Advertisement

Meshfree and Particle Methods in Biomechanics: Prospects and Challenges

  • L. W. Zhang
  • A. S. Ademiloye
  • K. M. Liew
Original Paper
  • 321 Downloads

Abstract

The use of meshfree and particle methods in the field of bioengineering and biomechanics has significantly increased. This may be attributed to their unique abilities to overcome most of the inherent limitations of mesh-based methods in dealing with problems involving large deformation and complex geometry that are common in bioengineering and computational biomechanics in particular. This review article is intended to identify, highlight and summarize research works on topics that are of substantial interest in the field of computational biomechanics in which meshfree or particle methods have been employed for analysis, simulation or/and modeling of biological systems such as soft matters, cells, biological soft and hard tissues and organs. We also anticipate that this review will serve as a useful resource and guide to researchers who intend to extend their work into these research areas. This review article includes 333 references.

Notes

Acknowledgements

The work described in this paper was fully supported by grants from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China (Project No. 9042047, CityU 11208914), and National Natural Science Foundation of China (NSFC) (Grant No. 11402142 and Grant No. 51378448).

Compliance with Ethical Standards

Conflict of interest

The authors confirm that there is no financial and personal conflict of interest associated with the present work.

Ethical Approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study formal consent is not required.

References

  1. 1.
    Kojić M, Filipović N, Stojanović B, Kojić N (2008) Computer modeling in bioengineering: theoretical background, examples and software. Wiley, Chichester, England; Hoboken, NJCrossRefGoogle Scholar
  2. 2.
    Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRefGoogle Scholar
  3. 3.
    Monaghan J (1982) Why particle methods work. SIAM J Sci Stat Comput 3:422–433.  https://doi.org/10.1137/0903027 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Monaghan J (1988) An introduction to SPH. Comput Phys Commun 48:89–96.  https://doi.org/10.1016/0010-4655(88)90026-4 zbMATHCrossRefGoogle Scholar
  5. 5.
    Stellingwerf RF, Wingate CA (1993) Impact modeling with smooth particle hydrodynamics. Int J Impact Eng 14:707–718.  https://doi.org/10.1016/0734-743X(93)90065-F CrossRefGoogle Scholar
  6. 6.
    Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. In: Trease H, Fritts M, Crowley WP (eds) Advances in the free-lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method SE - 26. Springer, Berlin, pp 248–257CrossRefGoogle Scholar
  7. 7.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318.  https://doi.org/10.1007/BF00364252 zbMATHCrossRefGoogle Scholar
  8. 8.
    Lancaster P, Salkauskas K (1981) Surface generated by moving least square methods. Math Comput 37:141–158.  https://doi.org/10.1090/S0025-5718-1981-0616367-1 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256.  https://doi.org/10.1002/nme.1620370205 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element-free Galerkin methods. Model Simul Mater Sci Eng 2:519–534.  https://doi.org/10.1088/0965-0393/2/3A/007 CrossRefGoogle Scholar
  11. 11.
    Belytschko T, Lu Y, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570.  https://doi.org/10.1016/0020-7683(94)00282-2 zbMATHCrossRefGoogle Scholar
  12. 12.
    Belytschko T, Lu Y, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51:295–315.  https://doi.org/10.1016/0013-7944(94)00153-9 CrossRefGoogle Scholar
  13. 13.
    Cordes L, Moran B (1996) Treatment of material discontinuity in the element-free Galerkin method. Comput Methods Appl Mech Eng 139:75–89.  https://doi.org/10.1016/S0045-7825(96)01080-8 zbMATHCrossRefGoogle Scholar
  14. 14.
    Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33:3057–3080.  https://doi.org/10.1016/0020-7683(95)00265-0 zbMATHCrossRefGoogle Scholar
  15. 15.
    Krysl P, Belytschko T (1995) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17:26–35.  https://doi.org/10.1007/BF00356476 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Zhang Z, Liew KM, Cheng Y (2008) Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems. Eng Anal Bound Elem 32:100–107.  https://doi.org/10.1016/j.enganabound.2007.06.006 zbMATHCrossRefGoogle Scholar
  17. 17.
    Zhang Z, Liew KM, Cheng Y, Lee YY (2008) Analyzing 2D fracture problems with the improved element-free Galerkin method. Eng Anal Bound Elem 32:241–250.  https://doi.org/10.1016/j.enganabound.2007.08.012 zbMATHCrossRefGoogle Scholar
  18. 18.
    Zhang Z, Zhao P, Liew KM (2009) Improved element-free Galerkin method for two-dimensional potential problems. Eng Anal Bound Elem 33:547–554.  https://doi.org/10.1016/j.enganabound.2008.08.004 MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zhao P, Liew KM (2009) Analyzing three-dimensional potential problems with the improved element-free Galerkin method. Comput Mech 44:273–284.  https://doi.org/10.1007/s00466-009-0364-9 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Zhang LW, Deng YJ, Liew KM (2014) An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng Anal Bound Elem 40:181–188.  https://doi.org/10.1016/j.enganabound.2013.12.008 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zhang Z, Hao SY, Liew KM, Cheng YM (2013) The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng Anal Bound Elem 37:1576–1584.  https://doi.org/10.1016/j.enganabound.2013.08.017 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127.  https://doi.org/10.1007/s004660050346 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Zhu T, Zhang J-D, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Comput Mech 21:223–235.  https://doi.org/10.1007/s004660050297 MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mirzaei D (2015) A new low-cost meshfree method for two and three dimensional problems in elasticity. Appl Math Model 39:7181–7196.  https://doi.org/10.1016/j.apm.2015.02.050 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mirzaei D, Schaback R (2013) Direct meshless local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl Numer Math 68:73–82.  https://doi.org/10.1007/s11075-013-9711-1 MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Liew KM, Huang YQ, Reddy JN (2003) Moving least squares differential quadrature method and its application to the analysis of shear deformable plates. Int J Numer Methods Eng 56:2331–2351.  https://doi.org/10.1002/nme.646 zbMATHCrossRefGoogle Scholar
  27. 27.
    Liew KM, Huang YQ, Reddy JN (2003) Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput Methods Appl Mech Eng 192:2203–2222.  https://doi.org/10.1016/S0045-7825(03)00238-X zbMATHCrossRefGoogle Scholar
  28. 28.
    Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106.  https://doi.org/10.1002/fld.1650200824 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Liu W, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I): methodology and convergence. Comput Methods Appl Mech Eng 143:113–154.  https://doi.org/10.1016/S0045-7825(96)01132-2 MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466.  https://doi.org/10.1002/1097-0207(20010120)50:2%3c435:AID-NME32%3e3.0.CO;2-A zbMATHCrossRefGoogle Scholar
  31. 31.
    Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227.  https://doi.org/10.1016/S0045-7825(96)01083-3 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Chen J-S, Pan C, Roque CMOL, Wang H-P (1998) A Lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22:289–307.  https://doi.org/10.1007/s004660050361 zbMATHCrossRefGoogle Scholar
  33. 33.
    Chen J-S, Pan C, Wu C-T (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19:211–227.  https://doi.org/10.1007/s004660050170 MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Liew KM, Wu HY, Ng TY (2002) Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis. Comput Mech 28:390–400.  https://doi.org/10.1007/s00466-002-0303-5 zbMATHCrossRefGoogle Scholar
  35. 35.
    Liew KM, Ng TY, Wu YC (2002) Meshfree method for large deformation analysis-a reproducing kernel particle approach. Eng Struct 24:543–551.  https://doi.org/10.1016/S0141-0296(01)00120-1 CrossRefGoogle Scholar
  36. 36.
    Liew KM, Ng TY, Zhao X, Reddy JN (2002) Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput Methods Appl Mech Eng 191:4141–4157.  https://doi.org/10.1016/S0045-7825(02)00358-4 zbMATHCrossRefGoogle Scholar
  37. 37.
    Wang J, Liew KM, Tan MJ, Rajendran S (2002) Analysis of rectangular laminated composite plates via FSDT meshless method. Int J Mech Sci 44:1275–1293.  https://doi.org/10.1016/S0020-7403(02)00057-7 zbMATHCrossRefGoogle Scholar
  38. 38.
    Cheng R, Liew KM (2009) The reproducing kernel particle method for two-dimensional unsteady heat conduction problems. Comput Mech 45:1–10.  https://doi.org/10.1007/s00466-009-0401-8 MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Zhao X, Liew KM, Ng TY (2003) Vibration analysis of laminated composite cylindrical panels via a meshfree approach. Int J Solids Struct 40:161–180.  https://doi.org/10.1016/S0020-7683(02)00475-4 zbMATHCrossRefGoogle Scholar
  40. 40.
    Sulsky D, Zhou S, Schreyer H (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252.  https://doi.org/10.1016/0010-4655(94)00170-7 zbMATHCrossRefGoogle Scholar
  41. 41.
    Sulsky D, Schreyer H (1996) Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Comput Methods Appl Mech Eng 139:409–429.  https://doi.org/10.1016/S0045-7825(96)01091-2 zbMATHCrossRefGoogle Scholar
  42. 42.
    Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314.  https://doi.org/10.1016/S0045-7825(96)01087-0 MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Oñate E, Idelsohn S, Zienkiewicz OC et al (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139:315–346.  https://doi.org/10.1016/S0045-7825(96)01088-2 MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866.  https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22%3c3839:AID-NME27%3e3.0.CO;2-R MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Oñate E, Perazzo F, Miquel J (2001) A finite point method for elasticity problems. Comput Struct 79:2151–2163.  https://doi.org/10.1016/S0045-7949(01)00067-0 CrossRefGoogle Scholar
  46. 46.
    Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I. Surface approximations and partial derivative estimates. Comput Math Appl 19:127–145.  https://doi.org/10.1016/0898-1221(90)90270-T MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161.  https://doi.org/10.1016/0898-1221(90)90271-K MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Hardy RL (1990) Theory and applications of the multiquadric-biharmonic method (20 years of discovery 1968–1988). Comput Math Appl 19:163–208.  https://doi.org/10.1016/0898-1221(90)90272-L MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59:385–392.  https://doi.org/10.1016/S0263-8223(02)00239-8 CrossRefGoogle Scholar
  50. 50.
    Ferreira AJM, Roque CMC, Martins PALS (2004) Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos Struct 66:287–293.  https://doi.org/10.1016/j.compstruct.2004.04.050 CrossRefGoogle Scholar
  51. 51.
    Ferreira AJM, Roque CMC, Jorge RMN (2005) Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Comput Methods Appl Mech Eng 194:4265–4278.  https://doi.org/10.1016/j.cma.2004.11.004 zbMATHCrossRefGoogle Scholar
  52. 52.
    Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50:937–951.  https://doi.org/10.1002/1097-0207(20010210)50:4%3c937:AID-NME62%3e3.0.CO;2-X zbMATHCrossRefGoogle Scholar
  53. 53.
    Liu GR, Dai KY, Lim KM, Gu YT (2002) A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Comput Mech 29:510–519.  https://doi.org/10.1007/s00466-002-0360-9 zbMATHCrossRefGoogle Scholar
  54. 54.
    Liu GR, Zhang GY, Gu YT, Wang YY (2005) A meshfree radial point interpolation method (RPIM) for three-dimensional solids. Comput Mech 36:421–430.  https://doi.org/10.1007/s00466-005-0657-6 MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Cui X, Liu G, Li G (2011) A smoothed Hermite radial point interpolation method for thin plate analysis. Arch Appl Mech 81:1–18.  https://doi.org/10.1007/s00419-009-0392-0 zbMATHCrossRefGoogle Scholar
  56. 56.
    Sukumar N, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43:839–887.  https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5%3c839:AID-NME423%3e3.0.CO;2-R MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Sukumar N, Moran B, Yu Semenov A, Belikov VV (2001) Natural neighbour Galerkin methods. Int J Numer Methods Eng 50:1–27.  https://doi.org/10.1002/1097-0207(20010110)50:1%3c1:AID-NME14%3e3.0.CO;2-P MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Voronoi GM (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémoire: Recherches sur les paralléloèdres primitifs. J für die reine und Angew Math 134:198–287.  https://doi.org/10.1515/crll.1909.136.67 MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Delaunay B (1934) Sur la sphére vide. A la mémoire de Georges Voronoi. Bull l’académie des Sci l’URSS Cl des Sci mathématiques na, pp 793–800Google Scholar
  60. 60.
    Dinis LMJS, Jorge RMN, Belinha J (2009) The natural neighbour radial point interpolation method: dynamic applications. Eng Comput 26:911–949.  https://doi.org/10.1108/02644400910996835 zbMATHCrossRefGoogle Scholar
  61. 61.
    Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng 61:2159–2181.  https://doi.org/10.1002/nme.1193 MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Ortiz A, Puso MA, Sukumar N (2010) Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Comput Methods Appl Mech Eng 199:1859–1871.  https://doi.org/10.1016/j.cma.2010.02.013 MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65:2167–2202.  https://doi.org/10.1002/nme.1534 MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    González D, Cueto E, Doblaré M (2010) A higher order method based on local maximum entropy approximation. Int J Numer Methods Eng 83:741–764.  https://doi.org/10.1002/nme.2855 MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Liu GR (2001) A point assembly method for stress analysis for two-dimensional solids. Int J Solids Struct 39:261–276.  https://doi.org/10.1016/S0020-7683(01)00172-X CrossRefGoogle Scholar
  66. 66.
    Idelsohn SR, Oñate E, Calvo N, Del Pin F (2003) The meshless finite element method. Int J Numer Methods Eng 58:893–912.  https://doi.org/10.1002/nme.798 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Belinha J, Dinis LMJS, Jorge RMN (2013) The natural radial element method. Int J Numer Methods Eng 93:1286–1313.  https://doi.org/10.1002/nme.4427 MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the international symposium on rock mechanics, Nancy, FranceGoogle Scholar
  69. 69.
    Hoogerbrugge PJ, Koelman JMVA (2007) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160.  https://doi.org/10.1209/0295-5075/19/3/001 CrossRefGoogle Scholar
  70. 70.
    Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434CrossRefGoogle Scholar
  71. 71.
    Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct 11:83–95.  https://doi.org/10.1016/0045-7949(80)90149-2 MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Arch Comput Methods Eng 5:207–241.  https://doi.org/10.1007/BF02897874 MathSciNetCrossRefGoogle Scholar
  73. 73.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813.  https://doi.org/10.1016/j.matcom.2008.01.003 MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming, 1st edn. Springer, BerlinGoogle Scholar
  75. 75.
    Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1.  https://doi.org/10.1115/1.1431547 CrossRefGoogle Scholar
  76. 76.
    De S, Kim J, Srinivasan M (2001) A meshless numerical technique for physically based real time medical simulations. Stud Health Technol Inform 81:113–118Google Scholar
  77. 77.
    De S, Kim J, Lim YJ, Srinivasan MA (2005) The point collocation-based method of finite spheres (PCMFS) for real time surgery simulation. Comput Struct 83:1515–1525.  https://doi.org/10.1016/j.compstruc.2004.12.003 CrossRefGoogle Scholar
  78. 78.
    Zhu B, Gu L, Peng X, Zhou Z (2010) A point-based simulation framework for minimally invasive surgery. In: Bello F, Cotin S (eds) Biomedical simulation. Springer, Berlin Heidelberg, pp 130–138CrossRefGoogle Scholar
  79. 79.
    Guilkey JE, Hoying JB, Weiss JA (2006) Computational modeling of multicellular constructs with the material point method. J Biomech 39:2074–2086.  https://doi.org/10.1016/j.jbiomech.2005.06.017 CrossRefGoogle Scholar
  80. 80.
    Ionescu I, Guilkey JE, Berzins M et al (2006) Simulation of soft tissue failure using the material point method. J Biomech Eng 128:917–924.  https://doi.org/10.1115/1.2372490 CrossRefGoogle Scholar
  81. 81.
    Liu HT, Jiang S, Chen Z et al (2015) Simulation of hard-soft material interaction under impact loading employing the material point method. Sci China Technol Sci 58:763–768.  https://doi.org/10.1007/s11431-015-5780-9 CrossRefGoogle Scholar
  82. 82.
    Lim YJ, De S (2007) Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput Methods Appl Mech Eng 196:3011–3024.  https://doi.org/10.1016/j.cma.2006.05.015 zbMATHCrossRefGoogle Scholar
  83. 83.
    De S, Lim Y-J (2010) Interactive surgical simulation using a meshfree computational method. In: De S, Guilak F, Mofrad MRK (eds) Computational modeling in biomechanics. Springer, New York, pp 1–581CrossRefGoogle Scholar
  84. 84.
    Xu J, Wang L, Wong KCL, Shi P (2010) A meshless framework for bevel-tip flexible needle insertion through soft tissue. In: 2010 3rd IEEE RAS EMBS international conference on biomed robotics and biomechatronics, BioRob 2010, pp 753–758.  https://doi.org/10.1109/biorob.2010.5625943
  85. 85.
    Zhu B, Gu L, Zhou Z (2010) Particle-based deformable modeling with pre-computed surface data in real-time surgical simulation. In: International workshop on medical imaging and virtual reality. Springer Berlin Heidelberg, pp 503–512Google Scholar
  86. 86.
    Hieber SE, Walther JH, Koumoutsakos P (2004) Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol Health Care 12:305–314Google Scholar
  87. 87.
    Banihani S, Rabczuk T, Almomani T (2013) POD for real-time simulation of hyperelastic soft biological tissue using the point collocation method of finite spheres. Math Probl Eng 2013:1–9.  https://doi.org/10.1155/2013/386501 MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Bao Y, Wu D, Yan Z, Du Z (2013) A new hybrid viscoelastic soft tissue model based on meshless method for haptic surgical simulation. Open Biomed Eng J 7:116–124.  https://doi.org/10.2174/1874120701307010116 CrossRefGoogle Scholar
  89. 89.
    Liu X, Wang R, Li Y, Song D (2015) Deformation of soft tissue and force feedback using the smoothed particle hydrodynamics. Comput Math Methods Med.  https://doi.org/10.1155/2015/598415 zbMATHCrossRefGoogle Scholar
  90. 90.
    Jin X, Joldes GR, Miller K et al (2012) Meshless algorithm for soft tissue cutting in surgical simulation. Comput Methods Biomech Biomed Eng 17:800–811.  https://doi.org/10.1080/10255842.2012.716829 CrossRefGoogle Scholar
  91. 91.
    Jin X, Joldes GR, Miller K, Wittek A (2013) 3D algorithm for simulation of soft tissue cutting. In: Wittek A, Miller K, Nielsen PMF (eds) Computational biomechanics for medicine. Springer, New York, pp 49–62CrossRefGoogle Scholar
  92. 92.
    Abdi E, Farahmand F, Durali M (2012) A meshless EFG-based algorithm for 3D deformable modeling of soft tissue in real-time. Stud Health Technol Inform 173:1–7Google Scholar
  93. 93.
    Cao L, Qin QH, Zhao N (2010) An RBF-MFS model for analysing thermal behaviour of skin tissues. Int J Heat Mass Transf 53:1298–1307.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.036 zbMATHCrossRefGoogle Scholar
  94. 94.
    Tao J, Qin QH, Cao L (2013) A combination of Laplace transform and meshless method for analysing thermal behaviour of skin tissues. Univ J Mech Eng 1:32–42.  https://doi.org/10.13189/ujme.2013.010202 CrossRefGoogle Scholar
  95. 95.
    Zhang Z-W, Wang H, Qin Q-H (2014) Method of fundamental solutions for nonlinear skin bioheat model. J Mech Med Biol 14:1450060.  https://doi.org/10.1142/S0219519414500602 CrossRefGoogle Scholar
  96. 96.
    Zhang Z-W, Wang H, Qin Q-H (2015) Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues. Int J Mol Sci 16:2001–2019.  https://doi.org/10.3390/ijms16012001 CrossRefGoogle Scholar
  97. 97.
    Jamil M, Ng EYK (2013) Evaluation of meshless radial basis collocation method (RBCM) for heterogeneous conduction and simulation of temperature inside the biological tissues. Int J Therm Sci 68:42–52.  https://doi.org/10.1016/j.ijthermalsci.2013.01.007 CrossRefGoogle Scholar
  98. 98.
    Bourantas GC, Loukopoulos VC, Burganos VN, Nikiforidis GC (2014) A meshless point collocation treatment of transient bioheat problems. Int J Numer Methods Biomed Eng 30:587–601.  https://doi.org/10.1002/cnm.2626 MathSciNetCrossRefGoogle Scholar
  99. 99.
    Bourantas GC, Ghommem M, Kagadis GC et al (2014) Real-time tumor ablation simulation based on the dynamic mode decomposition method. Med Phys 41:053301.  https://doi.org/10.1118/1.4870976 CrossRefGoogle Scholar
  100. 100.
