Skip to main content
Log in

An Overview of Multiresolution Analysis for Nondestructive Evaluation of Pavement Surface Drainage

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Network level drainage assessment of the pavement surface plays a crucial role in controlling and decreasing the accident rate. Hydroplaning is one of the major causes of accidents in wet weather conditions and is the consequence of low drainage quality of pavement surfaces. Since no automated system currently exists for the pavement drainage evaluation, this work was conducted to present a new system to assess drainage process quality. For this aim, the saturation situation was simulated for pavement surface and photo acquisition was carried out on the drainage process of pavement surface after saturation. Finally, image processing method was applied to produce an index related to drainage quality. Using a proper method to enhance and prepare these images for the analysis step and find appreciate feature for the drainage quality is also among the necessities of drainage assessment. After a brief overview of multiresolution analysis, we revise the state-of-the-art of multiresolution analysis methods by discussing assessing parameters for asphalt surface image enhancement in nondestructive evaluation, formulated and fused to allow for a general comparison. In this work, different transform methods are used for asphalt surface image enhancement and a comparison is made between wavelet, curvelet, ridgelet, shearlet, and contourlet transforms by assessing parameters including TIME, PSNR, SNR, MSE, MAE, MSE, UQI, and SSIM. The comparison among the obtained results shows the superiority of shearlet transform over other transforms in providing of processed images with higher quality. Furthermore, it was found that ridgelet transform is more suitable for the jobs which time is the main parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhutada G, Anand R, Saxena S (2011) Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform. Digital Signal Process 21(1):118–130

    Article  Google Scholar 

  2. Jaiswal A, Upadhyay J, Somkuwar A (2014) Image denoising and quality measurements by using filtering and wavelet based techniques. AEU-Int J Electron Commun 68(8):699–705

    Article  Google Scholar 

  3. Maini R, Aggarwal H (2010) A comprehensive review of image enhancement techniques. arXiv preprint arXiv 1003:4053

    Google Scholar 

  4. Hedaoo P, Godbole SS (2011) Wavelet thresholding approach for image denoising. Int J Netw Secur Appl (IJNSA) 3(4):16–21

    Google Scholar 

  5. Rosenfeld A, Kak AC (2014) Digital picture processing. vol. 1. Elsevier, Amsterdam

    MATH  Google Scholar 

  6. Jain AK (1989) Fundamentals of digital image processing. Prentice-Hall, Inc, New Delhi

    MATH  Google Scholar 

  7. Ji T-L, Sundareshan MK, Roehrig H (1994) Adaptive image contrast enhancement based on human visual properties. IEEE Trans Med Imaging 13(4):573–586

    Article  Google Scholar 

  8. Agaian S (1990) Advances and problems of the fast orthogonal transforms for signal-images processing applications (part 1). Pattern recognition, classification, forecasting. Yearbook, The Russian Academy of Sciences, Nauka, Moscow, pp 146–215

    Google Scholar 

  9. Agaian S (1991) Advances and problems of fast orthogonal transform for signal/image processing applications. Part 1:146–215

  10. Aghagolzadeh S, Ersoy OK (1992) Transform image enhancement. Opt Eng 31(3):614–626

    Article  Google Scholar 

  11. Wang DC, Vagnuccin AH, Li C (1983) Digital image enhancement: a survey. Comput Vis Gr Image Process 24(3):363–381

    Article  Google Scholar 

  12. Morrow WM et al (1992) Region-based contrast enhancement of mammograms. IEEE Trans Med Imaging 11(3):392–406

    Article  Google Scholar 

  13. Beghdadi A, Le Negrate A (1989) Contrast enhancement technique based on local detection of edges. Comput Vis Gr Image Process 46(2):162–174

    Article  Google Scholar 

  14. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice hall, Upper Saddle River

    Google Scholar 

  15. Grigoryan AM, Agaian SS (2004) Transform-based image enhancement algorithms with performance measure. Adv Imaging Electron Phys 130:165–242

    Article  Google Scholar 

  16. Agaian SS, Panetta K, Grigoryan AM (2001) Transform-based image enhancement algorithms with performance measure. IEEE Trans Image Process 10(3):367–382

    Article  MATH  Google Scholar 

  17. Starck, J-L, Elad M, Donoho D (2004) Redundant multiscale transforms and their application for morphological component separation. Adv Imaging Electron Phys. 132(82):287–348

    Article  Google Scholar 

  18. Li J (2003) A wavelet approach to edge detection. Sam Houston State University, Huntsville

    Google Scholar 

  19. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41(7):909–996

    Article  MathSciNet  MATH  Google Scholar 

  20. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  21. Mallat SG, Zhong S (1989) Complete signal representation with multiscale edges. New York University, Courant Institute of Mathematical Sciences, Computer Science Division, New York

    Google Scholar 

  22. Piao Y, Shin L-H, Park H (2007) Image resolution enhancement using inter-subband correlation in wavelet domain. In: Image Processing, 2007. IEEE International Conference on ICIP 2007.

