Skip to main content

Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in Concrete and Masonry Structures

Abstract

The importance of crack propagation in the structural behaviour of concrete and masonry structures has led to the development of a wide range of finite element methods for crack simulation. A common standpoint in many of them is the use of tracking algorithms, which identify and designate the location of cracks within the analysed structure. In this way, the crack modelling techniques, smeared or discrete, are applied only to a restricted part of the discretized domain. This paper presents a review of finite element approaches to cracking focusing on the development and use of tracking algorithms. These are presented in four categories according to the information necessary for the definition and storage of the crack-path. In addition to that, the most utilised criteria for the selection of the crack propagation direction are summarized. The various algorithmic issues involved in the development of a tracking algorithm are discussed through the presentation of a local tracking algorithm based on the smeared crack approach. Challenges such as the modelling of arbitrary and multiple cracks propagating towards more than one direction, as well as multi-directional and intersecting cracking, are detailed. The presented numerical model is applied to the analysis of small- and large-scale masonry and concrete structures under monotonic and cyclic loading.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58

References

  1. 1.

    Felippa CA (2001) A historical outline of matrix structural analysis: a play in three acts. Comput Struct 79(14):1313–1324

    Google Scholar 

  2. 2.

    Barenblatt GI (1962) The mathematical theory of equilibrium of crack in brittle fracture. Adv Appl Mech 7:55–129

    MathSciNet  Google Scholar 

  3. 3.

    Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Google Scholar 

  4. 4.

    Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Google Scholar 

  5. 5.

    Bažant ZP, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  6. 6.

    Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York, p 474. ISBN: 1932159746.

  7. 7.

    Simo J, Hughes T (1998) Computational inelasticity, vol 7. Springer, Berlin, p 392. ISBN: 4420767936

  8. 8.

    Feenstra PH, de Borst R (1996) A composite plasticity model for concrete. Int J Solids Struct 33(5):707–730

    MATH  Google Scholar 

  9. 9.

    Oñate E, Oller S, Oliver J, Lubliner J (1988) A constitutive model for cracking of concrete based on the incremental theory of plasticity. ISSN: 0264-4401

  10. 10.

    Mazars J, Pijaudier-Cabot G (1989) Continuum damage theory—application to concrete. J Eng Mech 115(2):345–365

    Google Scholar 

  11. 11.

    Oliver J, Cervera M, Oller SH, Lubliner J (1990) Isotropic damage models and smeared crack analysis of concrete. In: Proceedings of the SCI-C computer aided analysis and design of concrete structures, number February, pp 945–957

  12. 12.

    Cervera M, Oliver J, Faria R (1995) Seismic evaluation of concrete dams via continuum damage models. Earthq Eng Struct Dyn 24(9):1225–1245

    Google Scholar 

  13. 13.

    Faria R, Oliver J, Cervera M (1998) A strain-based plastic viscous-damage model for massive concrete structures. Int J Solids Struct 35(14):1533–1558

    MATH  Google Scholar 

  14. 14.

    Mazars J, Hamon F, Grange S (2014) A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater Struct 48:3779–3793

    Google Scholar 

  15. 15.

    Lubliner J, Oliver J, Oller S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Google Scholar 

  16. 16.

    Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124(8):892–900

    Google Scholar 

  17. 17.

    Armero F, Oller S (2000) A general framework for continuum damage models. I. Infinitesimal plastic damage models in stress space. Int J Solids Struct 37:7409–7436

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Voyiadjis GZ, Taqieddin ZN, Kattan PI (2008) Anisotropic damage-plasticity model for concrete. Int J Plast 24(10):1946–1965

    MATH  Google Scholar 

  19. 19.

    Wu JY, Cervera M (2015) A thermodynamically consistent plastic-damage framework for localized failure in quasi-brittle solids: material model and strain localization analysis. Int J Solids Struct 88–89:227–247

    Google Scholar 

  20. 20.

    de Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2(1):35–46

    Google Scholar 

  21. 21.

    Rots JG, Nauta P, Kusters GMA, Blaauwendraad J (1985) Smeared Crack Approach and Fracture Localization in Concrete. Heron 30(1):5–48.

    Google Scholar 

  22. 22.

    Ngo D, Scordelis C (1967) Finite element analysis of reinforced concrete beams. ACI J 64(3):152–163

    Google Scholar 

  23. 23.

    Nilson AH (1968) Nonlinear analysis of reinforced concrete by the finite element method. ACI J Proc 65(9):757–766

    Google Scholar 

  24. 24.

    Rashid Y (1968) Ultimate strength analysis of prestressed concrete pressure vessels. Nucl Eng Des 7(4):334–344

    Google Scholar 

  25. 25.

    Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67(1):69–85

    MATH  Google Scholar 

  26. 26.

    de Borst R (1991) Simulation of strain localization: a reappraisal of the cosserat continuum. Eng Comput 8(4):317–332

    Google Scholar 

  27. 27.

    Borst R, Sluys L, Mühlhaus H-B, Pamin J (1993) Fundamental issues in finite element analyses of localization of deformation. Eng Comput 10(2):99–121

    Google Scholar 

  28. 28.

    Cervera M, Chiumenti M (2006) Smeared crack approach: back to the original track. Int J Numer Anal Meth Geomech 30(12):1173–1199

    MATH  Google Scholar 

  29. 29.

    Cervera M, Chiumenti M, Agelet de Saracibar C (2004) Shear band localization via local J2 continuum damage mechanics. Comput Methods Appl Mech Eng 193(9–11):849–880

    MATH  Google Scholar 

  30. 30.

    Cervera M, Chiumenti M (2006) Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique. Comput Methods Appl Mech Eng 196(1–3):304–320

    MATH  Google Scholar 

  31. 31.

    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Comput Methods Appl Mech Eng 199(37–40):2571–2589

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Cervera M, Pelà L, Clemente R, Roca P (2010) A crack-tracking technique for localized damage in quasi-brittle materials. Eng Fract Mech 77(13):2431–2450

    Google Scholar 

  33. 33.

    Oliver J, Huespe a E, Dias IF (2012) Strain localization, strong discontinuities and material fracture. Comput Methods Appl Mech Eng 241–244:323–336

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Jirásek M, Grassl P (2008) Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng Fract Mech 75(8):1921–1943

    Google Scholar 

  35. 35.

    Rabczuk T (2013) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Appl Math 1–61:2012

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Nilson AH (1968) Nonlinear analysis of reinforced concrete by the finite element method. ACI J 65(9):757–766

    Google Scholar 

  37. 37.

    Goodman R, Taylor R, Brekke T (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div 94(3):637–659

    Google Scholar 

  38. 38.

    Rots J (1988) Computational modeling of concrete fracture. PhD thesis, Delft University of Technology

  39. 39.

    Cendón DA, Gálvez JC, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103(3):293–310

    Google Scholar 

  40. 40.

    Gálvez JC, Červenka J, Cendón DA, Saouma V (2002) A discrete crack approach to normal/shear cracking of concrete. Cem Concr Res 32(10):1567–1585

    Google Scholar 

  41. 41.

    Page AW (1979) A model for the in-plane behaviour of masonry and a sensitivity analysis of its critical parameters. In: 5th International brick masonry conference, pp 262–267

  42. 42.

    Lotfi HR, Shing BP (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120(1):63–80

    Google Scholar 

  43. 43.

    Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123(7):660–668

    Google Scholar 

  44. 44.

    Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthq Eng Struct Dyn 26(4):423–439

    Google Scholar 

  45. 45.