    Ghazanfarian J, Saghatchi R, Patil DV (2015) Implementation of smoothed-particle hydrodynamics for non-linear Pennes’ bioheat transfer equation. Appl Math Comput 259:21–31.  https://doi.org/10.1016/j.amc.2015.02.036 MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Erhart K, Divo E, Kassab A (2008) An evolutionary-based inverse approach for the identification of non-linear heat generation rates in living tissues using a localized meshless method. Int J Numer Methods Heat Fluid Flow 18:401–414.  https://doi.org/10.1108/09615530810853655 CrossRefGoogle Scholar
  102. 102.
    Alford JB, Simkins DC, Rembert RA, Hoyte L (2014) Patient-specific modeling in urogynecology: a meshfree approach. Comput Model Eng Sci 98:129–149.  https://doi.org/10.3970/cmes.2014.098.129 CrossRefGoogle Scholar
  103. 103.
    Pyo Soon Hyoung, Lee Jeongjin, Park Seongjin et al (2013) Physically based nonrigid registration using smoothed particle hydrodynamics: application to hepatic metastasis volume-preserving registration. IEEE Trans Biomed Eng 60:2530–2540.  https://doi.org/10.1109/TBME.2013.2257172 CrossRefGoogle Scholar
  104. 104.
    Naeeni HA, Haghpanahi M (2012) Digital imaging validation of soft tissue phantom deformation via meshfree method. In: 2012 International conference on biomedical engineering and biotechnology, pp 777–780Google Scholar
  105. 105.
    Wachowiak MP, Xiaogang Wang, Fenster A, Peters TM (2004) Compact support radial basis functions for soft tissue deformation. In: 2004 2nd IEEE international symposium on biomedical imaging: macro to nano. IEEE, pp 1259–1262Google Scholar
  106. 106.
    Hao A, Huang Z (2011) A physical based meshless method for soft tissue deforming. In: Proceedings of 2011 IEEE international symposium on IT medicine education (ITME 2011), vol 2, pp 293–296.  https://doi.org/10.1109/itime.2011.6132042
  107. 107.
    An Y, Liu J, Zhang G et al (2016) Compactly supported radial basis function-based meshless method for photon propagation model of fluorescence molecular tomography. IEEE Trans Med Imaging 36:366–373.  https://doi.org/10.1109/TMI.2016.2601311 CrossRefGoogle Scholar
  108. 108.
    Morais P, Queirós S, Ferreira A et al (2016) Dense motion field estimation from myocardial boundary displacements. Int J Numer Methods Biomed Eng 32:e02758.  https://doi.org/10.1002/cnm.2758 CrossRefGoogle Scholar
  109. 109.
    Zhou J, Luo Z, Li C, Deng M (2018) Real-time deformation of human soft tissues: a radial basis meshless 3D model based on Marquardt’s algorithm. Comput Methods Programs Biomed 153:237–252.  https://doi.org/10.1016/j.cmpb.2017.09.008 CrossRefGoogle Scholar
  110. 110.
    Taddei L, Goumtcha AA, Roth S (2015) Smoothed particle hydrodynamics formulation for penetrating impacts on ballistic gelatine. Mech Res Commun 70:94–101.  https://doi.org/10.1016/j.mechrescom.2015.09.010 CrossRefGoogle Scholar
  111. 111.
    Nooshabadia ZS, Abdib E, Farahmanda F et al (2016) A meshless method to simulate interactions between large soft tissue and a surgical grasper. Sci Iran Trans B Mech Eng 23:295–300Google Scholar
  112. 112.
    Dehghan MR, Rahimi A, Talebi HA, Zareinejad M (2016) A three-dimensional large deformation model for soft tissue using meshless method. Int J Med Robot Comput Assist Surg 12:241–253.  https://doi.org/10.1002/rcs.1682 CrossRefGoogle Scholar
  113. 113.
    Zou Y, Liu PX, Cheng Q et al (2016) A new deformation model of biological tissue for surgery simulation. IEEE Trans Cybern.  https://doi.org/10.1109/TCYB.2016.2560938 CrossRefGoogle Scholar
  114. 114.
    Palyanov A, Khayrulin S, Larson SD (2016) Application of smoothed particle hydrodynamics to modeling mechanisms of biological tissue. Adv Eng Softw 98:1–11.  https://doi.org/10.1016/j.advengsoft.2016.03.002 CrossRefGoogle Scholar
  115. 115.
    Grabski JK, Lesnic D, Johansson BT (2016) Identification of a time-dependent bio-heat blood perfusion coefficient. Int Commun Heat Mass Transf 75:218–222.  https://doi.org/10.1016/j.icheatmasstransfer.2015.12.028 CrossRefGoogle Scholar
  116. 116.
    Pan J, Yan S, Qin H, Hao A (2016) Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method. Vis Comput.  https://doi.org/10.1007/s00371-016-1317-x CrossRefGoogle Scholar
  117. 117.
    Rausch MK, Karniadakis GE, Humphrey JD (2016) Modeling soft tissue damage and failure using a combined particle/continuum approach. Biomech Model Mechanobiol.  https://doi.org/10.1007/s10237-016-0814-1 CrossRefGoogle Scholar
  118. 118.
    Soleimani M, Wriggers P, Rath H, Stiesch M (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58:619–633.  https://doi.org/10.1007/s00466-016-1308-9 MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    García JM, Doblaré M, Cueto E (2000) Simulation of bone internal remodeling by means of the α -shape-based natural element method. In: European congress on computational methods in applied sciences and engineering (ECCOMAS 2000), Barcelona, pp 11–14Google Scholar
  120. 120.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. Pro Business, BerlinGoogle Scholar
  121. 121.
    Doblaré M, García JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17.  https://doi.org/10.1016/S0021-9290(01)00178-6 CrossRefGoogle Scholar
  122. 122.
    Fernandez JW, Das R, Thomas CDL, et al (2010) Strain reduction between cortical pore structures leads to bone weakening and fracture susceptibility: an investigation using smooth particle hydrodynamics. In: 6th world congress of biomechanics (WCB 2010). Springer Berlin Heidelberg, Singapore, pp 784–787Google Scholar
  123. 123.
    Fernandez JW, Das R, Cleary PW et al (2013) Using smooth particle hydrodynamics to investigate femoral cortical bone remodelling at the Haversian level. Int J Numer Methods Biomed Eng 29:129–143.  https://doi.org/10.1002/cnm.2503 MathSciNetCrossRefGoogle Scholar
  124. 124.
    Doblaré M, Cueto E, Calvo B et al (2005) On the employ of meshless methods in biomechanics. Comput Methods Appl Mech Eng 194:801–821.  https://doi.org/10.1016/j.cma.2004.06.031 zbMATHCrossRefGoogle Scholar
  125. 125.
    Lee JD, Chen Y, Zeng X et al (2007) Modeling and simulation of osteoporosis and fracture of trabecular bone by meshless method. Int J Eng Sci 45:329–338.  https://doi.org/10.1016/j.ijengsci.2007.03.007 zbMATHCrossRefGoogle Scholar
  126. 126.
    Taddei F, Pani M, Zovatto L et al (2008) A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy. Clin Biomech 23:1192–1199.  https://doi.org/10.1016/j.clinbiomech.2008.06.009 CrossRefGoogle Scholar
  127. 127.
    Deng Q, Chen Y, Lee JD (2009) An investigation of the microscopic mechanism of fracture and healing processes in cortical bone. Int J Damage Mech 18:491–502.  https://doi.org/10.1177/1056789508096563 CrossRefGoogle Scholar
  128. 128.
    Uscilowska A, Fraska A (2012) A mesh-free numerical method for the estimation of the torsional stiffness of long bones. J Mech Mater Struct 7:265–276.  https://doi.org/10.2140/jomms.2012.7.265 CrossRefGoogle Scholar
  129. 129.
    Dinis LMJS, Jorge RMN, Belinha J (2010) Bone remodelling optimization using the natural neighbour radial point interpolation. In: Proceedings of the 2nd international conference on engineering optimization, Lisbon, Portugal, pp 13–17Google Scholar
  130. 130.
    Belinha J, Jorge RMN, Dinis LMJS (2012) Bone tissue remodelling analysis considering a radial point interpolator meshless method. Eng Anal Bound Elem 36:1660–1670.  https://doi.org/10.1016/j.enganabound.2012.05.009 MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    Belinha J, Jorge RMN, Dinis LMJS (2012) A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law. Comput Methods Biomech Biomed Eng 16:1–15.  https://doi.org/10.1080/10255842.2012.654783 CrossRefGoogle Scholar
  132. 132.
    Belinha J, Dinis L, Jorge RMN (2015) The osteointegration numerical prediction of a femur stem using a meshless approach. In: 2015 IEEE 4th Portuguese meeting on bioengineering (ENBENG). IEEE, Porto, Portugal, pp 1–6Google Scholar
  133. 133.
    Grivas KN, Vavva MG, Sellountos EJ, et al (2013) A meshless local boundary integral equation (LBIE) method for cell proliferation predictions in bone healing. In: Proceedings of annual international conference on IEEE engineering in medicine and biology society, EMBS, pp 2676–2679.  https://doi.org/10.1109/embc.2013.6610091
  134. 134.
    Grivas KN, Vavva MG, Sellountos EJ et al (2015) A meshless LBIE/LRBF method for solving the nonlinear Fisher equation: application to bone healing. Comput Model Eng Sci 105:87–122.  https://doi.org/10.3970/cmes.2015.105.087 CrossRefGoogle Scholar
  135. 135.
    Yang JP (2014) Image-based procedure for biostructure modeling. J Nanomech Micromech 4:B4013001.  https://doi.org/10.1061/(ASCE)NM.2153-5477.0000086 CrossRefGoogle Scholar
  136. 136.
    Yang JP, Chi SW, Chen JS (2013) Image-based multiscale modeling of porous bone materials. In: Li S, Qian D (eds) Multiscale simulations and mechanics of biological materials. Wiley, Oxford, pp 377–401CrossRefGoogle Scholar
  137. 137.
    Harrison SM, Cleary PW (2014) Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH). Eur Food Res Technol 238:185–215.  https://doi.org/10.1007/s00217-013-2077-8 CrossRefGoogle Scholar
  138. 138.
    Cleary PW, Sinnott MD, Hari B et al (2015) Modelling food digestion. Elsevier Ltd, New YorkCrossRefGoogle Scholar
  139. 139.
    Cleary PW, Harrison S (2016) Modeling food digestion in the oral cavity. In: Davies P (ed) Reference module in food science. Elsevier, pp 1–10.  https://doi.org/10.1016/B978-0-08-100596-5.03238-8
  140. 140.