  23. Demirel H, Anbarjafari G (2010) Satellite image resolution enhancement using complex wavelet transform. IEEE Geosci Remote Sens Lett 7(1):123–126

    Article  Google Scholar 

  24. Atkins CB, Bouman CA, Allebach JP (2001) Optimal image scaling using pixel classification. in Image Processing, 2001. Proceedings. 2001 International Conference on. 2001. IEEE.

  25. Carey WK, Chuang DB, Hemami SS (1999) Regularity-preserving image interpolation. IEEE Trans Image Process 8(9):1293–1297

    Article  Google Scholar 

  26. Mallat S (1999) A wavelet tour of signal processing, (Wavelet analysis & its applications)

  27. Candes EJ (1998) Ridgelets: theory and applications, Stanford University, Stanford

    Google Scholar 

  28. Candès EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc Lond A 357(1760):2495–2509

    Article  MathSciNet  MATH  Google Scholar 

  29. Deans SR (2007) The Radon transform and some of its applications. Courier Corporation, North Chelmsford

    MATH  Google Scholar 

  30. Bolker ED (1987) The finite Radon transform. Contemp Math 63:27–50

    Article  MathSciNet  MATH  Google Scholar 

  31. Campisi P, Neri A, Scarano G (2002) Model based rotation-invariant texture classification. In: Proceedings. 2002 International Conference on Image Processing (IEEE).

  32. Candes EJ, Donoho DL (2000) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. DTIC Document

  33. Guo K et al (2006) Wavelets with composite dilations and their MRA properties. Applied and Computational Harmonic. Analysis 20(2):202–236

    MathSciNet  MATH  Google Scholar 

  34. Labate D et al (2005) Sparse multidimensional representation using shearlets. In Optics & Photonics 2005. International Society for Optics and Photonics.

  35. Guo K, Labate D (2007) Optimally sparse multidimensional representation using shearlets. SIAM J Math Anal 39(1):298–318

    Article  MathSciNet  MATH  Google Scholar 

  36. Do M, Vetterli M (2003) Contourlets. In: Stoeckler J, Welland GV, (eds) Beyond wavelet, Academic Press, New York

    Google Scholar 

  37. Do M, Vetterli M (2003) Contourlet: A computational framework for directional multiresolution image representation. In IEEE Trans. Image Proc.

  38. Do MN (2001) D.M.I., Representations [Ph. D. dissertation]. Swiss Federal Institute of Technology

  39. Eslami R, Radha H.(2003) On low bit-rate coding using the contourlet transform. In Signals, Systems and Computers, 2004. Conference record of the thirty-seventh Asilomar Conference on. 2003. IEEE.

  40. Gonzalez R, Woods R (2008) Digital image processing. Pearson prentice hall, Upper Saddle River

    Google Scholar 

  41. Pratt WK (2009) Digital image processing. 3rd edn. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zakeri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A: Filter Coefficients

Appendix A: Filter Coefficients

Let \(h\) and \(g\) be the wavelet decomposition (analysis) filters, where \(h~\)is a lowpass filter and \(g\) is a highpass filter. Let the dual filters \({h'}~\)and \(g'\) be the wavelet reconstruction (synthesis) filters. The coefficients of the wavelet filters are shown in the following sections:

Note:Wavelets are indexed by the number of vanishing moments; for example, “daubechies 2” has two vanishing moments and four tap filters.