    Macorini L, Izzuddin BA (2011) A non-linear interface element for 3D mesoscale analysis of brick-masonry structures. Int J Numer Meth Eng 85(12):1584–1608

    MATH  Google Scholar 

  46. 46.

    Petracca M, Pelà L, Rossi R, Zaghi S, Camata G, Spacone E (2017) Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Constr Build Mater 149:296–314

    Google Scholar 

  47. 47.

    Saouma VE, Zatz IJ (1984) An automated finite element procedure for fatigue crack propagation analyses. Eng Fract Mech 20(2):321–333

    Google Scholar 

  48. 48.

    Ingraffea AR, Saouma V (1985) Numerical modeling of discrete crack propagation in reinforced and plain concrete. In: Fracture mechanics of concrete: structural application and numerical calculation, pp 171–225. Springer, Dordrecht, ISBN: 978-94-009-6152-4

    Google Scholar 

  49. 49.

    Shephard MS, Yehia NAB, Burd GS, Weidner TJ (1985) Automatic crack propagation tracking. Comput Struct 20(1–3):211–223

    Google Scholar 

  50. 50.

    Wawrzynek PA, Ingraffea AR (1987) Interactive finite element analysis of fracture processes: an integrated approach. Theoret Appl Fract Mech 8(2):137–150

    Google Scholar 

  51. 51.

    Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of concrete. Int J Solids Struct 27(9):1139–1153

    Google Scholar 

  52. 52.

    Swenson DV, Ingraffea A (1988) Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications. Comput Mech 3:381–397

    MATH  Google Scholar 

  53. 53.

    Martha L, Wawrzynek P, Ingraffea A (1993) Arbitrary crack representation using solid modeling. Eng Comput 9:63–82

    Google Scholar 

  54. 54.

    Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fracture. Comput Methods Appl Mech Eng 195(4–6):444–461

    MATH  Google Scholar 

  55. 55.

    Feld-Payet S, Chiaruttini V, Besson J, Feyel F (2015) A new marching ridges algorithm for crack path tracking in regularized media. Int J Solids Struct 71:57–69

    Google Scholar 

  56. 56.

    Areias P, Reinoso J, Camanho P, Rabczuk T (2015) A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Comput Mech 56(2):291–315

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Johnson C, Scott R (1981) A finite element method for problems in perfect plasticity using discontinuous trial functions. Nonlinear finite element analysis in structural mechanics. Springer, Berlin, pp 307–324

    Google Scholar 

  58. 58.

    Dvorkin EN, Cuitiño AM, Gioia G (1990) Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions. Int J Numer Meth Eng 30(3):541–564

    MATH  Google Scholar 

  59. 59.

    Klisinski M, Runesson K, Sture S et al (1991) Finite element with inner softening band. J Eng Mech 117(3):575

    Google Scholar 

  60. 60.

    Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12(5):277–296

    MathSciNet  MATH  Google Scholar 

  61. 61.

    Larsson R, Runesson K, Ottosen NS (1993) Discontinuous displacement approximation for capturing plastic localization. Int J Numer Meth Eng 36(12):2087–2105

    MATH  Google Scholar 

  62. 62.

    Armero F, Garikipati K (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int J Solids Struct 33(20–22):2863–2885

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Oliver J (1995) Continuum modelling of strong discontinuities in solid mechanics using damage models. Comput Mech 17(1–2):49–61

    MATH  Google Scholar 

  64. 64.

    Oliver J, Cervera M, Manzoli O (1998) On the use of strain-softening models for the simulation of strong discontinuities in solids. In: de Borst R, Giessen E V D (eds) Material Instabilities in Solids. Wiley, Hoboken, pp 104–123

    Google Scholar 

  65. 65.

    Sancho JM, Planas J, Gálvez JC, Reyes E, Cendón DA (2006) An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete. Fatigue Fracture Eng Mater Struct 29(12):1056–1065

    Google Scholar 

  66. 66.

    Zhang Y, Lackner R, Zeiml M, Ha Mang (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Eng 287:335–366

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Dias-da Costa D, Alfaiate J, Sluys LJ, Júlio E, Júlio E (2009) Towards a generalization of a discrete strong discontinuity approach. Comput Methods Appl Mech Eng 198(47–48):3670–3681

    MathSciNet  MATH  Google Scholar 

  68. 68.

    Jirásek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188(1–3):307–330

    MATH  Google Scholar 

  69. 69.

    Oliver J, Huespe AE, Samaniego E (2003) A study on finite elements for capturing strong discontinuities. Int J Numer Meth Eng 56(14):2135–2161

    MathSciNet  MATH  Google Scholar 

  70. 70.

    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620

    MATH  Google Scholar 

  71. 71.

    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150

    MathSciNet  MATH  Google Scholar 

  72. 72.

    Melenk J, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    MathSciNet  MATH  Google Scholar 

  73. 73.

    Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Meth Eng 40(4):727–758

    MathSciNet  MATH  Google Scholar 

  74. 74.

    Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    MathSciNet  MATH  Google Scholar 

  75. 75.

    Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67(6):868–893

    MATH  Google Scholar 

  76. 76.

    Chau-Dinh T, Zi G, Lee PS, Rabczuk T, Song JH (2012) Phantom-node method for shell models with arbitrary cracks. Comput Struct 92–93:242–246

    Google Scholar 

  77. 77.

    Duarte C, Babuška I, Oden J (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    MathSciNet  Google Scholar 

  78. 78.

    Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the Generalized Finite Element Method. Comput Methods Appl Mech Eng 181(1):43–69

    MathSciNet  MATH  Google Scholar 

  79. 79.

    Strouboulis T, Copps K, Babuska I (1999) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Meth Eng 1–16:2000

    MATH  Google Scholar 

  80. 80.

    Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190(32):4081–4193

    MathSciNet  MATH  Google Scholar 

  81. 81.

    Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Meth Eng 97(4):231–273

    MATH  Google Scholar 

  82. 82.

    Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81:119–129

    Google Scholar 

  83. 83.

    Abdelaziz Y, Hamouine A (2008) A survey of the extended finite element. Comput Struct 86(11–12):1141–1151

    Google Scholar 

  84. 84.

    Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Modell Simul Mater Sci Eng 17:043001

    Google Scholar 

  85. 85.

    Fries T-P, Belytschko T (2010) The extended/generalized finite element method: An overview of the method and its applications. Int J Numer Meth Eng 84(3):253–304

    MathSciNet  MATH  Google Scholar 

  86. 86.

    Sukumar N, Dolbow JE, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196(1–2):189–206

    Google Scholar 

  87. 87.

    Jirásek M, Belytschko TB (2002) Computational resolution of strong discontinuities. In: Fifth world congress on computational mechanics, pp 7–12, Vienna

  88. 88.

    Oliver J, Huespe AE, Sánchez PJ (2006) A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM. Comput Methods Appl Mech Eng 195(37–40):4732–4752

    MathSciNet  MATH  Google Scholar 

  89. 89.

    Dias-Da-Costa D, Alfaiate J, Sluys LJ, Júlio E (2010) A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements. Int J Fract 161(1):97–119

    MATH  Google Scholar 

  90. 90.

    Dumstorff P, Meschke G (2007) Crack propagation criteria in the framework of X-FEM-based structural analyses. Int J Numer Anal Meth Geomech 31(2):239–259

    MATH  Google Scholar 

  91. 91.

    Sancho JM, Planas J, Cendón DA, Reyes E, Gálvez JC (2007) An embedded crack model for finite element analysis of concrete fracture. Eng Fract Mech 74(1–2):75–86

    Google Scholar 

  92. 92.