    Harrison SM, Cleary PW, Eyres G et al (2014) Challenges in computational modelling of food breakdown and flavour release. Food Funct 5:2792–2805.  https://doi.org/10.1039/C4FO00786G CrossRefGoogle Scholar
  141. 141.
    Ho AK, Tsou L, Green S, Fels S (2014) A 3D swallowing simulation using smoothed particle hydrodynamics. Comput Methods Biomech Biomed Eng Imaging Vis 2:237–244.  https://doi.org/10.1080/21681163.2013.862862 CrossRefGoogle Scholar
  142. 142.
    Tse B, Barrow A, Quinn B, Harwin WS (2015) A smoothed particle hydrodynamics algorithm for haptic rendering of dental filling materials. In: 2015 IEEE world haptics conference (WHC). IEEE, pp 321–326Google Scholar
  143. 143.
    Andrade J, Belinha J, Dinis L (2013) Analysis of dental implant using a meshless method. In: Jorge RMN, Campos JCR, Manuel J et al (eds) Biodental engineering II. CRC Press, London, pp 145–150CrossRefGoogle Scholar
  144. 144.
    Belinha J, Dinis LMJS, Jorge RMN (2014) Mandible bone tissue remodelling analysis using a new numerical approach. In: Jorge RMN, Campos JCR, Manuel J et al (eds) Biodental engineering II. Taylor & Francis Group, London, pp 151–157Google Scholar
  145. 145.
    Belinha J, Dinis LMJS, Jorge RMN (2014) The bone tissue remodelling analysis in dentistry using a meshless method. In: Jorge RMN, Campos JCR, Vaz MAP et al (eds) Biodental engineering III. Taylor & Francis Group, London, pp 213–219CrossRefGoogle Scholar
  146. 146.
    Belinha J, Dinis LMJS, Natal Jorge RM (2015) The mandible remodeling induced by dental implants: a meshless approach. J Mech Med Biol 15:1550059.  https://doi.org/10.1142/S0219519415500591 CrossRefGoogle Scholar
  147. 147.
    Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20:785–794.  https://doi.org/10.1016/0021-9290(87)90058-3 CrossRefGoogle Scholar
  148. 148.
    Duarte HMS, Dinis LMJS, Jorge RMN (2014) Analysis of a bar-implant using a meshless method. In: Jorge RMN, Campos JCR, Manuel J et al (eds) Biodental engineering II. Taylor & Francis Group, London, pp 139–144Google Scholar
  149. 149.
    Duarte HMS, Andrade JR, Dinis LMJS et al (2015) Numerical analysis of dental implants using a new advanced discretization technique. Mech Adv Mater Struct 23:467–479.  https://doi.org/10.1080/15376494.2014.987410 CrossRefGoogle Scholar
  150. 150.
    Yamaguchi S, Coelho PG, Thompson VP et al (2014) Dynamic finite element analysis and moving particle simulation of human enamel on a microscale. Comput Biol Med 55:53–60.  https://doi.org/10.1016/j.compbiomed.2014.10.005 CrossRefGoogle Scholar
  151. 151.
    Moreira SF, Belinha J, Dinis LMJS, Jorge RMN (2014) A global numerical analysis of the “central incisor/local maxillary bone” system using a meshless method. Mol Cell Biomech 11:151–184.  https://doi.org/10.3970/mcb.2014.011.151 CrossRefGoogle Scholar
  152. 152.
    Moreira SF, Belinha J, Dinis LMJS, Jorge RMN (2014) A meshless method analysis of maxillary central incisor. In: Jorge RMN, Campos JCR, Manuel J et al (eds) Biodental engineering II. Taylor & Francis Group, London, pp 159–161Google Scholar
  153. 153.
    Tavares CSS, Belinha J, Dinis LMJS, Jorge RMN (2014) Numerical analysis of a teeth restoration: a meshless method approach. In: Jorge RMN, Campos JCR, Vaz MAP et al (eds) Biodental engineering III. Taylor & Francis Group, London, pp 207–211CrossRefGoogle Scholar
  154. 154.
    Tavares CSS, Belinha J, Dinis LMJS, Jorge RMN (2015) The numerical analysis of a restored tooth using meshless methods. In: 2015 IEEE 4th Portuguese meeting on bioengineering (ENBENG). IEEE, Porto, Portugal, pp 1–6Google Scholar
  155. 155.
    Belinha J, Dinis LMJS, Natal Jorge RM (2015) The analysis of the bone remodelling around femoral stems: a meshless approach. Math Comput Simul 121:64–94.  https://doi.org/10.1016/j.matcom.2015.09.002 MathSciNetCrossRefGoogle Scholar
  156. 156.
    Santos CF, Belinha J, Gentil F et al (2018) The free vibrations analysis of the cupula in the inner ear using a natural neighbor meshless method. Eng Anal Bound Elem 92:50–63.  https://doi.org/10.1016/j.enganabound.2018.01.002 MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Hon YC, Lu MW, Xue WM, Zhou X (2002) Numerical algorithm for triphasic model of charged and hydrated soft tissues. Comput Mech 29:1–15.  https://doi.org/10.1007/s00466-002-0307-1 zbMATHCrossRefGoogle Scholar
  158. 158.
    Marai GE, Crisco JJ, Laidlaw DH (2006) A kinematics-based method for generating cartilage maps and deformations in the multi-articulating wrist joint from CT images. In: Proceedings of 28th IEEE EMBS annual international conference, pp 2079–2082.  https://doi.org/10.1109/iembs.2006.259742
  159. 159.
    Boyer P, Joslin C (2014) A smoothed particle hydrodynamics approach to simulation of articular cartilage. Am J Biomed Eng 4:41–52.  https://doi.org/10.5923/j.ajbe.20140402.03 CrossRefGoogle Scholar
  160. 160.
    Boyer P, Leblanc S, Joslin C (2015) Smoothed particle hydrodynamics applied to cartilage deformation. In: Cai Y, See S (eds) GPU computing and applications. Springer, Singapore, pp 151–165Google Scholar
  161. 161.
    Cyr A, Maletsky L (2014) Technical note: a multi-dimensional description of knee laxity using radial basis functions. Comput Methods Biomech Biomed Eng 18:1–6.  https://doi.org/10.1080/10255842.2014.946913 CrossRefGoogle Scholar
  162. 162.
    Chen J-S, Basava RR, Zhang Y et al (2015) Pixel-based meshfree modelling of skeletal muscles. Comput Methods Biomech Biomed Eng Imaging Vis 4:1–13.  https://doi.org/10.1080/21681163.2015.1049712 CrossRefGoogle Scholar
  163. 163.
    Valizadeh N, Bazilevs Y, Chen J-SS, Rabczuk T (2015) A coupled IGA—mEshfree discretization of arbitrary order of accuracy and without global geometry parameterization. Comput Methods Appl Mech Eng 293:20–37.  https://doi.org/10.1016/j.cma.2015.04.002 MathSciNetCrossRefGoogle Scholar
  164. 164.
    Peña E, Martínez MA, Calvo B, Doblaré M (2008) Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues. Comput Methods Appl Mech Eng 197:1983–1996.  https://doi.org/10.1016/j.cma.2007.12.018 MathSciNetzbMATHCrossRefGoogle Scholar
  165. 165.
    Doweidar MH, Calvo B, Alfaro I et al (2010) A comparison of implicit and explicit natural element methods in large strains problems: application to soft biological tissues modeling. Comput Methods Appl Mech Eng 199:1691–1700.  https://doi.org/10.1016/j.cma.2010.01.022 MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Boselli F, Kleiser L, Bockisch CJ et al (2014) Quantitative analysis of benign paroxysmal positional vertigo fatigue under canalithiasis conditions. J Biomech 47:1853–1860.  https://doi.org/10.1016/j.jbiomech.2014.03.019 CrossRefGoogle Scholar
  167. 167.
    Boselli F, Obrist D, Kleiser L (2013) A meshless boundary method for Stokes flows with particles: application to canalithiasis. Int J Numer Methods Biomed Eng 29:1176–1191.  https://doi.org/10.1002/cnm.2564 MathSciNetCrossRefGoogle Scholar
  168. 168.
    Boselli F, Obrist D, Kleiser L (2012) A multilayer method of fundamental solutions for Stokes flow problems. J Comput Phys 231:6139–6158.  https://doi.org/10.1016/j.jcp.2012.05.023 MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Liu H, Shi P (2003) Meshfree representation and computation: applications to cardiac motion analysis. In: Taylor CJ, Noble JA (eds) Information processing in medical imaging. Springer, Berlin, pp 560–572CrossRefGoogle Scholar
  170. 170.
    Wang K, Liu H, Sinusas A, Shi P (2004) Multiframe nonrigid motion analysis with anisotropic spatial constraints: applications to cardiac image analysis. In: IEEE international conference on image processing, ICIP. IEEE, pp 131–134Google Scholar
  171. 171.
    Wong CL, Liu H, Wong LN, et al (2004) Meshfree cardiac motion analysis using composite material model and total Lagrangian formulation. In: 2nd IEEE international symposium on biomedical imaging: nano to macro. IEEE, pp 464–467Google Scholar
  172. 172.
    Zhuang L, Liu H, Bao H, Shi P (2007) Volumetric meshfree framework for joint segmentation and motion tracking of the left ventricle. In: 4th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, Arlington, VA, pp 396–399Google Scholar
  173. 173.
    Wong KCL, Wang L, Zhang H et al (2010) Meshfree implementation of individualized active cardiac dynamics. Comput Med Imaging Graph 34:91–103.  https://doi.org/10.1016/j.compmedimag.2009.05.002 CrossRefGoogle Scholar
  174. 174.
    Wang Y, Rudy Y (2006) Meshless methods in potential inverse electrocardiography. In: IEEE engineering in medicine and biology annual international conference. IEEE, New York, pp 2558–2559Google Scholar
  175. 175.
    Wang Y, Rudy Y (2006) Application of the method of fundamental solutions to potential-based inverse electrocardiography. Ann Biomed Eng 34:1272–1288.  https://doi.org/10.1007/s10439-006-9131-7 CrossRefGoogle Scholar
  176. 176.
    Li ZS, Zhu SA, He B (2007) Solving the ECG forward problem by means of a meshless finite element method. Phys Med Biol 52:N287–N296.  https://doi.org/10.1088/0031-9155/52/13/N02 CrossRefGoogle Scholar
  177. 177.
    Wang L, Wong KCL, Zhang H, Shi P (2009) Electrocardiographic simulation on coupled meshfree-bem platform. In: Ayache N, Delingette H, Sermesant M (eds) Functional imaging and modeling of the heart. Springer, Berlin Heidelberg, pp 162–171CrossRefGoogle Scholar
  178. 178.
