Skip to main content

Computer Modeling of Wind Turbines: 2. Free-Surface FSI and Fatigue-Damage

Abstract

This article reviews state-of-the-art numerical techniques for fluid–structure interaction (FSI) of full-scale wind-turbine systems. Simulation of floating wind turbines subjected to combined wind-flow and ocean-wave forcing, and modeling of high-cycle fatigue failure of blades due to long-term cyclic aerodynamic loading, are the focal points of this article. Computational techniques including advanced structural modeling based on Isogeometric Analysis, free-surface FSI, and fatigue-damage modeling, are presented. Representative computational examples involving land-based and floating offshore wind-turbine designs illustrate the versatility and power of the computational methods developed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11

    MATH  Google Scholar 

  2. 2.

    Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79:010905

    Google Scholar 

  3. 3.

    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Google Scholar 

  5. 5.

    Allaire D, Biros G, Chambers J, Kordonowy D, Ghattas O, Wilcox K (2012) Dynamic data driven methods for self-aware aerospace vehicles. Proc Comput Sci 9:1206–1210

    Google Scholar 

  6. 6.

    Allaire D, Chambers J, Cowlagi R, Kordonowy D, Lecerf M, Mainini L, Ulker D, Wilcox K (2013) An offline/online dddas capability for self-aware aerospace vehicles. Proc Comput Sci 18:1959–1968

    Google Scholar 

  7. 7.

    Anitescu C, Yongjie Jessica Zhang YJ, Rabczuk T (2015) An isogeometric collocation method using superconvergent points. Comput Methods Appl Mech Eng 284:1073–1097

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Augier B, Yan J, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2015) Experimental and numerical FSI study of compliant hydrofoils. Comput Mech 55:1079–1090

    MATH  Google Scholar 

  9. 9.

    Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229:3402–3414

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bazilevs Y, Deng X, Korobenko A, Lanza di Scalea F, Todd MD, Taylor SG (2015) Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data. J Appl Mech 82:091008–091008–12

    Google Scholar 

  13. 13.

    Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Mathem Models Methods Appl Sci 22(supp02):1230002

    MATH  Google Scholar 

  15. 15.

    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2015) Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines. Int J Numer Methods Eng 102:766–783

    MATH  Google Scholar 

  17. 17.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) Fluid-structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Google Scholar 

  18. 18.

    Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83(6):061010

    Google Scholar 

  19. 19.

    Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) FSI modeling of vertical-axis wind turbines. J Appl Mech 81:081006

    Google Scholar 

  20. 20.

    Bazilevs Y, Korobenko A, Yan J, Pal A, Gohari SMI, Sarkar S (2015) ALE-VMS formulation for stratified turbulent incompressible flows with applications. Math Models Methods Appl Sci 25(12):2349–2375

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Bazilevs Y, Marsden AL, Lanza di Scalea F, Majumdar A, Tatineni M (2012) Toward a computational steering framework for large-scale composite structures based on continually and dynamically injected sensor data. Proc Comput Sci 9:1149–1158

    Google Scholar 

  22. 22.

    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Bazilevs Y, Takizawa K, Tezduyar TE (2015) New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math Models Methods Appl Sci 25:2217–2226

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London

    MATH  Google Scholar 

  26. 26.

    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Bazilevs Y, Yan J, de Stadler M, Sarkar S (2014) Computation of the flow over a sphere at Re = 3700: a comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12):121003

    Google Scholar 

  28. 28.

    Beir Da Veiga L, Hughes TJR, Kiendl J, Lovadina C, Niiranen J, Reali A, Speleers H (2015) A locking-free model for Reissner–Mindlin plates: analysis and isogeometric implementation via nurbs and triangular nurps. Math Models Methods Appl Sci 28:1519–1551

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Blasch E, Ravela S, Aved A (eds) (2019) Handbook of dynamic data driven applications systems. Springer, Berlin

    Google Scholar 

  31. 31.

    Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60:371–75

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Toward integration of CAD and FEA. Wiley, London

    MATH  Google Scholar 

  35. 35.

    Cruchaga M, Celentano D, Tezduyar T (2001) A moving Lagrangian interface technique for flow computations over fixed meshes. Comput Methods Appl Mech Eng 191:525–543

    MATH  Google Scholar 

  36. 36.

    Cruchaga M, Celentano D, Tezduyar T (2002) Computation of mould filling processes with a moving Lagrangian interface technique. Commun Numer Methods Eng 18:483–493

    MATH  Google Scholar 

  37. 37.

    Cruchaga MA, Celentano DJ, Tezduyar TE (2005) Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int J Numer Methods Fluids 47:451–469

    MATH  Google Scholar 

  38. 38.

    Daniel IM, Ishai O (2006) Engineering mechanics of composite materials. Oxford University Press, Oxford

    Google Scholar 

  39. 39.