Haar

h0 = 0.7071067812

g0 = −0.7071067812

h′ 0 = 0.7071067812

g′ 0 = 0.7071067812

h1 = 0.7071067812

g1 = 0.7071067812

h′ 1 = 0.7071067812

g′ 1 = −0.7071067812

Daubechies

‘db1’

h0 = 0.7071067812

g0 = −0.7071067812

h′ 0 = 0.7071067812

g′ 0 = 0.7071067812

h1 = 0.7071067812

g1 = 0.7071067812

h′ 1 = 0.7071067812

g′ 1 = −0.7071067812

‘db2’

h0 = −0.1294095226

g0 = −0.4829629131

h′ 0 = 0.4829629131

g′ 0 = −0.1294095226

h1 = 0.2241438680

g1 = 0.8365163037

h′ 1 = 0.8365163037

g′ 1 = −0.2241438680

h2 = 0.8365163037

g2 = −0.2241438680

h′ 2 = 0.2241438680

g′ 2 = 0.8365163037

h3 = 0.4829629131

g3 = −0.1294095226

h′ 3 = −0.1294095226

g′ 3 = −0.4829629131

‘db10’

h0 = −0.0000132642

g0 = −0.0266700579

h′ 0 = 0.0266700579

g′ 0 = −0.0000132642

h1 = 0.0000935887

g1 = 0.1881768001

h′ 1 = 0.1881768001

g′ 1 = −0.0000935887

h2 = −0.0001164669

g2 = −0.5272011889

h′ 2 = 0.5272011889

g′ 2 = −0.0001164669

h3 = −0.0006858567

g3 = 0.6884590395

h′ 3 = 0.6884590395

g′ 3 = 0.0006858567

h4 = 0.0019924053

g4 = −0.2811723437

h′ 4 = 0.2811723437

g′ 4 = 0.0019924053

h5 = 0.0013953517

g5 = −0.2498464243

h′ 5 = −0.2498464243

g′ 5 = −0.0013953517

h6 = −0.0107331755

g6 = 0.1959462744

h′ 6 = −0.1959462744

g′ 6 = −0.0107331755

h7 = 0.0036065536

g7 = 0.1273693403

h′ 7 = 0.1273693403

g′ 7 = −0.0036065536

h8 = 0.0332126741

g8 = −0.0930573646

h′ 8 = 0.0930573646

g′ 8 = 0.0332126741

h9 = −0.0294575368

g9 = −0.0713941472

h′ 9 = −0.0713941472

g′ 9 = 0.0294575368

h10 = −0.0713941472

g10 = 0.0294575368

h′ 10 = −0.0294575368

g′ 10 = −0.0713941472

h11 = 0.0930573646

g11 = 0.0332126741

h′ 11 = 0.0332126741

g′ 11 = −0.0930573646

h12 = 0.1273693403

g12 = −0.0036065536

h′ 12 = 0.0036065536

g′ 12 = 0.1273693403

h13 = −0.1959462744

g13 = −0.0107331755

h′ 13 = −0.0107331755

g′ 13 = 0.1959462744

h14 = −0.2498464243

g14 = −0.0013953517

h′ 14 = 0.0013953517

g′ 14 = −0.2498464243

h15 = 0.2811723437

g15 = 0.0019924053

h′ 15 = 0.0019924053

g′ 15 = −0.2811723437

h16 = 0.6884590395

g16 = 0.0006858567

h′ 16 = −0.0006858567

g′ 16 = 0.6884590395

h17 = 0.5272011889

g17 = −0.0001164669

h′ 17 = −0.0001164669

g′ 17 = −0.5272011889

h18 = 0.1881768001

g18 = −0.0000935887

h′ 18 = 0.0000935887

g′ 18 = 0.1881768001

h19 = 0.0266700579

g19 = −0.0000132642

h′ 19 = −0.0000132642

g′ 19 = −0.0266700579

‘db15’