    Chen T, Wang X, Metaxas D, Axel L (2008) Fast motion tracking of tagged MRI using angle-preserving meshless registration. Lect Notes Artif Intell Lect Notes Bioinform.  https://doi.org/10.1007/978-3-540-85990-1-38 CrossRefGoogle Scholar
  179. 179.
    Chen T, Wang X, Metaxas D, Axel L (2008) 3D cardiac motion tracking using robust point matching and meshless deformable models. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 280–283Google Scholar
  180. 180.
    Wang X, Chen T, Zhang S et al (2008) LV motion and strain computation from tMRI based on meshless deformable models. In: Metaxas D, Axel L, Fichtinger G, Székely G (eds) Medical image computing and computer-assisted intervention—MICCAI 2008. Springer, Berlin, pp 636–644CrossRefGoogle Scholar
  181. 181.
    Wang X, Chen T, Zhang S et al (2015) Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI. Magn Reson Imaging 33:146–160.  https://doi.org/10.1016/j.mri.2014.08.007 CrossRefGoogle Scholar
  182. 182.
    Wang X, Mihalef V, Qian Z, et al (2012) 3D cardiac motion reconstruction from CT data and tagged MRI. In: Proceedings of annual international conference on IEEE engineering in medicine and biology society, EMBS, pp 4083–4086.  https://doi.org/10.1109/embc.2012.6346864
  183. 183.
    Yu Y, Zhang S, Yan Z, et al (2013) Mouse LV 3D motion and strain analysis using tagged MRI. In: IEEE 10th international symposium on biomedical imaging. IEEE, San Francisco, CA, pp 1190–1193Google Scholar
  184. 184.
    Bogatyrenko E, Hanebeck UD, Szabó G (2009) Heart surface motion estimation framework for robotic surgery employing meshless methods. In: 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, pp 67–74.  https://doi.org/10.1109/iros.2009.5354398
  185. 185.
    Bogatyrenko E, Pompey P, Hanebeck UD (2011) Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems. Int J Comput Assist Radiol Surg 6:387–399.  https://doi.org/10.1007/s11548-010-0517-5 CrossRefGoogle Scholar
  186. 186.
    Chinchapatnam P, Rhode K, Ginks M et al (2009) Voxel based adaptive meshless method for cardiac electrophysiology simulation. In: Ayache N, Delingette H, Sermesant M (eds) Functional Imaging and Modeling of the Heart. Springer, Berlin Heidelberg, pp 182–190CrossRefGoogle Scholar
  187. 187.
    Pashaei A, Sebastian R, Zimmerman V, et al (2009) A mesh-less approach for fast estimation of electrical activation time in the ventricular wall. In: Computers in cardiology, 2009. IEEE, Park City, UT, USA, pp 209–212Google Scholar
  188. 188.
    Zhang H, Ye H, Huang W (2012) A meshfree method for simulating myocardial electrical activity. Comput Math Methods Med.  https://doi.org/10.1155/2012/936243 MathSciNetzbMATHCrossRefGoogle Scholar
  189. 189.
    Amanifard N, Rahbar B, Hesan M (2011) Numerical simulation of the mitral valve opening using smoothed particle hydrodynamics. In: Proceedings of the world congress on engineering, London, pp 2308–2312Google Scholar
  190. 190.
    Yu Z, Yao G, Hoshijima M et al (2011) Multiscale modeling of calcium dynamics in ventricular myocytes with realistic transverse tubules. IEEE Trans Biomed Eng 58:2947–2951.  https://doi.org/10.1109/TBME.2011.2158316 CrossRefGoogle Scholar
  191. 191.
    Yao G, Yu Z (2012) A localized meshless approach for modeling spatial-temporal calcium dynamics in ventricular myocytes. Int J Numer Methods Biomed Eng 28:187–204.  https://doi.org/10.1002/cnm.1453 MathSciNetzbMATHCrossRefGoogle Scholar
  192. 192.
    Shahriari S, Kadem L, Rogers BD, Hassan I (2012) Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity. Int J Numer Methods Biomed Eng 28:1121–1143.  https://doi.org/10.1002/cnm.2482 MathSciNetCrossRefGoogle Scholar
  193. 193.
    Shahriari S, Maleki H, Hassan I, Kadem L (2012) Evaluation of shear stress accumulation on blood components in normal and dysfunctional bileaflet mechanical heart valves using smoothed particle hydrodynamics. J Biomech 45:2637–2644.  https://doi.org/10.1016/j.jbiomech.2012.08.009 CrossRefGoogle Scholar
  194. 194.
    Skatulla S, Legner D, Rama RR, et al (2013) Computational study of the injection therapy for myocardial infarction during the necrotic stage. In: Papadrakakis M, Kojic M, Tuncer I, Papadopoulos V (eds) Proceedings of 3rd South-East European conference on computational mechanics, Kos Island, Greece, pp 12–14Google Scholar
  195. 195.
    Rama RR, Skatulla S, Sansour C (2015) Real-time modelling of the heart using the proper orthogonal decomposition with interpolation. In: VI international conference on computational bioengineering ICCB 2015. Elsevier Ltd, Barcelona, Spain, pp 1–12Google Scholar
  196. 196.
    Rama RR, Skatulla S (2018) Towards real-time modelling of passive and active behaviour of the human heart using PODI-based model reduction. Comput Struct.  https://doi.org/10.1016/j.compstruc.2018.01.002 CrossRefGoogle Scholar
  197. 197.
    Rama RR, Skatulla S (2018) Towards real-time cardiac mechanics modelling with patient-specific heart anatomies. Comput Methods Appl Mech Eng 328:47–74.  https://doi.org/10.1016/j.cma.2017.08.015 MathSciNetCrossRefGoogle Scholar
  198. 198.
    Lluch È, Doste R, Giffard-Roisin S, et al (2017) Smoothed particle hydrodynamics for electrophysiological modeling: an alternative to finite element methods. In: Functional imaging and modelling of the heart: 9th international conference, FIMH 2017, Toronto, ON, Canada, 11–13 June 2017, Proceedings. pp 333–343Google Scholar
  199. 199.
    Sack KL, Skatulla S, Sansour C (2015) Biological tissue mechanics with fibres modelled as one-dimensional Cosserat continua. Applications to cardiac tissue. Int J Solids Struct 81:84–94.  https://doi.org/10.1016/j.ijsolstr.2015.11.009 CrossRefGoogle Scholar
  200. 200.
    Boselli F, Vermot J (2016) Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart. Methods 94:129–134.  https://doi.org/10.1016/j.ymeth.2015.09.017 CrossRefGoogle Scholar
  201. 201.
    Mao W, Li K, Sun W (2016) Fluid–structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc Eng Technol 7:374–388.  https://doi.org/10.1007/s13239-016-0285-7 CrossRefGoogle Scholar
  202. 202.
    von Ellenrieder N, Muravchik CH, Nehorai A (2005) A meshless method for solving the EEG forward problem. IEEE Trans Biomed Eng 52:249–257.  https://doi.org/10.1109/TBME.2004.840499 CrossRefGoogle Scholar
  203. 203.
    von Ellenrieder N, Muravchik CHH, Nehorai A (2003) Effect of perturbations in the geometry on the electroencephalography inverse problem. In: IEEE work STAT signalling process 2003 January, pp 286–289.  https://doi.org/10.1109/ssp.2003.1289400
  204. 204.
    Peng L, Peng M, Xu A (2015) Effects of head models and dipole source parameters on EEG fields. Open Biomed Eng J 9:10–16.  https://doi.org/10.2174/1874120701509010010 CrossRefGoogle Scholar
  205. 205.
    Ala G, Di Blasi G, Francomano E (2012) A numerical meshless particle method in solving the magnetoencephalography forward problem. Int J Numer Model Electron Networks Devices Fields 25:428–440.  https://doi.org/10.1002/jnm.1828 CrossRefGoogle Scholar
  206. 206.
    Ala G, Francomano E (2013) A multi-sphere particle numerical model for non-invasive investigations of neuronal human brain activity. Prog Electromagn Res Lett 36:143–153.  https://doi.org/10.2528/PIERL12110906 CrossRefGoogle Scholar
  207. 207.
    Ala G, Francomano E, Fasshauer GE et al (2015) A meshfree solver for the MEG forward problem. IEEE Trans Magn 51:1–4.  https://doi.org/10.1109/TMAG.2014.2356134 CrossRefGoogle Scholar
  208. 208.
    Ala G, Fasshauer G, Francomano E et al (2015) The method of fundamental solutions in solving coupled boundary value problems for M/EEG. SIAM J Sci Comput 37:570–590.  https://doi.org/10.1137/13094921X MathSciNetzbMATHCrossRefGoogle Scholar
  209. 209.
    Ala G, Fasshauer GE, Francomano E et al (2015) A novel numerical meshless approach for electric potential estimation in transcranial stimulation. In: Kalogiratou Z, Simos TE, Monovasilis T (eds) International Conference of Computational Methods in Sciences and Engineering 2015, ICCMSE 2015. AIP Publishing, Università degli Studi di Palermo, DEIM, Viale delle Scienze, Palermo, Italy, p 190025.  https://doi.org/10.1063/1.4938992 CrossRefGoogle Scholar
  210. 210.
    Horton A, Wittek A, Miller K (2006) Towards meshless methods for surgical simulation. In: Miller K, Poulikakos D (eds) Computational Biomechanics for Medicine: MICCAI 2006 Workshop. Denmark, Copenhagen, pp 34–42Google Scholar
  211. 211.
    Horton A, Wittek A, Miller K (2007) Subject-specific biomechanical simulation of brain indentation using a meshless method. Med Image Comput Comput Assist Interv 10:541–548Google Scholar
  212. 212.
    Horton A, Wittek A, Joldes GR, Miller K (2010) A meshless total Lagrangian explicit dynamics algorithm for surgical simulation. Int J Numer Methods Biomed Eng 26:977–998.  https://doi.org/10.1002/cnm.1374 zbMATHCrossRefGoogle Scholar
  213. 213.
    Miller K, Wittek A, Joldes G (2010) Biomechanics of the brain for computer-integrated surgery. Acta Bioeng Biomech 12:25–37Google Scholar
  214. 214.
    Miller K, Joldes GR, Horton A et al (2010) Modelling brain deformations for computer-integrated neurosurgery. Int J Numer Methods Biomed Eng 26:117–138.  https://doi.org/10.1002/cnm.1260 zbMATHCrossRefGoogle Scholar
  215. 215.