    Zhang Y, Zhuang X (2018) A softening-healing law for self-healing quasi-brittle materials: analyzing with strong discontinuity embedded approach. Eng Fract Mech 192:290–306

    Google Scholar 

  93. 93.

    Jirásek M, Zimmermann T (2001) Embedded crack model. Part II. Combination with smeared cracks. Int J Numer Meth Eng 50(6):1291–1305

    MATH  Google Scholar 

  94. 94.

    Feist C (2004) A numerical model for cracking of plain concrete based on the strong discontinuity approach. PhD thesis, Universität Innsbruck

  95. 95.

    Samaniego E (2003) Contributions to the continuum modelling of strong discontinuities in two-dimensional solids. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  96. 96.

    Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1-2 SPEC.):69–77

    MATH  Google Scholar 

  97. 97.

    Remmers JJC, de Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56(1):70–92

    MathSciNet  MATH  Google Scholar 

  98. 98.

    Song JH, Belytschko T (2009) Cracking node method for dynamic fracture with finite elements. Int J Numer Meth Eng 77(3):360–385

    MathSciNet  MATH  Google Scholar 

  99. 99.

    Ghorashi SS, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Meth Eng 89(9):1069–1101

    MathSciNet  MATH  Google Scholar 

  100. 100.

    Tambat A, Subbarayan G (2012) Isogeometric enriched field approximations. Comput Methods Appl Mech Eng 245–246:1–21

    MATH  Google Scholar 

  101. 101.

    Cedolin L, Bažant ZP (1980) Effect of finite element choice in blunt crack band analysis. Comput Methods Appl Mech Eng 24(3):305–316

    MATH  Google Scholar 

  102. 102.

    Pietruszczak S, Mroz Z (1980) Numerical analysis of elastic-plastic compression of pillars accounting for material hardening and softening. Int J Rock Mech Min Sci Geomech 17(4):199–207

    Google Scholar 

  103. 103.

    Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Meth Eng 17(3):327–334

    MATH  Google Scholar 

  104. 104.

    Zienkiewicz OC, Huang GC (1990) A note on localization phenomena and adaptive finite-element analysis in forming processes. Commun Appl Numer Methods 6(2):71–76

    Google Scholar 

  105. 105.

    Zienkiewicz OC, Huang M, Pastor M (1995) Localization problems in plasticity using finite elements with adaptive remeshing. Int J Numer Anal Meth Geomech 19(2):127–148

    MATH  Google Scholar 

  106. 106.

    Ortiz M, Leroy Y, Needleman A (1987) A finite element method for localized failure analysis. Comput Methods Appl Mech Eng 61(2):189–214

    MATH  Google Scholar 

  107. 107.

    Belytschko T, Fish J, Engelmann BE (1988) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70(1):59–89

    MATH  Google Scholar 

  108. 108.

    Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng 29(8):1595–1638

    MathSciNet  MATH  Google Scholar 

  109. 109.

    Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Meth Eng 33(7):1413–1449

    MATH  Google Scholar 

  110. 110.

    Cervera M (2008) An orthotropic mesh corrected crack model. Comput Methods Appl Mech Eng 197(17–18):1603–1619

    MATH  Google Scholar 

  111. 111.

    Cervera M (2008) A smeared-embedded mesh-corrected damage model for tensile cracking. Int J Numer Meth Eng 76(July):1930–1954

    MathSciNet  MATH  Google Scholar 

  112. 112.

    Slobbe AT, Hendriks MAN, Rots JG (2014) Smoothing the propagation of smeared cracks. Eng Fract Mech 132:147–168

    Google Scholar 

  113. 113.

    Burnett DJ (2015) A mesh objective algorithm for modeling mode-i cracks using a standard finite element formulation. PhD thesis, University of New Mexico

  114. 114.

    Saloustros S, Pelà L, Cervera M (2015) A crack-tracking technique for localized cohesive-frictional damage. Eng Fract Mech 150:96–114

    Google Scholar 

  115. 115.

    Saloustros S, Pelà L, Cervera M, Roca P (2016) Finite element modelling of internal and multiple localized cracks. Comput Mech 59(2):299–316

    Google Scholar 

  116. 116.

    Saloustros S, Cervera M, Pelà L (2018) Tracking multi-directional intersecting cracks in numerical modelling of masonry shear walls under cyclic loading. Meccanica 53(7):1757–1776

    MathSciNet  Google Scholar 

  117. 117.

    Benedetti L, Cervera M, Chiumenti M (2016) High-fidelity prediction of crack formation in 2D and 3D pullout tests. Comput Struct 172:93–109

    Google Scholar 

  118. 118.

    Fraeijs de Veubeke BM (1965) Displacement and equilibrium models. In: Zienkiewicz OC (ed) Stress analysis. Wiley, London, pp 145–197

    Google Scholar 

  119. 119.

    Pastor M, Quecedo M, Zienkiewicz OC (1997) A mixed displacement-pressure formulation for numerical analysis of plastic failure. Comput Struct 62(1):13–23

    MATH  Google Scholar 

  120. 120.

    Pastor M, Li T, Liu X, Zienkiewicz OC (1999) Stabilized low-order finite elements for failure and localization problems in undrained soils and foundations. Comput Methods Appl Mech Eng 174(1–2):219–234

    MathSciNet  MATH  Google Scholar 

  121. 121.

    Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2002) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191(46):5253–5264

    MathSciNet  MATH  Google Scholar 

  122. 122.

    Cervera M (2003) Viscoelasticity and rate-dependent continuum damage models, Monography N-79. CIMNE, Barcelona, p 76. ISBN: 8495999374.

  123. 123.

    Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2004) A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. Int J Plast 20(8–9):1487–1504

    MATH  Google Scholar 

  124. 124.

    Sánchez PJ, Sonzogni VE, Huespe AE (2007) Study of a stabilized mixed finite element with emphasis on its numerical performance for strain localization problems. Commun Numer Methods Eng 24(4):297–320

    MathSciNet  MATH  Google Scholar 

  125. 125.

    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation. Comput Methods Appl Mech Eng 199(37–40):2559–2570

    MathSciNet  MATH  Google Scholar 

  126. 126.

    Cervera M, Chiumenti M, Benedetti L, Codina R (2015) Mixed stabilized finite element methods in nonlinear solid mechanics. Part III. Comput Methods Appl Mech Eng 285:752–775

    MATH  Google Scholar 

  127. 127.

    Benedetti L, Cervera M, Chiumenti M (2015) Stress-accurate Mixed FEM for soil failure under shallow foundations involving strain localization in plasticity. Comput Geotech 64:32–47

    Google Scholar 

  128. 128.

    Benedetti L (2017) Mixed finite element formulations for strain localization and failure in plasticity. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  129. 129.

    Steinmann P, William K (1991) Localization within the framework of micropolar elasto-plasticity. In: Advances in Continuum Mechanics VI, pp 293–313. Springer

  130. 130.

    Bažant ZP, Lin FB (1988) Nonlocal smeared cracking model for concrete fracture. J Struct Eng 114(11):2493–2510

    Google Scholar 

  131. 131.

    Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Google Scholar 

  132. 132.

    Vardoulakis I (1991) A gradient flow theory of plasticity for granular materials. Acta Mech 87:197–217

    MathSciNet  MATH  Google Scholar 

  133. 133.

    Muhlhaus HB, Aifantis EC (1991) The influence of microstructure-induced gradients on the localization of deformation in viscoplastic materials. Acta Mech 89(1–4):217–231

    MATH  Google Scholar 

  134. 134.

    de Borst R, Mühlhaus H-B (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Meth Eng 35(3):521–539

    MATH  Google Scholar 

  135. 135.

    Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44–45):7723–7746

    MATH  Google Scholar 

  136. 136.

    Bobiński J, Tejchman J (2016) Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixed-mode failure conditions. Int J Numer Anal Meth Geomech 40(3):406–435

    Google Scholar 

  137. 137.

    Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    MathSciNet  MATH  Google Scholar 

  138. 138.

    Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    MathSciNet  MATH  Google Scholar 

  139. 139.

    Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. Number April. Springer, pp 1–164. ISBN: 9781402063947.

  140. 140.

    Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    MathSciNet  MATH  Google Scholar 

  141. 141.

    Ambati M, Gerasimov T, De Lorenzis L (2014) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    MathSciNet  MATH  Google Scholar 

  142. 142.

    de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture. Comput Methods Appl Mech Eng 312:78–94

    MathSciNet  Google Scholar 

  143. 143.

    De Borst R, Verhoosel CV (2016) A discussion on gradient damage and phase-field models for brittle fracture. In: Advanced structured materials, vol 60, pp 263–277. Springer, Singapore. ISBN: 978-981-10-0958-7

  144. 144.

    Sluys LJ, de Borst R (1992) Wave propagation and localization in a rate-dependent cracked medium-model formulation and one-dimensional examples. Int J Solids Struct 29(23):2945–2958

    Google Scholar 

  145. 145.

    Comi C, Mariani S, Perego U (2007) An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int J Numer Anal Meth Geomech 31(2):213–238

    MATH  Google Scholar 

  146. 146.

    Wells GN, Sluys LJ, de Borst R (2002) Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. Int J Numer Meth Eng 53(5):1235–1256

    Google Scholar 

  147. 147.

    Simone A, Wells GN, Sluys LJ (2003) From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput Methods Appl Mech Eng 192(41–42):4581–4607

    MATH  Google Scholar 

  148. 148.

    Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58(12):1873–1905

    MATH  Google Scholar 

  149. 149.

    Oliver J, Dias IF, Huespe AE (2014) Crack-path field and strain-injection techniques in computational modeling of propagating material failure. Comput Methods Appl Mech Eng 274:289–348

    MathSciNet  MATH  Google Scholar 

  150. 150.

    Lloberas-Valls O, Huespe AE, Oliver J, Dias IF (2016) Strain injection techniques in dynamic fracture modeling. Comput Methods Appl Mech Eng 308:499–534

    MathSciNet  Google Scholar 

  151. 151.

    Ingraffea AR, Heuze F (1980) Finite element models for rock fracture mechanics. Int J Numer Anal Meth Geomech 4(1):25–43

    MATH  Google Scholar 

  152. 152.

    Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 2: Numerical simulation. Int J Numer Meth Eng 39(21):3601–3623

    Google Scholar 

  153. 153.

    Alfaiate J, Wells GN, Sluys LJ (2002) On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture. Eng Fract Mech 69(6):661–686

    Google Scholar 

  154. 154.

    Linder C, Armero F (2009) Finite elements with embedded branching. Finite Elem Anal Des 45(4):280–293

    MathSciNet  MATH  Google Scholar 

  155. 155.

    Manzoli OL (2011) Predição de propagação de fissuras através de modelos constitutivos locais e técnica de construção progressiva da trajetória de descontinuidade. Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria 27(3):180–188

    MathSciNet  Google Scholar 

  156. 156.

    Wu JY, Li FB, Xu SL (2015) Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids. Comput Methods Appl Mech Eng 285:346–378

    MathSciNet  MATH  Google Scholar 

  157. 157.

    Clemente R (2006) Análysis estructural de edificios históricos mediante modelos localizados de fisuración. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  158. 158.

    Clemente R, Cervera M, Roca P (2008) Localized damage model applied to the analysis of masonry structures. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 24(1):67–91

    MathSciNet  Google Scholar 

  159. 159.

    Pelà L (2009) Continuum damage model for nonlinear analysis of masonry structures. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  160. 160.

    Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967

    Google Scholar 

  161. 161.

    Pelà L, Cervera M, Oller S, Chiumenti M (2014) A localized mapped damage model for orthotropic materials. Eng Fract Mech 124–125:196–216

    Google Scholar 

  162. 162.

    Slobbe AT (2015) Propagation and band width of smeared cracks. PhD thesis, Delft University of Technology

  163. 163.

    Areias PMA, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Meth Eng 63(5):760–788

    MATH  Google Scholar 

  164. 164.

    Mergheim J, Kuhl E, Steinmann P (2006) Towards the algorithmic treatment of 3D strong discontinuities. Commun Numer Methods Eng 23(2):97–108

    MathSciNet  MATH  Google Scholar 

  165. 165.

    Jäger P, Steinmann P, Kuhl E (2008) On local tracking algorithms for the simulation of three-dimensional discontinuities. Comput Mech 42(3):395–406

    MATH  Google Scholar 

  166. 166.

    Gasser TC, Holzapfel GA (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comput Methods Appl Mech Eng 194(25–26):2859–2896

    MATH  Google Scholar 

  167. 167.

    Gasser TC, Holzapfel GA (2006) 3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths. Comput Methods Appl Mech Eng 195(37–40):5198–5219

    MathSciNet  MATH  Google Scholar 

  168. 168.

    Oliver J, Huespe aE, Samaniego E, Chaves EWV (2004) Continuum approach to the numerical simulation of material failure in concrete. Int J Numer Anal Meth Geomech 28(78):609–632

    MATH  Google Scholar 

  169. 169.

    Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193(30–32):3195–3220

    MathSciNet  MATH  Google Scholar 

  170. 170.

    Beese S, Loehnert S, Wriggers P (2016) Modeling of Fracture in Polycrystalline Materials. Advances in Discretization Methods. Springer, Cham, pp 79–102

    Google Scholar 

  171. 171.

    Huespe AE, Needleman A, Oliver J, Sánchez PJ (2009) A finite thickness band method for ductile fracture analysis. Int J Plast 25(12):2349–2365

    Google Scholar 

  172. 172.

    Huespe AE, Needleman A, Oliver J, Sánchez PJ (2012) A finite strain, finite band method for modeling ductile fracture. Int J Plast 28(1):53–69

    Google Scholar 

  173. 173.

    Riccardi F, Kishta E, Richard B (2017) A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials. Eng Fract Mech 170:44–58

    Google Scholar 

  174. 174.

    Chaves EWV (2006) Tracking 3D Crack Path. In: International conference on mathematical and statistical modeling in honor of enrique castillo. Ciudad Real, Spain

  175. 175.

    Jäger P, Steinmann P, Kuhl E (2009) Towards the treatment of boundary conditions for global crack path tracking in three-dimensional brittle fracture. Comput Mech 45(1):91–107

    MathSciNet  MATH  Google Scholar 

  176. 176.

    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  177. 177.

    Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Meth Eng 50(4):993–1013

    MATH  Google Scholar 

  178. 178.

    Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng 51(8):943–960

    MATH  Google Scholar 

  179. 179.

    Sethian JA, Sethian JA (1999) Level set methods and fast marching methods : evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, p 378. ISBN: 9780521645577

  180. 180.

    Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. Int J Numer Meth Eng 53(11):2569–2586

    MATH  Google Scholar 

  181. 181.

    Stolarska M, Chopp DL (2003) Modeling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method. Int J Eng Sci 41(20):2381–2410

    MATH  Google Scholar 

  182. 182.

    Colombo D, Massin P (2011) Fast and robust level set update for 3D non-planar X-FEM crack propagation modelling. Comput Methods Appl Mech Eng 200(25–28):2160–2180

    MATH  Google Scholar 

  183. 183.