h0 = 0.0000000613

g0 = −0.0045385374

h′ 0 = 0.0045385374

g′ 0 = 0.0000000613

h1 = −0.0000006317

g1 = 0.0467433949

h′ 1 = 0.0467433949

g′ 1 = 0.0000006317

h2 = 0.0000018113

g2 = −0.2060238640

h′ 2 = 0.2060238640

g′ 2 = 0.0000018113

h3 = 0.0000033630

g3 = 0.4926317717

h′ 3 = 0.4926317717

g′ 3 = −0.0000033630

h4 = −0.0000281333

g4 = −0.6458131404

h′ 4 = 0.6458131404

g′ 4 = −0.0000281333

h5 = 0.0000257927

g5 = 0.3390025355

h′ 5 = 0.3390025355

g′ 5 = −0.0000257927

h6 = 0.0001558965

g6 = 0.1932041396

h′ 6 = −0.1932041396

g′ 6 = 0.0001558965

h7 = −0.0003595652

g7 = −0.2888825966

h′ 7 = −0.2888825966

g′ 7 = 0.0003595652

h8 = −0.0003734824

g8 = −0.0652829528

h′ 8 = 0.0652829528

g′ 8 = −0.0003734824

h9 = 0.0019433240

g9 = 0.1901467140

h′ 9 = 0.1901467140

g′ 9 = −0.0019433240

h10 = −0.0002417565

g10 = 0.0396661766

h′ 10 = −0.0396661766

g′ 10 = −0.0002417565

h11 = −0.0064877346

g11 = −0.1111209360

h′ 11 = −0.1111209360

g′ 11 = 0.0064877346

h12 = 0.0051010004

g12 = −0.0338771439

h′ 12 = 0.0338771439

g′ 12 = 0.0051010004

h13 = 0.0150839180

g13 = 0.0547805506

h′ 13 = 0.0547805506

g′ 13 = −0.0150839180

h14 = −0.0208100502

g14 = 0.0257670073

h′ 14 = −0.0257670073

g′ 14 = −0.0208100502

h15 = −0.0257670073

g15 = −0.0208100502

h′ 15 = −0.0208100502

g′ 15 = 0.0257670073

h16 = 0.0547805506

g16 = −0.0150839180

h′ 16 = 0.0150839180

g′ 16 = 0.0547805506

h17 = 0.0338771439

g17 = 0.0051010004

h′ 17 = 0.0051010004

g′ 17 = −0.0338771439

h18 = −0.1111209360

g18 = 0.0064877346

h′ 18 = −0.0064877346

g′ 18 = −0.1111209360

h19 = −0.0396661766

g19 = −0.0002417565

h′ 19 = −0.0002417565

g′ 19 = 0.0396661766

h20 = 0.1901467140

g20 = −0.0019433240

h′ 20 = 0.0019433240

g′ 20 = 0.1901467140

h21 = 0.0652829528

g21 = −0.0003734824

h′ 21 = −0.0003734824

g′ 21 = −0.0652829528

h22 = −0.2888825966

g22 = 0.0003595652

h′ 22 = −0.0003595652

g′ 22 = −0.2888825966

h23 = −0.1932041396

g23 = 0.0001558965

h′ 23 = 0.0001558965

g′ 23 = 0.1932041396

h24 = 0.3390025355

g24 = −0.0000257927

h′ 24 = 0.0000257927

g′ 24 = 0.3390025355

h25 = 0.6458131404

g25 = −0.0000281333

h′ 25 = −0.0000281333

g′ 25 = −0.6458131404

h26 = 0.4926317717

g26 = −0.0000033630

h′ 26 = 0.0000033630

g′ 26 = 0.4926317717

h27 = 0.2060238640

g27 = 0.0000018113

h′ 27 = 0.0000018113

g′ 27 = −0.2060238640

h28 = 0.0467433949

g28 = 0.0000006317

h′ 28 = −0.0000006317

g′ 28 = 0.0467433949

h29 = 0.0045385374

g29 = 0.0000000613

h′ 29 = 0.0000000613

g′ 29 = −0.0045385374

coiflets 1

h0 = −0.0156557281

g0 = 0.0727326195

h′ 0 = −0.0727326195

g′ 0 = −0.0156557281

h1 = −0.0727326195

g1 = 0.3378976625

h′ 1 = 0.3378976625

g′ 1 = 0.0727326195

h2 = 0.3848648469

g2 = −0.8525720202

h′ 2 = 0.8525720202

g′ 2 = 0.3848648469

h3 = 0.8525720202

g3 = 0.3848648469

h′ 3 = 0.3848648469

g′ 3 = −0.8525720202

h4 = 0.3378976625

g4 = 0.0727326195

h′ 4 = −0.0727326195

g′ 4 = 0.3378976625

h5 = −0.0727326195

g5 = −0.0156557281

h′ 5 = −0.0156557281

g′ 5 = 0.0727326195

Biorthogonal 1.1

h0 = 0.7071067812