    Zhang GY, Wittek A, Joldes GR et al (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66.  https://doi.org/10.1016/j.enganabound.2013.08.014 MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    Berger J, Horton A, Joldes G, et al (2008) Coupling finite element and mesh-free methods for modelling brain defromations in response to tumour growth. In: Miller K, Nielsen PMF (eds) Computational biomechanics for medicine III: MICCAI 2008 workshop, New York, pp 68–82Google Scholar
  217. 217.
    Chowdhury HA, Joldes GR, Wittek A et al (2015) Implementation of a modified moving least squares approximation for predicting soft tissue deformation using a meshless method. In: Doyle B, Miller K, Wittek A, Nielsen PMF (eds) Computational Biomechanics for Medicine. Springer International Publishing, Switzerland, pp 59–71Google Scholar
  218. 218.
    Diaz I, Boulanger P (2015) Atlas to patient registration with brain tumor based on a mesh-free method. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2924–2927Google Scholar
  219. 219.
    Marques M, Belinha J, Dinis LMJ, Natal Jorge R (2018) A brain impact stress analysis using advanced discretization meshless techniques. Proc Inst Mech Eng Part H J Eng Med 232:257–270.  https://doi.org/10.1177/0954411917751559 CrossRefGoogle Scholar
  220. 220.
    Tang D, Yang C, Petruccelli JD et al (2007) Quantifying human atherosclerotic plaque growth function using multi-year in vivo MRI and meshless local Petrov-Galerkin method. 2007 IEEE/ICME International Conference on Complex Medical Engineering, CME 2007. IEEE, Beijing, pp 546–551CrossRefGoogle Scholar
  221. 221.
    Yang C, Tang D, Yuan C et al (2008) Meshless generalized finite difference method and human carotid atherosclerotic plaque progression simulation using multi-year MRI patient-tracking data. Comput Model Eng Sci 28:95–107MathSciNetzbMATHGoogle Scholar
  222. 222.
    Yang C, Tang D, Atluri S (2010) Three-dimensional carotid plaque progression simulation using meshless generalized finite difference method based on multi-year MRI patient-tracking data. Comput Model Eng Sci 57:51–76.  https://doi.org/10.3970/cmes.2010.057.051 MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Yang C, Tang D, Atluri S (2011) Patient-specific carotid plaque progression simulation using 3D meshless generalized finite difference models with fluid–structure interactions based on serial in vivo MRI data. Comput Model Eng Sci 72:53–77.  https://doi.org/10.3970/cmes.2011.072.053 MathSciNetzbMATHCrossRefGoogle Scholar
  224. 224.
    Tang D, Yang C, Kobayashi S, Ku DN (2001) Generalized finite difference method for 3-D viscous flow in stenotic tubes with large wall deformation and collapse. Appl Numer Math 38:49–68.  https://doi.org/10.1016/S0168-9274(00)00062-3 MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Tang D, Yang C, Kobayashi S et al (2003) Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Ann Biomed Eng 31:1182–1193.  https://doi.org/10.1114/1.1615577 CrossRefGoogle Scholar
  226. 226.
    Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J Biomech Eng 123:548.  https://doi.org/10.1115/1.1406036 CrossRefGoogle Scholar
  227. 227.
    Belinha J, Dinis L, Jorge RN (2015) An elasto-plastic model to analyse the biomechanical behaviour of the atherosclerotic plaque tissue. In: 2015 IEEE 4th Portuguese meeting on bioengineering (ENBENG). IEEE, Porto, PortugalGoogle Scholar
  228. 228.
    Sinnott MD, Cleary PW, Harrison SM et al (2015) How arterial pressures affect the consideration of internal carotid artery angle as a risk factor for carotid artherosclerotic disease. Prog Comput Fluid Dyn Int J 15:87–101.  https://doi.org/10.1504/PCFD.2015.068817 MathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    El Zahab Z, Divo E, Kassab A (2009) A localized collocation meshless method (LCMM) for incompressible flows CFD modeling with applications to transient hemodynamics. Eng Anal Bound Elem 33:1045–1061.  https://doi.org/10.1016/j.enganabound.2009.03.006 MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    El Zahab Z, Divo E, Kassab AA (2009) A meshless CFD approach for evolutionary shape optimization of bypass grafts anastomoses. Inverse Probl Sci Eng 17:411–435.  https://doi.org/10.1080/17415970902765434 zbMATHCrossRefGoogle Scholar
  231. 231.
    El Zahab Z, Divo E, Kassab A (2010) Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation. Comput Methods Biomech Biomed Eng 13:35–47.  https://doi.org/10.1080/10255840903013555 CrossRefGoogle Scholar
  232. 232.
    Tanaka N, Takano T (2005) Microscopic-scale simulation of blood flow using SPH method. Int J Comput Methods 02:555–568.  https://doi.org/10.1142/S021987620500065X zbMATHCrossRefGoogle Scholar
  233. 233.
    Bao YD, Wu DM (2015) Virtual training system with physical viscoelastic model and blood flow simulation based on a range-based SPH method. J Biomim Biomater Biomed Eng 25:41–53.  https://doi.org/10.4028/www.scientific.net/JBBBE.25.41 CrossRefGoogle Scholar
  234. 234.
    Wu J, Chui CK, Teo CL (2015) A software component approach for GPU accelerated physics-based blood flow simulation. In: 2015 IEEE international conference on systems, man, and cybernetics. IEEE, pp 2465–2470Google Scholar
  235. 235.
    Caballero A, Mao W, Liang L et al (2017) Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovasc Eng Technol 8:465–479.  https://doi.org/10.1007/s13239-017-0324-z CrossRefGoogle Scholar
  236. 236.
    Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83:139–146.  https://doi.org/10.1016/j.cmpb.2006.06.005 CrossRefGoogle Scholar
  237. 237.
    Chui Y-P, Heng P-A (2010) A meshless rheological model for blood-vessel interaction in endovascular simulation. Prog Biophys Mol Biol 103:252–261.  https://doi.org/10.1016/j.pbiomolbio.2010.09.003 CrossRefGoogle Scholar
  238. 238.
    Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deformability of infected red blood cells. Biophys J 103:1–10.  https://doi.org/10.1016/j.bpj.2012.05.026 CrossRefGoogle Scholar
  239. 239.
    Gholami B, Comerford A, Ellero M (2014) A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow. Int J Numer Methods Biomed Eng 30:83–102.  https://doi.org/10.1002/cnm.2591 MathSciNetCrossRefGoogle Scholar
  240. 240.
    Topalovic MD, Blagojevic MR, Nikolic A V., et al (2015) Application of smoothed particle hydrodynamics in biomechanics: advanced procedure for discretization of complex biological shapes into pseudo-particles. In: 2015 IEEE 15th international conference on bioinformatics and bioengineering (BIBE). IEEE, pp 1–4Google Scholar
  241. 241.
    Yamaguchi T, Ishikawa T, Imai Y et al (2010) Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann Biomed Eng 38:1225–1235.  https://doi.org/10.1007/s10439-010-9904-x CrossRefGoogle Scholar
  242. 242.
    Tosenberger A, Salnikov V, Bessonov N et al (2011) Particle dynamics methods of blood flow simulations. Math Model Nat Phenom 6:320–332.  https://doi.org/10.1051/mmnp/20116512 MathSciNetzbMATHCrossRefGoogle Scholar
  243. 243.
    Moreno N, Vignal P, Li J, Calo VM (2013) Multiscale modeling of blood flow: coupling finite elements with smoothed dissipative particle dynamics. Procedia Comput Sci 18:2565–2574.  https://doi.org/10.1016/j.procs.2013.05.442 CrossRefGoogle Scholar
  244. 244.
    Bian X, Litvinov S, Qian R et al (2012) Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys Fluids.  https://doi.org/10.1063/1.3676244 CrossRefGoogle Scholar
  245. 245.
    Li X, Popel AS, Karniadakis GE (2012) Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys Biol 9:026010.  https://doi.org/10.1088/1478-3975/9/2/026010 CrossRefGoogle Scholar
  246. 246.
    Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model for the red blood cell. Soft Matter 6:4366.  https://doi.org/10.1039/c0sm00183j CrossRefGoogle Scholar
  247. 247.
    Quinn DJ, Pivkin I, Wong SY et al (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng 39:1041–1050.  https://doi.org/10.1007/s10439-010-0232-y CrossRefGoogle Scholar
  248. 248.
    Fedosov DA, Lei H, Caswell B et al (2011) Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput Biol.  https://doi.org/10.1371/journal.pcbi.1002270 MathSciNetCrossRefGoogle Scholar
  249. 249.
    Fedosov DA, Caswell B, Karniadakis GE (2010) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199:1937–1948.  https://doi.org/10.1016/j.cma.2010.02.001 MathSciNetzbMATHCrossRefGoogle Scholar
  250. 250.
    Pivkin I, Karniadakis G (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101:118105.  https://doi.org/10.1103/PhysRevLett.101.118105 CrossRefGoogle Scholar
  251. 251.
    Xiao LL, Chen S, Lin CS, Liu Y (2014) Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics. Mol Cell Biomech 11:67–85.  https://doi.org/10.3970/mcb.2014.011.067 CrossRefGoogle Scholar
  252. 252.
    Yamada T, Kumar A, Asako Y, Faghri M (2010) Three dimensional simulation of dynamics and deformation of red blood cells in capillary flow. In: Proceedings of the ASME 2010 international mechanical engineering congress and exposition (IMECE2010). ASME, British Columbia, Canada, pp 1–6Google Scholar
  253. 253.
    Peng Z, Li X, Pivkin IV et al (2013) Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc Natl Acad Sci 110:13356–13361.  https://doi.org/10.1073/pnas.1311827110 CrossRefGoogle Scholar
  254. 254.
    Müller M, Schirm S, Teschner M (2004) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12:25–31Google Scholar
  255. 255.
    Liang CX, Zhang CY, Liu HY et al (2012) Modeling low Reynolds number incompressible flows with curved boundaries using SPH. Int J Numer Methods Fluids 68:1173–1188.  https://doi.org/10.1002/fld.2600 MathSciNetzbMATHCrossRefGoogle Scholar
  256. 256.
    Chui YP, Heng PA (2012) A particle-based modeling framework for thrombo-emboli simulation. In: Proceedings of the 11th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry—VRCAI’12. ACM, Singapore, p 213Google Scholar
  257. 257.
    Kulp S, Gao M, Zhang S, et al (2013) Practical patient-specific cardiac blood flow simulations using SPH. In: 2013 IEEE 10th international symposium on biomedical imaging. IEEE, pp 832–835Google Scholar
  258. 258.