    Ventura G, Budyn E, Belytschko T (2003) Vector level sets for description of propagating cracks in finite elements. Int J Numer Meth Eng 58(10):1571–1592

    MATH  Google Scholar 

  184. 184.

    Fries T-P, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description. Int J Numer Meth Eng 89(12):1527–1558

    MathSciNet  MATH  Google Scholar 

  185. 185.

    Colombo D (2012) An implicit geometrical approach to level sets update for 3D non planar X-FEM crack propagation. Comput Methods Appl Mech Eng 237–240:39–50

    MathSciNet  MATH  Google Scholar 

  186. 186.

    Sukumar N, Prévost JH (2003) Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation. Int J Solids Struct 40(26):7513–7537

    MATH  Google Scholar 

  187. 187.

    Sukumar N, Chopp DL, Béchet E, Moës N (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Meth Eng 76(5):727–748

    MathSciNet  MATH  Google Scholar 

  188. 188.

    Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng Fract Mech 77(14):2840–2863

    Google Scholar 

  189. 189.

    Duflot M (2007) A study of the representation of cracks with level sets. Int J Numer Meth Eng 70(11):1261–1302

    MathSciNet  MATH  Google Scholar 

  190. 190.

    Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation using the XFEM applied to a gas turbine blade. Comput Mech 53(1):173–188

    MathSciNet  MATH  Google Scholar 

  191. 191.

    Sadeghirad A, Chopp DL, Ren X, Fang E, Lua J (2016) A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Eng Fract Mech 160:1–14

    Google Scholar 

  192. 192.

    Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-Part I: Mechanical model. Int J Numer Meth Eng 53(11):2549–2568

    MATH  Google Scholar 

  193. 193.

    Bordas S, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201

    Google Scholar 

  194. 194.

    Paul B, Ndeffo M, Massin P, Moës N (2017) An integration technique for 3D curved cracks and branched discontinuities within the extended Finite Element Method. Finite Elem Anal Des 123(2016):19–50

    MathSciNet  Google Scholar 

  195. 195.

    Agathos K, Ventura G, Chatzi E, Bordas SPA (2018) Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes. Int J Numer Meth Eng 113(2):252–276

    MathSciNet  Google Scholar 

  196. 196.

    Haghighat E, Pietruszczak S (2015) On modeling of discrete propagation of localized damage in cohesive-frictional materials. Int J Numer Anal Meth Geomech 39(16):1774–1790

    Google Scholar 

  197. 197.

    Feist C, Hofstetter G (2006) An embedded strong discontinuity model for cracking of plain concrete. Comput Methods Appl Mech Eng 195(52):7115–7138

    MathSciNet  MATH  Google Scholar 

  198. 198.

    Feist C, Hofstetter G (2007) Three-dimensional fracture simulations based on the SDA. Int J Numer Anal Meth Geomech 31(2):189–212

    MATH  Google Scholar 

  199. 199.

    Armero F, Kim J (2012) Three-dimensional finite elements with embedded strong discontinuities to model material failure in the infinitesimal range. Int J Numer Meth Eng 91(12):1291–1330

    MathSciNet  Google Scholar 

  200. 200.

    Dias IF, Oliver J, Lemos JV, Lloberas-Valls O (2016) Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques. Eng Fract Mech 154:288–310

    Google Scholar 

  201. 201.

    Dias IF (2012) Crack path field and strain injection techniques in numerical modeling of propagating material failure. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  202. 202.

    Dias IF, Oliver J, Huespe A (2012) Strain injection techniques in numerical modeling of propagating material failure. Monography CIMNE, 134

  203. 203.

    Oliver J, Caicedo M, Roubin E, Huespe A, Hernández J (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427

    MathSciNet  MATH  Google Scholar 

  204. 204.

    Tamayo-Mas E, Rodríguez-Ferran A (2015) A medial-axis-based model for propagating cracks in a regularised bulk. Int J Numer Meth Eng 101(7):489–520

    MATH  Google Scholar 

  205. 205.

    Tamayo-Mas E (2013) Continuous-discontinuous modelling for quasi-brittle failure : propagating cracks in a regularised bulk. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  206. 206.

    Tamayo-Mas E, Rodríguez-Ferran A (2014) A new continuous-discontinuous damage model: Cohesive cracks via an accurate energy-transfer process. Theoret Appl Fract Mech 69:90–101

    Google Scholar 

  207. 207.

    Bouchard P, Bay F, Chastel Y (2003) Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng 192(35–36):3887–3908

    MATH  Google Scholar 

  208. 208.

    Unger JF, Eckardt S, Könke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng 196:4087–4100

    MATH  Google Scholar 

  209. 209.

    Erdogan F, Sih G (1963) On the crack extension in plates under loading and transverse shear. J Fluids Eng 85(4):519–527

    Google Scholar 

  210. 210.

    Schöllmann M, Richard HA, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fract 117(2):129–141

    Google Scholar 

  211. 211.

    Sih G (1973) Some basic problems in fracture mechanics and new concepts. Eng Fract Mech 5(2):365–377

    MathSciNet  Google Scholar 

  212. 212.

    Sih GCG (1974) Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 10(3):305–321

    Google Scholar 

  213. 213.

    Sih GC, Macdonald B (1974) Fracture mechanics applied to engineering problems-strain energy density fracture criterion. Eng Fract Mech 6(2):361–386

    Google Scholar 

  214. 214.

    Ingraffea AR, Gerstle W, Gergely P, Saoume V (1984) Fracture mechanics of bond in reinforced concrete. J Struct Eng 110(4):871–890

    Google Scholar 

  215. 215.

    Byskov E (1970) The calculation of stress intensity factors using the finite element method with cracked elements. Int J FractMech 6(2):159–167

    Google Scholar 

  216. 216.

    Tracey D (1971) Finite elements for determination of crack tip elastic stress intensity factors. Eng Fract Mech 3(3):255–265

    Google Scholar 

  217. 217.

    Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Eng 11(1):85–98

    MathSciNet  MATH  Google Scholar 

  218. 218.

    Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Meth Eng 9(3):495–507

    MATH  Google Scholar 

  219. 219.

    Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Meth Eng 10(1):25–37

    MATH  Google Scholar 

  220. 220.

    Lim IL, Johnston IW, Choi SK (1996) A finite element code for fracture propagation analysis within elasto-plastic continuum. Eng Fract Mech 53(2):193–211

    Google Scholar 

  221. 221.

    Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Google Scholar 

  222. 222.

    Zi G, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Numer Meth Eng 57(15):2221–2240

    MATH  Google Scholar 

  223. 223.

    Natarajan S, Mahapatra R, Bordas S (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Meth Eng 83:269–294

    MathSciNet  MATH  Google Scholar 

  224. 224.

    Vu-Bac N, Nguyen-Xuan H, Chen L, Lee CK, Zi G, Zhuang X, Liu GR, Rabczuk T (2013) A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. J Appl Math 1:2013

    MathSciNet  MATH  Google Scholar 

  225. 225.

    Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc A Math Phys Eng Sci 221:163–198

    Google Scholar 

  226. 226.

    Griffith A (1924) The theory of rupture. In: Biereno C, Burgers J (eds) First international congress of applied mechanic, pp 54–63. Delft

  227. 227.

    Nuismer RJ (1975) An energy release rate criterion for mixed mode fracture. Int J Fract 11(2):245–250

    Google Scholar 

  228. 228.

    Wu C-H (1978) Fracture under combined loads by maximum-energy-release-rate criterion. Trans ASME J Appl Mech 45(3):553–558

    MATH  Google Scholar 

  229. 229.