g0 =  = −0.7071067812

h′ 0 = 0.7071067812

g′ 0 = 0.7071067812

h1 = 0.7071067812

g1 = 0.7071067812

h′ 1 = 0.7071067812

g′ 1 = −0.7071067812

Reverse biorthogonal 1.1

h0 = 0.7071067812

g0 = −0.7071067812

h′ 0 = 0.7071067812

g′ 0 = 0.7071067812

h1 = 0.7071067812

g1 = 0.7071067812

h′ 1 = 0.7071067812

g′ 1 = −0.7071067812

Symlets 2

h0 = −0.1294095226

g0 = −0.4829629131

h′ 0 = 0.4829629131

g′ 0 = −0.1294095226

h1 = 0.2241438680

g1 = 0.8365163037

h′ 1 = 0.8365163037

g′ 1 = −0.2241438680

h2 = 0.8365163037

g2 = −0.2241438680

h′ 2 = 0.2241438680

g′ 2 = 0.8365163037

h3 = 0.4829629131

g3 = −0.1294095226

h′ 3 = −0.1294095226

g′ 3 = −0.4829629131

Discrete Meyer

h0 = 0

g0 = 0.0000000000

h′ 0 = −0.0000000000

g′ 0 = 0

h1 = −0.0000000000

g1 = 0.0000000085

h′ 1 = 0.0000000085

g′ 1 = 0.0000000000

h2 = 0.0000000085

g2 = 0.0000000111

h′ 2 = −0.0000000111

g′ 2 = 0.0000000085

h3 = −0.0000000111

g3 = −0.0000000108

h′ 3 = −0.0000000108

g′ 3 = 0.0000000111

h4 = −0.0000000108

g4 = −0.0000000607

h′ 4 = 0.0000000607

g′ 4 = −0.0000000108

h5 = 0.0000000607

g5 = −0.0000001087

h′ 5 = −0.0000001087

g′ 5 = −0.0000000607

h6 = −0.0000001087

g6 = −0.0000000820

h′ 6 = 0.0000000820

g′ 6 = −0.0000001087

h7 = 0.0000000820

g7 = 0.0000001178

h′ 7 = 0.0000001178

g′ 7 = −0.0000000820

h8 = 0.0000001178

g8 = 0.0000005506

h′ 8 = −0.0000005506

g′ 8 = 0.0000001178

h9 = −0.0000005506

g9 = 0.0000011308

h′ 9 = 0.0000011308

g′ 9 = 0.0000005506

h10 = 0.0000011308

g10 = 0.0000014895

h′ 10 = −0.0000014895

g′ 10 = 0.0000011308

h11 = −0.0000014895

g11 = 0.0000007368

h′ 11 = 0.0000007368

g′ 11 = 0.0000014895

h12 = 0.0000007368

g12 =−0.0000032054

h′ 12 = 0.0000032054

g′ 12 = 0.0000007368

h13 = 0.0000032054

g13 = −0.0000163127

h′ 13 = −0.0000163127

g′ 13 = −0.0000032054

h14 = −0.0000163127

g14 = −0.0000655431

h′ 14 = 0.0000655431

g′ 14 = −0.0000163127

h15 = 0.0000655431

g15 = −0.0006011502

h′ 15 = −0.0006011502

g′ 15 = −0.0000655431

h16 = −0.0006011502

g16 = 0.0027046721

h′ 16 = −0.0027046721

g′ 16 = −0.0006011502

h17 = −0.0027046721

g17 = 0.0022025341

h′ 17 = 0.0022025341

g′ 17 = 0.0027046721

h18 = 0.0022025341

g18 = −0.0060458141

h′ 18 = 0.0060458141

g′ 18 = 0.0022025341

h19 = 0.0060458141

g19 = −0.0063877183

h′ 19 = −0.0063877183

g′ 19 = −0.0060458141

h20 = −0.0063877183

g20 = 0.0110614964

h′ 20 = −0.0110614964

g′ 20 = −0.0063877183

h21 = −0.0110614964

g21 = 0.0152700151

h′ 21 = 0.0152700151

g′ 21 = 0.0110614964

h22 = 0.0152700151

g22 = −0.0174234341

h′ 22 = 0.0174234341

g′ 22 = 0.0152700151

h23 = 0.0174234341

g23 = −0.0321307940

h′ 23 = −0.0321307940

g′ 23 = −0.0174234341

h24 = −0.0321307940

g24 = 0.0243487459

h′ 24 = −0.0243487459

g′ 24 = −0.0321307940

h25 = −0.0243487459

g25 = 0.0637390243

h′ 25 = 0.0637390243

g′ 25 = 0.0243487459

h26 = 0.0637390243

g26 = −0.0306550920

h′ 26 = 0.0306550920

g′ 26 = 0.0637390243

h27 = 0.0306550920

g27 = −0.1328452004

h′ 27 = −0.1328452004

g′ 27 = −0.0306550920

h28 = −0.1328452004

g28 = 0.0350875557