    Darema F (2004) Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Proceedings of ICCS 2004 4th international conference on computational science, pp 662–669

    Google Scholar 

  40. 40.

    Degrieck J, Paepegem WV (2001) Fatigue damage modelling of fiber-reinforced composite materials: review. Appl Mech Rev 54(4):279–300

    Google Scholar 

  41. 41.

    Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Griffith TD (2015) Structural health and prognostics management for offshore wind plants: final report of sandia research and developments activities. Report of the Sandia National Laboratory

  43. 43.

    Guo Y, Ruess M (2015) A layerwise isogeometric approach for nurbs-derived laminate composite shells. Compos Struct 124:300–309

    Google Scholar 

  44. 44.

    Hillman M, Chen JS, Bazilevs Y (2015) Variationally consistent domain integration for isogeometric analysis. Comput Methods Appl Mech Eng 284:521–540

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Hosseini S, Remmers JJC, Verhoosel CV, de Borst R (2015) Propagation of delamination in composite materials with isogeometric continuum shell elements. Int J Numer Methods Eng 102:159–179

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Hsu M-C, Bazilevs Y (2012) Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833

    MATH  Google Scholar 

  47. 47.

    Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500

    MathSciNet  Google Scholar 

  48. 48.

    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid–structure interaction analysis of bioprosthetic heart valves. Comput Mech 54:1055–1071

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    MATH  Google Scholar 

  54. 54.

    Jonkman J, Musial W (2010) Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment. NREL Technical Report

  55. 55.

    Jonkman JM (2010) Definition of the floating system for phase IV of OC3. National Renewable Energy Laboratory Golden, Golden

    Google Scholar 

  56. 56.

    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230:4536–4558

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Kiendl J, Hsu M-C, Wu MCH, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    MathSciNet  MATH  Google Scholar 

  61. 61.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81(2):021011

    Google Scholar 

  62. 62.

    Korobenko A, Hsu M-C, Akkerman I, Bazilevs Y (2013) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81:021011

    Google Scholar 

  63. 63.

    Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Korobenko A, Yan J, Gohari SMI, Sarkar S, Bazilevs Y (2017) FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Lee S, Churchfield M, Moriarty P, Jonkman J, Michalakes J (2012) Atmospheric and wake turbulence impacts on wind turbine fatigue loading. Conference Paper presented at 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee

  66. 66.

    Oden JT, Diller KR, Bajaj C, Browne JC, Hazle J, Babuska I, Bass J, Demkowicz L, Feng Y, Fuentes D, Prudhomme S, Rylander MN, Stafford RJ, Zhang Y (2007) Dynamic data-driven finite element models for laser treatment of prostate cancer. Numer Methods PDE 23:904–922

    MATH  Google Scholar 

  67. 67.

    Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces, vol 153. Springer, Berlin

    MATH  Google Scholar 

  68. 68.

    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  69. 69.

    Paepegem WV, Degrieck J (2002) A new coupled approach of residual stiffness and strength for fatigue of fiber-reinforced composites. Int J Fatigue 24:747–762

    MATH  Google Scholar 

  70. 70.

    Paepegem WV, Degrieck J (2004) Simulating in-plane fatigue damage in woven glass fibre-reinforced composites subject to fully reversed cyclic loading. Fatigue Fract Eng Mater Struct 27:1197–1208

    Google Scholar 

  71. 71.

    Raghavan P, Li S, Ghosh S (2004) Two scale response and damage modeling of composite materials. Finite Elem Anal Design 40:1619–1640

    Google Scholar 

  72. 72.

    Raknes SB, Deng X, Bazilevs Y, Benson DJ, Mathisen KM, Kvamsdal T (2013) Isogeometric rotation-free bending-stabilized cables: statics, dynamics, bending strips and coupling with shells. Comput Methods Appl Mech Eng 263:127–143

    MathSciNet  MATH  Google Scholar 

  73. 73.

    Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  74. 74.

    Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14(2):461–469

    MathSciNet  MATH  Google Scholar 

  75. 75.

    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    MathSciNet  MATH  Google Scholar 

  76. 76.

    Schillinger D, Borden MJ, Stolarski HK (2015) Isogeometric collocation for phase-field fracture models. Comput Methods Appl Mech Eng 284:583–610

    MathSciNet  MATH  Google Scholar 

  77. 77.

    Sutherland HJ (1999) On the fatigue analysis of wind turbines. Report of the Sandia National Laboratory

  78. 78.

    Swaminathan S, Ghosh S (2006) Statistically equivalent representative volume elements for composite microstructures, part ii: with evolving damage. J Compos Mater 40:605–621

    Google Scholar 

  79. 79.

    Swaminathan S, Ghosh S, Pagano NJ (2006) Statistically equivalent representative volume elements for composite microstructures, part i: without damage. J Compos Mater 40:583–604

    Google Scholar 

  80. 80.