    Xie M, Gerstle WH, Rahulkumar P (1995) Energy-based automatic mixed-mode crack-propagation modeling. J Eng Mech 121(8):914–923

    Google Scholar 

  230. 230.

    Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput Methods Appl Mech Eng 196(21–24):2338–2357

    MATH  Google Scholar 

  231. 231.

    Wells GN, Sluys LJ (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Meth Eng 50(12):2667–2682

    MATH  Google Scholar 

  232. 232.

    Mergheim J, Kuhl E, Steinmann P (2005) A finite element method for the computational modelling of cohesive cracks. Int J Numer Meth Eng 63(2):276–289

    MATH  Google Scholar 

  233. 233.

    Verhoosel CV, Remmers JJC, Gutiérrez MA (2010) A partition of unity based multiscale approach for modelling fracture in piezoelectric ceramics. Int J Numer Meth Eng 82(8):966–994

    MATH  Google Scholar 

  234. 234.

    Gálvez JC, Planas J, Sancho JM, Reyes E, Cendón D a, Casati MJ (2013) An embedded cohesive crack model for finite element analysis of quasi-brittle materials. Eng Fract Mech 109:369–386

    Google Scholar 

  235. 235.

    Alfaiate J, Pires EB, Martins JAC (1997) A finite element analysis of non-prescribed creck propation in concrete. Comput Struct 63(I):17–26

    MATH  Google Scholar 

  236. 236.

    Mariani S, Perego U (2003) Extended finite element method for quasi-brittle fracture. Int J Numer Meth Eng 58(1):103–126

    MathSciNet  MATH  Google Scholar 

  237. 237.

    Hill R (1962) Acceleration waves in solids. J Mech Phys Solids 10(1):1–16

    MathSciNet  MATH  Google Scholar 

  238. 238.

    Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Google Scholar 

  239. 239.

    Rice JR, Rudnicki JW (1980) A note on some features of the theory of localization of deformation. Int J Solids Struct 16(7):597–605

    MathSciNet  MATH  Google Scholar 

  240. 240.

    Ottosen NS, Runesson K (1991) Discontinuous bifurcations in a nonassociated Mohr material. Mech Mater 12(3–4):255–265

    Google Scholar 

  241. 241.

    Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Int J Numer Meth Eng 39(21):3575–3600

    MATH  Google Scholar 

  242. 242.

    Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (2002) Localisation issues in local and nonlocal continuum approaches to fracture. Eur J Mech A/Solids 21(2):175–189

    MathSciNet  MATH  Google Scholar 

  243. 243.

    Runesson K, Ottosen NSaabye, Dunja P (1991) Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain. Int J Plast 7(1–2):99–121

    MATH  Google Scholar 

  244. 244.

    Benallal A, Comi C (1996) Localization analysis via a geometrical method. Int J Solids Struct 33(1):99–119

    MathSciNet  MATH  Google Scholar 

  245. 245.

    Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15(3):319–351

    MATH  Google Scholar 

  246. 246.

    Mosler J (2005) Numerical analyses of discontinuous material bifurcation: strong and weak discontinuities. Comput Methods Appl Mech Eng 194(9–11):979–1000

    MathSciNet  MATH  Google Scholar 

  247. 247.

    Oliver J, Huespe AE, Cante JC, Díaz G (2010) On the numerical resolution of the discontinuous material bifurcation problem. Int J Numer Meth Eng 83(6):786–804

    MathSciNet  MATH  Google Scholar 

  248. 248.

    Wu J-Y, Cervera M (2015) On the equivalence between traction- and stress-based approaches for the modeling of localized failure in solids. J Mech Phys Solids 82:137–163

    MathSciNet  Google Scholar 

  249. 249.

    Oliver J, Linero DL, Huespe AE, Manzoli OL (2008) Two-dimensional modeling of material failure in reinforced concrete by means of a continuum strong discontinuity approach. Comput Methods Appl Mech Eng 197(5):332–348

    MATH  Google Scholar 

  250. 250.

    Cervera M, Chiumenti M, Di Capua D (2012) Benchmarking on bifurcation and localization in J2 plasticity for plane stress and plane strain conditions. Comput Methods Appl Mech Eng 241–244:206–224

    MATH  Google Scholar 

  251. 251.

    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    MATH  Google Scholar 

  252. 252.

    Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30):2777–2799

    MathSciNet  MATH  Google Scholar 

  253. 253.

    Weed DA, Foster CD, Motamedi MH (2017) A robust numerical framework for simulating localized failure and fracture propagation in frictional materials. Acta Geotech 12(2):253–275

    Google Scholar 

  254. 254.

    Armero F, Linder C (2009) Numerical simulation of dynamic fracture using finite elements with embedded discontinuities. Int J Fract 160(2):119–141

    MATH  Google Scholar 

  255. 255.

    Daux C, Moes N (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

  256. 256.

    Duarte CA, Reno LG, Simone A, Van Der Giessen E (2008) Hp generalized finite elements for three-dimensional branched cracks and polycrystals. AIP Conf Proc 973:39–44

  257. 257.

    Saloustros S, Pelà L, Cervera M, Roca P (2018) An enhanced finite element macro-model for the realistic simulation of localized cracks in masonry structures: a large-scale application. Int J Archit Herit 12(3):432–447

    Google Scholar 

  258. 258.

    COMET (2016) Coupled mechanical and thermal analysis. http://www.cimne.com/comet/

  259. 259.

    GiD (2014) The personal pre and post-processor. http://www.gidhome.com/

  260. 260.

    Saloustros S (2017) Tracking localized cracks in the computational analysis of masonry structures. PhD thesis, Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  261. 261.

    Lourenço PB (1996) Computational strategies for masonry structures. PhD thesis, Delft University of Technology

  262. 262.

    Fouchal F, Lebon F, Titeux I (2009) Contribution to the modelling of interfaces in masonry construction. Constr Build Mater 23(6):2428–2441

    Google Scholar 

  263. 263.

    Zhang Y (2013) Simulation methods for durability assessment of concrete structures: multifield framework and strong discontinuity embedded approach. PhD thesis, Vienna University of Technology

  264. 264.

    Reyes E, Gálvez JC, Casati MJ, Cendón DA, Sancho JM, Planas J (2009) An embedded cohesive crack model for finite element analysis of brickwork masonry fracture. Eng Fract Mech 76(12):1930–1944

    Google Scholar 

  265. 265.

    ASTM:C496/C496M (2011) Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM Int 336: 1–5

  266. 266.

    ASTM:D3967-08 (2008) Standard test method for splitting tensile strength of intact rock core specimens. ASTM Int

  267. 267.

    Malárics V (2010) Ermittlung der Betonzugfestigkeit aus dem Spaltzugversuch an zylindrischen Betonproben. PhD thesis, Karlsruher Institut für Technologie

  268. 268.

    Malárics V, Müller HS (2010) Evaluation of the splitting tension test for concrete from a fracture mechanical point of view the. In: Proceedings of the fracture mechanics of concrete and concrete structures—assessment, durability, monitoring and retrofitting of concrete structures, pp 709–716

  269. 269.

    Nakamura H, Takeshi H (2000) Compressive fracture energy and fracture zone length of concrete. US–Japan seminar on post-peak behavior of reinforced concrete structures subjected to seismic loads: recent advances and challenges on analysis and design, pp 471–487. Tokyo, Japan

  270. 270.

    Hendriks M, Boer A, Belletti B (2017) Guidelines for nonlinear finite element analysis of concrete structures. Technical report, Rijkswaterstaat Centre for Infrastructure

  271. 271.