    Maciel A, De S (2008) An efficient dynamic point algorithm for line-based collision detection in real time virtual environments involving haptics. Comput Anim Virtual Worlds 19:151–163.  https://doi.org/10.1002/cav.224 CrossRefGoogle Scholar
  259. 259.
    Rahmanian E, Navidbakhsh M, Mohammadzadeh M, Habibi H (2015) Numerical simulation of blood flow in centrifugal heart pump by utilizing meshless smoothed particles hydrodynamic method. Int J Bio-Sci Bio-Technol 7:73–82.  https://doi.org/10.14257/ijbsbt.2015.7.3.08 CrossRefGoogle Scholar
  260. 260.
    Li H, Ye T, Lam KY (2012) A novel interface-tracking method based on Lagrangian particles for deformation analysis of a red blood cell in a capillary. Int J Numer Methods Fluids 69:1031–1044.  https://doi.org/10.1002/fld.2624 MathSciNetzbMATHCrossRefGoogle Scholar
  261. 261.
    Noguchi H (2010) Dynamical modes of deformed red blood cells and lipid vesicles in flows. Prog Theor Phys Suppl 184:364–368.  https://doi.org/10.1143/PTPS.184.364 zbMATHCrossRefGoogle Scholar
  262. 262.
    Ahmadian MT, Firoozbakhsh K, Hasanian M (2011) Simulation of red blood cell motion in microvessels using modified moving particle semi-implicit method. Sci Iran 19:113–118.  https://doi.org/10.1016/j.scient.2011.12.007 CrossRefGoogle Scholar
  263. 263.
    Gambaruto AM (2015) Computational haemodynamics of small vessels using the moving particle semi-implicit (MPS) method. J Comput Phys 302:68–96.  https://doi.org/10.1016/j.jcp.2015.08.039 MathSciNetzbMATHCrossRefGoogle Scholar
  264. 264.
    Ariane M, Allouche MH, Bussone M et al (2017) Discrete multi-physics: a mesh-free model of blood flow in flexible biological valve including solid aggregate formation. PLoS ONE 12:1–15.  https://doi.org/10.1371/journal.pone.0174795 CrossRefGoogle Scholar
  265. 265.
    Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154.  https://doi.org/10.1016/j.jcp.2006.05.010 MathSciNetzbMATHCrossRefGoogle Scholar
  266. 266.
    Roohani Ghehsareh H, Karimi K, Zaghian A (2015) Numerical solutions of a mathematical model of blood flow in the deforming porous channel using radial basis function collocation method. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-015-0478-2 CrossRefGoogle Scholar
  267. 267.
    Van Liedekerke P, Ghysels P, Tijskens E et al (2010) A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates. Phys Biol 7:026006.  https://doi.org/10.1088/1478-3975/7/2/026006 CrossRefGoogle Scholar
  268. 268.
    Van Liedekerke P, Tijskens E, Ramon H et al (2010) Particle-based model to simulate the micromechanics of biological cells. Phys Rev E 81:061906.  https://doi.org/10.1103/PhysRevE.81.061906 CrossRefGoogle Scholar
  269. 269.
    Karunasena HCP, Senadeera W, Brown RJ, Gu YT (2014) Simulation of plant cell shrinkage during drying—a SPH-DEM approach. Eng Anal Bound Elem 44:1–18.  https://doi.org/10.1016/j.enganabound.2014.04.004 zbMATHCrossRefGoogle Scholar
  270. 270.
    Karunasena HCP, Senadeera W, Gu YT, Brown RJ (2014) A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Appl Math Model 38:3781–3801.  https://doi.org/10.1016/j.apm.2013.12.004 CrossRefGoogle Scholar
  271. 271.
    Perré P, Almeida G, Ayouz M, Frank X (2015) New modelling approaches to predict wood properties from its cellular structure: image-based representation and meshless methods. Ann For Sci 73:147–162.  https://doi.org/10.1007/s13595-015-0519-0 CrossRefGoogle Scholar
  272. 272.
    Nakamura M, Bessho S, Wada S (2014) Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Int J Numer Methods Biomed Eng 30:42–54.  https://doi.org/10.1002/cnm.2587 MathSciNetCrossRefGoogle Scholar
  273. 273.
    Shankar V, Wright GB, Kirby RM, Fogelson AL (2015) Augmenting the immersed boundary method with radial basis functions (RBFs) for the modeling of platelets in hemodynamic flows. Int J Numer Methods Fluids 79:536–557.  https://doi.org/10.1002/fld.4061 MathSciNetCrossRefGoogle Scholar
  274. 274.
    Xiang P, Liew KM (2011) Predicting buckling behavior of microtubules based on an atomistic-continuum model. Int J Solids Struct 48:1730–1737.  https://doi.org/10.1016/j.ijsolstr.2011.02.022 zbMATHCrossRefGoogle Scholar
  275. 275.
    Xiang P, Liew KM (2012) Free vibration analysis of microtubules based on an atomistic-continuum model. J Sound Vib 331:213–230.  https://doi.org/10.1016/j.jsv.2011.08.024 CrossRefGoogle Scholar
  276. 276.
    Xiang P, Liew KM (2013) A computational framework for transverse compression of microtubules based on a higher-order Cauchy–Born rule. Comput Methods Appl Mech Eng 254:14–30.  https://doi.org/10.1016/j.cma.2012.10.013 MathSciNetzbMATHCrossRefGoogle Scholar
  277. 277.
    Xiang P, Liew KM (2012) Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput Methods Appl Mech Eng 223–224:123–132.  https://doi.org/10.1016/j.cma.2012.02.023 CrossRefGoogle Scholar
  278. 278.
    Liew KM, Xiang P, Zhang LW (2015) Mechanical properties and characteristics of microtubules: a review. Compos Struct 123:98–108.  https://doi.org/10.1016/j.compstruct.2014.12.020 CrossRefGoogle Scholar
  279. 279.
    Wang XY, Guo X, Su Z (2014) A quasi-continuum model for human erythrocyte membrane based on the higher order Cauchy–Born rule. Comput Methods Appl Mech Eng 268:284–298.  https://doi.org/10.1016/j.cma.2013.08.020 MathSciNetzbMATHCrossRefGoogle Scholar
  280. 280.
    Wang XY, Wang JB, Qiu BB, Hu LF (2015) Large deformation properties of red blood cell membrane based on a higher order gradient quasi-continuum model. J Membr Biol.  https://doi.org/10.1007/s00232-015-9809-6 CrossRefGoogle Scholar
  281. 281.
    Zhang LW, Ademiloye AS, Liew KM (2017) A multiscale Cauchy-Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum. J Mech Phys Solids 101:268–284.  https://doi.org/10.1016/j.jmps.2017.01.009 MathSciNetCrossRefGoogle Scholar
  282. 282.
    Ademiloye AS, Zhang LW, Liew KM (2017) Element-free multiscale modeling of large deformation behavior of red blood cell membrane with malaria infection. In: Nithiarasu P, Robertson AM (eds) Proceedings of the 5th international conference on computational and mathematical biomedical engineering (CMBE2017), Pittsburgh, USA, pp 316–319Google Scholar
  283. 283.
    Ademiloye AS, Zhang LW, Liew KM (2015) Numerical computation of the elastic and mechanical properties of red blood cell membrane using the higher-order Cauchy–Born rule. Appl Math Comput 268:334–353.  https://doi.org/10.1016/j.amc.2015.06.071 MathSciNetCrossRefGoogle Scholar
  284. 284.
    Ademiloye AS, Zhang LW, Liew KM (2018) A multiscale framework for large deformation modeling of RBC membranes. Comput Methods Appl Mech Eng 329:144–167.  https://doi.org/10.1016/j.cma.2017.10.004 MathSciNetCrossRefGoogle Scholar
  285. 285.
    Ademiloye AS, Zhang LW, Liew KM (2016) Predicting the elastic properties and deformability of red blood cell membrane using an atomistic-continuum approach. In: Feng DD, Korsunsky AM, Ao SI et al (eds) Proceedings of the international multiconference of engineers and computer scientists 2016. Newswood Limited, Hong Kong, pp 942–946Google Scholar
  286. 286.
    Ademiloye AS, Zhang LW, Liew KM (2017) A three-dimensional quasicontinuum approach for predicting biomechanical properties of malaria-infected red blood cell membrane. Appl Math Model 49:35–47.  https://doi.org/10.1016/j.apm.2017.04.030 MathSciNetCrossRefGoogle Scholar
  287. 287.
    Ademiloye AS, Zhang LW, Liew KM (2016) Multiscale meshfree analysis of the effects of thermal treatments on deformability of red blood cell membrane. In: 2016 IEEE 16th international conference on bioinformatics and bioengineering (BIBE). IEEE, Taichung, Taiwan, pp 186–191Google Scholar
  288. 288.
    Ademiloye AS, Zhang LW, Liew KM (2017) Atomistic–continuum model for probing the biomechanical properties of human erythrocyte membrane under extreme conditions. Comput Methods Appl Mech Eng 325:22–36.  https://doi.org/10.1016/j.cma.2017.06.033 MathSciNetCrossRefGoogle Scholar
  289. 289.
    Ademiloye AS, Liew KM, Zhang LW (2016) Numerical modeling of biomechanical responses of healthy red blood cell membrane under various loading conditions using a 3D quasicontinuum approach. In: 2016 International conference on biomedical engineering (BME-HUST). IEEE, Hanoi, Vietnam, pp 119–124Google Scholar
  290. 290.
    Zeng X, Li S (2011) Multiscale modeling and simulation of soft adhesion and contact of stem cells. J Mech Behav Biomed Mater 4:180–189.  https://doi.org/10.1016/j.jmbbm.2010.06.002 CrossRefGoogle Scholar
  291. 291.
    Zeng X, Li S (2011) Modelling and simulation of substrate elasticity sensing in stem cells. Comput Methods Biomech Biomed Eng 14:447–458.  https://doi.org/10.1080/10255842.2011.557371 CrossRefGoogle Scholar
  292. 292.
    Zeng X, Li S, Ren B (2012) Soft matter modeling of biological cells. In: Li S, Sun B (eds) Advances in Soft Matter Mechanics. Springer, Berlin Heidelberg, pp 95–117CrossRefGoogle Scholar
  293. 293.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science (80-) 175:720–731.  https://doi.org/10.1126/science.175.4023.720 CrossRefGoogle Scholar
  294. 294.
    Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703CrossRefGoogle Scholar
  295. 295.
    Pothapragada S, Zhang P, Sheriff J et al (2015) A phenomenological particle-based platelet model for simulating filopodia formation during early activation. Int J Numer Methods Biomed Eng.  https://doi.org/10.1002/cnm.2702 CrossRefGoogle Scholar
  296. 296.