    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211

    MathSciNet  Google Scholar 

  81. 81.

    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225

    MathSciNet  MATH  Google Scholar 

  82. 82.

    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21:481–508

    MathSciNet  MATH  Google Scholar 

  83. 83.

    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486

    MathSciNet  MATH  Google Scholar 

  84. 84.

    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338

    MathSciNet  MATH  Google Scholar 

  85. 85.

    Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271–285

    MATH  Google Scholar 

  86. 86.

    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Computational ship hydrodynamics with the CIP method. In Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007, Barcelona, Spain, CIMNE

  87. 87.

    Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54:1011–1019

    MATH  Google Scholar 

  88. 88.

    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267

    MathSciNet  MATH  Google Scholar 

  89. 89.

    Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19:125–169

    MathSciNet  MATH  Google Scholar 

  90. 90.

    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001

    MathSciNet  MATH  Google Scholar 

  91. 91.

    Takizawa K, Tezduyar TE, Boben J, Kostov N, Boswell C, Buscher A (2013) Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput Mech 52:1351–1364

    MATH  Google Scholar 

  92. 92.

    Takizawa K, Tezduyar TE, Boswell C, Kolesar R, Montel K (2014) FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes. Comput Mech 54:1203–1220

    Google Scholar 

  93. 93.

    Takizawa K, Tezduyar TE, Buscher A (2015) Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141

    Google Scholar 

  94. 94.

    Takizawa K, Tezduyar TE, Kolesar R (2015) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179

    MATH  Google Scholar 

  95. 95.

    Takizawa K, Tezduyar TE, Kolesar R, Boswell C, Kanai T, Montel K (2014) Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes. Comput Mech 54:1461–1476

    MathSciNet  MATH  Google Scholar 

  96. 96.

    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233

    MathSciNet  Google Scholar 

  97. 97.

    Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255

    MathSciNet  MATH  Google Scholar 

  98. 98.

    Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977

    MathSciNet  MATH  Google Scholar 

  99. 99.

    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space–time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15

    MATH  Google Scholar 

  100. 100.

    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space–time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406

    MathSciNet  MATH  Google Scholar 

  101. 101.

    Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286–307

    MATH  Google Scholar 

  102. 102.

    Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36

    MATH  Google Scholar 

  103. 103.

    Tezduyar T, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4:71–88

    MathSciNet  MATH  Google Scholar 

  104. 104.

    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    MATH  Google Scholar 

  105. 105.

    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    MathSciNet  MATH  Google Scholar 

  106. 106.

    Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36:207–223

    MathSciNet  MATH  Google Scholar 

  107. 107.

    Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191–206

    MathSciNet  MATH  Google Scholar 

  108. 108.

    Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space–time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143, pp 7–24. ASME, New York

  109. 109.

    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900

    MATH  Google Scholar 

  110. 110.

    Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    MathSciNet  MATH  Google Scholar 

  111. 111.

    Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43:39–49

    MATH  Google Scholar 

  112. 112.

    Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195:5743–5753

    MathSciNet  MATH  Google Scholar 

  113. 113.

    Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710

    MathSciNet  MATH  Google Scholar 

  114. 114.

    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64:1201–1218

    MATH  Google Scholar 

  115. 115.

    Valizadeh N, Bazilevs Y, Chen JS, Rabczuk T (2015) A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parametrization. Comput Methods Appl Mech Eng 293:20–37

    MATH  Google Scholar 

  116. 116.

    van Opstal T, Fonn E, Holdahl R, Kvamsdal T, Kvarving AM, Mathisen KM, Nordanger K, Okstad KM, Rasheed A, Tabib M (2015) Isogeometric methods for CFD and FSI-simulation of flow around turbine blades. Energy Proc 80:442–449

    Google Scholar 

  117. 117.

    Yan J, Augier B, Korobenko A, Czarnowski J, Ketterman G, Bazilevs Y (2016) FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration. Comput Fluids 141:201–211

    MathSciNet  MATH  Google Scholar 

  118. 118.

    Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids, Published online. https://doi.org/10.1016/j.compfluid.2016.06.016

    MathSciNet  MATH  Google Scholar 

  119. 119.

    Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid–structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the Texas Advanced Computing Center (TACC) and the San Diego Supercomputing Center (SDSC) for providing HPC resources that have contributed to the research results reported in this paper. YB and AK acknowledge the support of the AFOSR Award FA9550-16-1-0131.

Funding

This work was partially funded by the AFOSR Award FA9550-16-1-0131.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazilevs, Y., Yan, J., Deng, X. et al. Computer Modeling of Wind Turbines: 2. Free-Surface FSI and Fatigue-Damage. Arch Computat Methods Eng 26, 1101–1115 (2019). https://doi.org/10.1007/s11831-018-9287-y

Download citation