    Augenti N, Parisi F, Prota A, Manfredi G (2011) In-plane lateral response of a full-scale masonry subassemblage with and without an inorganic matrix-grid strengthening system. J Compos Const 15(4):578–590

    Google Scholar 

  272. 272.

    Saloustros S, Pelà L, Cervera M, Roca P (2010) A macro-modelling finite element technique for the realistic simulation of cracking in masonry structures. Struct Anal Hist Const Anamnesis Diagnosis Therapy Controls 284–290:2016

    Google Scholar 

  273. 273.

    Roca P, Cervera M, Pelà L, Clemente R, Chiumenti M (2013) Continuum FE models for the analysis of Mallorca Cathedral. Eng Struct 46:653–670

    Google Scholar 

  274. 274.

    Petromichelakis Y, Saloustros S, Pelà L (2014) Seismic assessment of historical masonry construction including uncertainty. In: Cunha Á, Caetano E, Ribeiro P, Papadimitriou C, Moutinho C, Magalhães F (eds) 9th International conference on structural dynamics, EURODYN 2014, pp 297–304, Porto, Portugal. ISBN: 9789727521654

  275. 275.

    Saloustros S, Pelà L, Cervera M, Roca P, D’Ayala DF (2016) Effect of pier-spandrel geometry on the in-plane response of masonry structures. In: Modena C, da Porto F, Valluzzi M (eds) 16th International brick and block masonry conference, pp 339–346, Padova, Italy, CRC Press. ISBN: 9781138029996

    Google Scholar 

  276. 276.

    Anthoine A, Magenes G, Magonette G (1994) Shear compression testing and analysis of brick masonry walls. In: 10th European conference on earthquake engineering, pp 1657–1662, Vienna

  277. 277.

    Anthoine A (1994) Research of unreinforced masonry at the joint research center of the European Commision. In: Abrams DP, Calvi GM (eds) U.S.–Italy workshop on guidelines for seismic evaluation and rehabilitation of unreinforced masonry buildings, Pavia, National Center for Earthquake Engineering Research

  278. 278.

    Binda L, Roberti GMirabella, Tiraboschi C, Abbaneo S (1994) Measuring Masonry Material Properties. U.S.–Italy workshop on guidelines for seismic evaluation and rehabilitation of unreinforced masonry buildings, pp 326–347

  279. 279.

    Magenes G, Calvi GM (1997) In-plane seismic response of brick masonry walls. ISSN 0098-8847

  280. 280.

    Brencich A, Gambarotta L, Lagomarsino S (2000) Catania project: research on the seismic response of two masonry buildings. In: Chapter 6: Analysis of a masonry building in Via Martoglio. CNR Gruppo Nazionale per la Difesa dei Terremoti, pp 107–143

  281. 281.

    Milani G, Lourenço P, Tralli A (2006) Homogenised limit analysis of masonry walls, Part II: structural examples. Comput Struct 84(3–4):181–195

    Google Scholar 

  282. 282.

    Addessi D, Liberatore D, Masiani R (2015) Force-based beam finite element (FE) for the Pushover analysis of masonry buildings. Int J Archit Herit 9(3):231–243

    Google Scholar 

  283. 283.

    Italian Ministry of Infrastructure and Transport (2009) Circolare 2 febbraio 2009, n. 617, Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzion” di cui al decreto ministeriale 14 gennaio 2008. Rome, Italy

  284. 284.

    Lemaitre J, Chaboche JL (1978) Aspect Phenomenologique de la Rupture par Endommagement. Journal de Mécanique Appliquée 2(3):317–365

    Google Scholar 

  285. 285.

    Ju JW (1989) On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int J Solids Struct 25(7):803–833

    MATH  Google Scholar 

  286. 286.

    Faria R, Oliver J (1993) A Rate Dependent Plastic-Damage Constitutive Model for Large Scale Computations in Concrete Structures, Monography N-17. CIMNE, ISBN: p 9788578110796

  287. 287.

    Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2016) Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput Mech 57(2):257–276

    MathSciNet  MATH  Google Scholar 

  288. 288.

    Petracca M (2016) Computational multiscale analysis of masonry structures. PhD thesis, University G. d’Annunzio of Chieti- Pescara (UNICH) - Universitat Politècnica de Catalunya (UPC-BarcelonaTech)

  289. 289.

    Oliver J, Cervera M, Oller S, Lubliner J (1990) Isotropic damage models and smeared crack analysis of concrete. In: SCI-C computer aided analysis and design of concrete structures, pp 945–957

  290. 290.

    Oliver J (1989) A consistent characteristic length for smeared cracking models. Int J Numer Meth Eng 28(2):461–474

    MATH  Google Scholar 

  291. 291.

    Slobbe A, Hendriks M, Rots J (2013) Systematic assessment of directional mesh bias with periodic boundary conditions: applied to the crack band model. Eng Fract Mech 109:186–208

    Google Scholar 

Download references

Acknowledgements

This research has received the financial support from the MINECO (Ministerio de Economia y Competitividad of the Spanish Government) and the ERDF (European Regional Development Fund) through the MULTIMAS project (Multiscale techniques for the experimental and numerical analysis of the reliability of masonry structures, ref. num. BIA2015-63882-P) and the EACY project (Enhanced accuracy computational and experimental framework for strain localization and failure mechanisms, ref. MAT2013-48624-C2-1-P).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Savvas Saloustros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: Continuum Damage Mechanics Model

Appendix: Continuum Damage Mechanics Model

Constitutive Equation

The constitutive model used in this work is a continuum damage model that distinguishes between tensile (\(d^+\)) and compressive damage (\(d^-\)). The constitutive equation is

$$\begin{aligned} {\varvec{\sigma }}= (1-d^+) \, {\bar{\varvec{\sigma }}}^{+}+ (1-d^-) \, {\bar{\varvec{\sigma}}}^{-}. \end{aligned}$$
(25)

The effective stresses (\(\bar{\varvec{\sigma }}\)) are computed adopting a strain equivalent hypothesis [284, 285] as

$$\begin{aligned} \bar{\varvec{\sigma }}&= \varvec{C_0}:\varvec{\varepsilon }^e \end{aligned}$$
(26)
$$\begin{aligned} \varvec{\varepsilon }^e&= \varvec{\varepsilon }- \varvec{\varepsilon }^i \end{aligned}$$
(27)

where \(\varvec{C_0}\) is the 4th order isotropic elastic constitutive tensor, while \(\varvec{\varepsilon }\), \(\varvec{\varepsilon }^e\) and \(\varvec{\varepsilon }^i\) are second order tensors representing the total, the elastic and the irreversible strains, respectively. The split of the effective stress tensor into a positive (\(\varvec{\bar{\sigma }}^{+}\)) and a negative part (\(\varvec{\bar{\sigma }}^{-}\)) is performed according to Faria et al. [13, 286] as

$$\begin{aligned} \bar{\varvec{\sigma }}^{+}&= \sum _{j=1}^{3} \langle \bar{\sigma }_j \rangle \, {\mathbf {p_j}} \otimes {\mathbf {p_j}} \end{aligned}$$
(28)
$$\begin{aligned} \varvec{\bar{\sigma }}^{-}&= \bar{\varvec{\sigma }}- \varvec{\bar{\sigma }}^{+}. \end{aligned}$$
(29)

In the above equations, \(\bar{\sigma }_j\) is the principal effective stress corresponding to the eigenvector \({\mathbf {p_j}}\) of the effective stress tensor and the symbols \(\langle \cdot \rangle\) are the Macaulay brackets (\(\langle x \rangle =x\), if \(x \ge 0\) ,\(\langle x \rangle =0\), if \(x < 0\)).