    Heck T, Smeets B, Vanmaercke S et al (2017) Modeling extracellular matrix viscoelasticity using non-inertial smoothed particle hydrodynamics with improved boundary treatment. Comput Methods Appl Mech Eng.  https://doi.org/10.1016/j.cma.2017.04.031 CrossRefGoogle Scholar
  297. 297.
    Cohen RCZ, Cleary PW, Mason BR (2012) Simulations of dolphin kick swimming using smoothed particle hydrodynamics. Hum Mov Sci 31:604–619.  https://doi.org/10.1016/j.humov.2011.06.008 CrossRefGoogle Scholar
  298. 298.
    Cohen RCZ, Cleary PW, Mason B (2009) Simulation of human swimming using smoothed particle hydrodynamics. 7th International Conference on CFD in the Minerals and Process Industries. Melbourne, Australia, pp 1–6Google Scholar
  299. 299.
    Cohen RCZ, Cleary PW (2010) Computational studies of the locomotion of dolphins and sharks using smoothed particle hydrodynamics. In: Lim CT, Goh JCH (eds) IFMBE proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 22–25Google Scholar
  300. 300.
    Cohen RCZ, Cleary PW, Harrison SM et al (2014) Pitching effects of buoyancy during four competitive swimming strokes. J Appl Biomech 30:609–618.  https://doi.org/10.1123/JAB.2013-0260 CrossRefGoogle Scholar
  301. 301.
    Cohen RCZ, Cleary PW, Mason BR, Pease DL (2015) The role of the hand during freestyle swimming. J Biomech Eng.  https://doi.org/10.1115/1.4031586 CrossRefGoogle Scholar
  302. 302.
    Harrison SM, Cohen RCZZ, Cleary PW et al (2016) A coupled biomechanical-smoothed particle hydrodynamics model for predicting the loading on the body during elite platform diving. Appl Math Model 40:3812–3831.  https://doi.org/10.1016/j.apm.2015.11.009 CrossRefGoogle Scholar
  303. 303.
    McCarthy MA, Xiao JR, McCarthy CT et al (2004) Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates—Part 2: modelling of impact with SPH bird model. Appl Compos Mater 11:317–340.  https://doi.org/10.1023/B:ACMA.0000037134.93410.c0 CrossRefGoogle Scholar
  304. 304.
    Guida M, Marulo F, Meo M et al (2011) SPH—Lagrangian study of bird impact on leading edge wing. Compos Struct 93:1060–1071.  https://doi.org/10.1016/j.compstruct.2010.10.001 CrossRefGoogle Scholar
  305. 305.
    Grimaldi A, Sollo A, Guida M, Marulo F (2013) Parametric study of a SPH high velocity impact analysis—a birdstrike windshield application. Compos Struct 96:616–630.  https://doi.org/10.1016/j.compstruct.2012.09.037 CrossRefGoogle Scholar
  306. 306.
    Hedayati R, Ziaei-Rad S (2013) A new bird model and the effect of bird geometry in impacts from various orientations. Aerosp Sci Technol 28:9–20.  https://doi.org/10.1016/j.ast.2012.09.002 CrossRefGoogle Scholar
  307. 307.
    Vignjevic R, Orłowski M, De Vuyst T, Campbell JC (2013) A parametric study of bird strike on engine blades. Int J Impact Eng 60:44–57.  https://doi.org/10.1016/j.ijimpeng.2013.04.003 CrossRefGoogle Scholar
  308. 308.
    Liu J, Li Y (2013) Numerical simulation of a rotary engine primary compressor impacted by bird. Chin J Aeronaut 26:926–934.  https://doi.org/10.1016/j.cja.2013.06.006 MathSciNetCrossRefGoogle Scholar
  309. 309.
    Liu J, Li Y, Gao X, Yu X (2014) A numerical model for bird strike on sidewall structure of an aircraft nose. Chin J Aeronaut 27:542–549.  https://doi.org/10.1016/j.cja.2014.04.019 CrossRefGoogle Scholar
  310. 310.
    Zhang D, Fei Q (2016) Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fan analysis using SPH method. Aerosp Sci Technol 54:320–329.  https://doi.org/10.1016/j.ast.2016.05.003 CrossRefGoogle Scholar
  311. 311.
    Qian J, Lu J (2011) Point-cloud method for image-based biomechanical stress analysis. Int J Numer Methods Biomed Eng 27:1493–1506.  https://doi.org/10.1002/cnm.1432 MathSciNetzbMATHCrossRefGoogle Scholar
  312. 312.
    Zhou S, Zhang X, Ma H (2013) Numerical simulation of human head impact using the material point method. Int J Comput Methods 10:1350014.  https://doi.org/10.1142/S021987621350014X MathSciNetzbMATHCrossRefGoogle Scholar
  313. 313.
    Pekedis M, Yildiz H (2014) Numerical analysis of a projectile penetration into the human head via meshless method. J Mech Med Biol 14:1450059.  https://doi.org/10.1142/S0219519414500596 CrossRefGoogle Scholar
  314. 314.
    Prakash M, Cleary PW, Pyo SH, Woolard F (2015) A new approach to boiling simulation using a discrete particle based method. Comput Graph 53:118–126.  https://doi.org/10.1016/j.cag.2015.08.010 CrossRefGoogle Scholar
  315. 315.
    Liu H, Shi P (2003) Meshfree particle method. In: Proceedings of the Ninth IEEE international conference on computer vision. IEEE, pp 289–296Google Scholar
  316. 316.
    Chen T, Kim S, Zhou J et al (2009) 3D meshless prostate segmentation and registration in image guided radiotherapy. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009. Springer, Berlin Heidelberg, pp 43–50CrossRefGoogle Scholar
  317. 317.
    Chen T, Kim S, Goyal S et al (2010) Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT. Med Phys 37:197–210.  https://doi.org/10.1118/1.3271389 CrossRefGoogle Scholar
  318. 318.
    Tao R, Tavakoli M, Sloboda R, Usmani N (2015) A comparison of US- versus MR-based 3-D prostate shapes using radial basis function interpolation and statistical shape models. IEEE J Biomed Health Inform 19:623–634.  https://doi.org/10.1109/JBHI.2014.2324975 CrossRefGoogle Scholar
  319. 319.
    Haq R, Aras R, Besachio DA et al (2015) Minimally supervised segmentation and meshing of 3D intervertebral discs of the lumbar spine for discectomy simulation. In: Yao J, Glocker B, Klinder T, Li S (eds) Recent advances in computational methods and clinical applications for spine imaging. Springer, Berlin, pp 143–155CrossRefGoogle Scholar
  320. 320.
    Li M, Miller K, Joldes G et al (2014) Patient-specific meshless model for whole-body image registration. In: Bello F, Cotin S (eds) Biomedical simulation. Springer, Cham, pp 50–57Google Scholar
  321. 321.
    Li M, Miller K, Joldes GR et al (2016) Biomechanical model for computing deformations for whole-body image registration: a meshless approach. Int J Numer Methods Biomed Eng.  https://doi.org/10.1002/cnm.2771 CrossRefGoogle Scholar
  322. 322.
    An Y, Liu J, Zhang G et al (2015) Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function. J Biomed Opt 20:105003.  https://doi.org/10.1117/1.JBO.20.10.105003 CrossRefGoogle Scholar
  323. 323.
    Li S, Li X (2016) Radial basis functions and level set method for image segmentation using partial differential equation. Appl Math Comput 286:29–40.  https://doi.org/10.1016/j.amc.2016.04.002 MathSciNetCrossRefGoogle Scholar
  324. 324.
    Aggarwal A, Chen J-S, Klug WS (2014) A meshfree method for mechanics and conformational change of proteins and their assemblies. Comput Model Eng Sci 98:69–99.  https://doi.org/10.3970/cmes.2014.098.069 MathSciNetzbMATHCrossRefGoogle Scholar
  325. 325.
    Siraj-ul-Islam Ahmad I (2017) Local meshless method for PDEs arising from models of wound healing. Appl Math Model 48:688–710.  https://doi.org/10.1016/j.apm.2017.04.015 MathSciNetCrossRefGoogle Scholar
  326. 326.
    Cheng RJ, Zhang LW, Liew KM (2014) Modeling of biological population problems using the element-free kp-Ritz method. Appl Math Comput 227:274–290.  https://doi.org/10.1016/j.amc.2013.11.033 MathSciNetzbMATHCrossRefGoogle Scholar
  327. 327.
    Sinnott MD, Cleary PW, Arkwright JW, Dinning PG (2012) Investigating the relationships between peristaltic contraction and fluid transport in the human colon using smoothed particle hydrodynamics. Comput Biol Med 42:492–503.  https://doi.org/10.1016/j.compbiomed.2012.01.002 CrossRefGoogle Scholar
  328. 328.
    Montanino A, Angelillo M, Pandolfi A (2018) Modelling with a meshfree approach the cornea-aqueous humor interaction during the air puff test. J Mech Behav Biomed Mater 77:205–216.  https://doi.org/10.1016/j.jmbbm.2017.05.042 CrossRefGoogle Scholar
  329. 329.
    Dehghan M, Mohammadi V (2017) Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model. Commun Nonlinear Sci Numer Simul 44:204–219.  https://doi.org/10.1016/j.cnsns.2016.07.024 MathSciNetCrossRefGoogle Scholar
  330. 330.
    Dehghan M, Narimani N (2018) An element-free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue. Appl Math Model 59:500–513.  https://doi.org/10.1016/j.apm.2018.01.034 MathSciNetCrossRefGoogle Scholar
  331. 331.
    Fu Z-J, Xi Q, Ling L, Cao C-Y (2017) Numerical investigation on the effect of tumor on the thermal behavior inside the skin tissue. Int J Heat Mass Transf 108:1154–1163.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.109 CrossRefGoogle Scholar
  332. 332.
    Jannesari Z, Tatari M (2017) A meshfree technique for numerical simulation of reaction–diffusion systems in developmental biology. Adv Appl Math Mech 9:1225–1249.  https://doi.org/10.4208/aamm.2015.m1085 MathSciNetCrossRefGoogle Scholar
  333. 333.
    Ilati M, Dehghan M (2017) Application of direct meshless local Petrov–Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33:107–124.  https://doi.org/10.1007/s00366-016-0458-x CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Zienkiewicz Centre for Computational Engineering, College of EngineeringSwansea University, Bay CampusSwanseaUK
  3. 3.Department of Architecture and Civil EngineeringCity University of Hong KongKowloonChina

Personalised recommendations