    Beare R, Macvean M, Holtslag A, Cuxart J, Esau I, Golaz J-C, Jimenez M, Khairoutdinov M, Kosovic B, Lewellen D, Lund T, Lundquist J, Mccabe A, Moene A, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Bound-Layer Meteor 118:247–272

    Google Scholar 

  210. 210.

    Griffith DT, Ashwill TD (2011) The sandia 100-meter all-glass baseline wind turbine blade: Snl100-00, SANDIA REPORT, SAND2011-3779

  211. 211.

    Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory

  212. 212.

    Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebending of wind turbine blades. Int J Numer Methods Eng 89:323–336

    MATH  Google Scholar 

  213. 213.

    Windspire Energy, http://www.windspireenergy.com/

  214. 214.

    Hill N, Dominy R, Ingram G, Dominy J (2009) Darrieus turbines: the physics of self-starting. Proc IMechE Part A: J Power Energy 223(1):21–29

    Google Scholar 

  215. 215.

    Baker JR (1983) Features to aid or enable self starting of pitched low solidity vertical axis wind turbines. J Wind Eng Ind Aerodyn 15:369–380

    Google Scholar 

  216. 216.

    Osawa Y, Tezduyar T (1999) A multi-domain method for 3D computation of wake flow behind a circular cylinder. Comput Fluid Dyn J 8:296–308

    Google Scholar 

  217. 217.

    Tezduyar T, Osawa Y (1999) Methods for parallel computation of complex flow problems. Parallel Comput 25:2039–2066. https://doi.org/10.1016/S0167-8191(99)00080-0

    MathSciNet  Article  Google Scholar 

  218. 218.

    Tezduyar T, Osawa Y (2001) The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:705–716. https://doi.org/10.1016/S0045-7825(01)00310-3

    Article  MATH  Google Scholar 

  219. 219.

    Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. https://doi.org/10.1016/S0045-7825(01)00311-5

    Article  MATH  Google Scholar 

  220. 220.

    Jalali M, Rapaka N, Sarkar S (2014) Tidal flow over topography: effect of excursion number on wave energetics and turbulence. J Fluid Mech 750:259–283

    Google Scholar 

  221. 221.

    Gohari S, Sarkar S (2016) Tidal flow over topography: effect of excursion number on wave energetics and turbulence. Bound-Layer Meteorol, Accepted for publication

  222. 222.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Google Scholar 

  223. 223.

    Bravo R, Tullis S, Ziada S (2007) Performance testing of a small vertical-axis wind turbine. In: Proceedings of the 21st Canadian Congress of applied mechanics, pp 470–471

  224. 224.

    McLaren K, Tullis S, Ziada S (2012) Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy, 15: 349–361. Published online. https://doi.org/10.1002/we.472

    Google Scholar 

  225. 225.

    Dabiri JO (2011) Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J Renew Sustain Energy 3:043104

    Google Scholar 

  226. 226.

    Life tower, http://cosmosunfarm.co.jp/lifetower.html

Download references

Acknowledgements

First and second authors wish to thank the Texas Advanced Computing Center (TACC) and the San Diego Supercomputing Center (SDSC) for providing HPC resources that have contributed to the research results reported in this paper. The second author acknowledges the support of the AFOSR Award FA9550-16-1-0131 and ARO Grant W911NF-14-1-0296. The work on the ST computational analysis was supported (third and fourth authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement (third author). The work on the ST computational analysis was also supported (fourth author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korobenko, A., Bazilevs, Y., Takizawa, K. et al. Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis. Arch Computat Methods Eng 26, 1059–1099 (2019). https://doi.org/10.1007/s11831-018-9292-1

Download citation