Damage Criteria

Loading, unloading and reloading conditions are distinguished with the use of two scalar positive quantities, one for tension \(\tau ^+\) and a second for compression \(\tau ^-\), termed as equivalent stresses. Their values are defined according to the following functions proposed by Petracca et al. [287, 288]

$$\begin{aligned} \tau ^+&= H_0\left[ \bar{\sigma }_{max} \right] \left[ \frac{1}{1-a} \left( a \bar{I_1} + \sqrt{3\bar{J_2}} + b \langle \bar{\sigma }_{max} \rangle \right) \frac{f^+}{f^-}\right] \end{aligned}$$
(30)
$$\begin{aligned} \tau ^-&= H_0\left[ -\bar{\sigma }_{min} \right] \left[ \frac{1}{1-a} \left( a \bar{I_1} + \sqrt{3 \bar{J_2}} + \kappa _1 b \langle \bar{\sigma }_{max} \rangle \right) \right] \end{aligned}$$
(31)
$$\begin{aligned} a&= \frac{\left( f^-_{b}/f^- \right) -1 }{2 \left( f^-_{b}/f^- \right) -1} \end{aligned}$$
(32)
$$\begin{aligned} b&= \left( 1 - a \right) f^-/f^+ - \left( 1 + a \right) . \end{aligned}$$
(33)

In the above, \(f^+\) and \(f^-\) stand for the tensile and compressive uniaxial strengths, respectively, and \(f_{b}^-\) for the biaxial compressive strength. \(\bar{I_1}\) is the first invariant of the effective stress tensor and \(\bar{J_2}\) the second invariant of the deviatoric effective stress tensor. The \(\kappa _1\) variable in Eq. (31) was introduced in [287, 288] as a way to control the shape of the compressive damage surface in the shear quadrants, and through this the dilatant behaviour of the material under shear stress states. Its value varies between 0 (i.e. the Drucker-Prager criterion) and 1 (i.e. the criterion proposed by Lubliner et al. [15]). Finally, \(\bar{\sigma }_{max}\) and \(\bar{\sigma }_{min}\) designate the maximum and minimum principal effective stresses respectively, whereas \(H_0\) is the specific Heaviside function (\(H_0[x] = 1 \, \text {for}\, x > 0 \, \text {and} \, H_0[x] =0 \, \text {for}\, x \le 0\)).

The evolution of tensile and compressive damage is controlled with two damage criteria (\(\varPhi ^\pm\)), which are defined as

$$\begin{aligned} \varPhi ^\pm (r^\pm ,\tau ^\pm ) = \tau ^\pm - r^\pm \le 0. \end{aligned}$$
(34)

The stress thresholds (\(r^\pm\)) are internal stress-like variables representing the current damage threshold. Their initial values are equal to the uniaxial tensile and compressive strength at the moment of damage initiation \(r_0^\pm = f^\pm\). After damage is triggered, both thresholds become equal to the maximum attained values by the equivalent stresses and can be explicitly computed for a generic time instant t as

$$\begin{aligned} r^\pm _t = \max \left[ r_0^\pm , \max \limits _{i \, \in \, (0,t)} \left( \tau ^\pm _i \right) \right] . \end{aligned}$$
(35)

Irreversible Strains

The irreversible strains are considered as an internal variable with the following evolution law proposed in [116]

$$\begin{aligned} \Delta \varvec{\varepsilon }^i_{n+1}= \beta \frac{r(\tilde{\bar{\varvec{\sigma }}}_{n+1})-r_n}{r_{n+1}} \varvec{\varepsilon }^e_{{n+1}}. \end{aligned}$$
(36)

where \(\tilde{\bar{\varvec{\sigma }}}_{n+1}\) are the trial effective stresses and \(r(\tilde{\bar{\varvec{\sigma }}}_{n+1})\) the equivalent stress threshold computed as

$$\begin{aligned} \tilde{\bar{\varvec{\sigma }}}_{n+1}&= (\bar{\varvec{\sigma }}|_{\Delta \varvec{\varepsilon }^i= 0})_{n+1}= \bar{\varvec{\sigma }}_n+ \varvec{C_0}:\Delta \varvec{\varepsilon }_{n+1} \end{aligned}$$
(37)
$$\begin{aligned} r(\tilde{\bar{\varvec{\sigma }}}_{n+1})&= \max \left[ r_n, \tau (\tilde{\bar{\varvec{\sigma }}}_{n+1}) \right] . \end{aligned}$$
(38)

The parameter \(\beta = [0,1]\) is used to determine the magnitude of the incremental irreversible strains. For \(\beta = 0\) no increment of irreversible strains is considered, while for \(\beta = 1\) the total strain increment is irreversible. Numerically, the effect of the irreversible strains is considered through the update of the effective stresses according to the following expressions (see [116, 260])

$$\begin{aligned} \bar{\varvec{\sigma }}_{n+1}&= \lambda \, \tilde{\bar{\varvec{\sigma }}}_{n+1} \end{aligned}$$
(39)
$$\begin{aligned} \lambda&= 1 - \beta \left( 1 - \frac{r_n}{r(\tilde{\bar{\varvec{\sigma }}}_{n+1})} \right) . \end{aligned}$$
(40)

Damage Variables

The damage variables are defined according to the exponential softening law proposed in [289]

$$\begin{aligned} d^\pm = 1 - \frac{r_0^\pm}{r^\pm} \exp \Bigg \{ 2 H_d^\pm \left( \frac{r_0^\pm - r^\pm}{r_0^\pm} \right) \Bigg \} \qquad r^\pm \ge r_0^\pm. \end{aligned}$$
(41)

Tension and compression evolution laws consider the positive \(G_f^+\) and negative \(G_f^-\) fracture energies, respectively, as well as the characteristic finite element width \(l_{dis}\) through the corresponding discrete softening parameter \(H_d^\pm\) ensuring mesh-size independent energy dissipation according to the crack-band theory [5]. For the case of tension this is

$$\begin{aligned} H_d^+ = \frac{l_{dis}}{l_{mat}^+ - l_{dis}} \end{aligned}$$
(42)

For the case of compressive damage, the expression proposed in [116, 260] is used to compute the discrete softening parameter \({H}_d^-\)

$$\begin{aligned} H_d^- = \frac{1}{1-\beta } \left( \frac{l_{dis}}{l_{mat}^- - l_{dis}}\right) \end{aligned}$$
(43)

The above definition is consistent with the crack band-width approach yielding objective results for different values of \(\beta\) by considering the contributions to the dissipated energy due to the evolutions of the irreversible strains and the compressive damage. In the above, the material characteristic length \(l_{mat}^\pm\) for tension and compression is

$$\begin{aligned} l_{mat}^\pm = \frac{2E G_f^\pm }{{(f^\pm )}^2}. \end{aligned}$$
(44)

The current work considers the use of constant strain triangles for which the characteristic finite element length has been considered as \(l_{dis}=\sqrt{2A_{fe}}\), with \(A_{fe}\) representing the area of the finite element. This is a standard procedure that can be refined to consider the crack direction and the finite element size according to references [110, 290, 291].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saloustros, S., Cervera, M. & Pelà, L. Challenges, Tools and Applications of Tracking Algorithms in the Numerical Modelling of Cracks in Concrete and Masonry Structures. Arch Computat Methods Eng 26, 961–1005 (2019). https://doi.org/10.1007/s11831-018-9274-3

Download citation