h′ 28 = −0.0350875557

g′ 28 = −0.1328452004

h29 = −0.0350875557

g29 = 0.4445930028

h′ 29 = 0.4445930028

g′ 29 = 0.0350875557

h30 = 0.4445930028

g30 = −0.7445855923

h′ 30 = 0.7445855923

g′ 30 = 0.4445930028

h31 = 0.7445855923

g31 = 0.4445930028

h′ 31 = 0.4445930028

g′ 31 = −0.7445855923

h32 = 0.4445930028

g32 = 0.0350875557

h′ 32 = −0.0350875557

g′ 32 = 0.4445930028

h33 = −0.0350875557

g33 = −0.1328452004

h′ 33 = −0.1328452004

g′ 33 = 0.0350875557

h34 = −0.1328452004

g34 = −0.0306550920

h′ 34 = 0.0306550920

g′ 34 = −0.1328452004

h35 = 0.0306550920

g35 = 0.0637390243

h′ 35 = 0.0637390243

g′ 35 = −0.0306550920

h36 = 0.0637390243

g36 = 0.0243487459

h′ 36 = −0.0243487459

g′ 36 = 0.0637390243

h37 = −0.0243487459

g37 = −0.0321307940

h′ 37 = −0.0321307940

g′ 37 = 0.0243487459

h38 = −0.0321307940

g38 = −0.0174234341

h′ 38 = 0.0174234341

g′ 38 = −0.0321307940

h39 = 0.0174234341

g39 = 0.0152700151

h′ 39 = 0.0152700151

g′ 39 = −0.0174234341

h40 = 0.0152700151

g40 = 0.0110614964

h′ 40 = −0.0110614964

g′ 40 = 0.0152700151

h41 = −0.0110614964

g41 = −0.0063877183

h′ 41 = −0.0063877183

g′ 41 = 0.0110614964

h42 = −0.0063877183

g42 = −0.0060458141

h′ 42 = 0.0060458141

g′ 42 = −0.0063877183

h43 = 0.0060458141

g43 = 0.0022025341

h′ 43 = 0.0022025341

g′ 43 = −0.0060458141

h44 = 0.0022025341

g44 = 0.0027046721

h′ 44 = −0.0027046721

g′ 44 = 0.0022025341

h45 = −0.0027046721

g45 = −0.0006011502

h′ 45 = −0.0006011502

g′ 45 = 0.0027046721

h46 = −0.0006011502

g46 = −0.0000655431

h′ 46 = −0.0000655431

g′ 46 = −0.0006011502

h47 = 0.0000655431

g47 = −0.0000163127

h′ 47 = −0.0000163127

g′ 47 = −0.0000655431

h48 = −0.0000163127

g48 = −0.0000032054

h′ 48 = 0.0000032054

g′ 48 = −0.0000163127

h49 = 0.0000032054

g49 = 0.0000007368

h′ 49 = 0.0000007368

g′ 49 = −0.0000032054

h50 = 0.0000007368

g50 = 0.0000014895

h′ 50 = −0.0000014895

g′ 50 = 0.0000007368

h51 = −0.0000014895

g51 = 0.0000011308

h′ 51 = 0.0000011308

g′ 51 = 0.0000014895

h52 = 0.0000011308

g52 = 0.0000005506

h′ 52 = −0.0000005506

g′ 52 = 0.0000011308

h53 = −0.0000005506

g53 = 0.0000001178

h′ 53 = 0.0000001178

g′ 53 = −0.0000005506

h54 = 0.0000001178

g54 = −0.0000000820

h′ 54 = 0.0000000820

g′ 54 = 0.0000001178

h55 = 0.0000000820

g55 = −0.0000001087

h′ 55 = −0.0000001087

g′ 55 = −0.0000000820

h56 = −0.0000001087

g56 = −0.0000000607

h′ 56 = 0.0000000607

g′ 56 = −0.0000001087

h57 = 0.0000000607

g57 = −0.0000000108

h′ 57 = −0.0000000108

g′ 57 = −0.0000000607

h58 = −0.0000000108

g58 = 0.0000000111

h′ 58 = −0.0000000111

g′ 58 = −0.0000000108

h59 = −0.0000000111

g59 = 0.0000000085

h′ 59 = 0.0000000085

g′ 59 = 0.0000000111

h60 = 0.0000000085

g60 = 0.0000000000

h′ 60 = −0.0000000000

g′ 60 = 0.0000000085

h61 = −0.0000000000

g61 = 0

h′ 61 = 0

g′ 61 = 0.0000000000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mataei, B., Zakeri, H. & Nejad, F.M. An Overview of Multiresolution Analysis for Nondestructive Evaluation of Pavement Surface Drainage. Arch Computat Methods Eng 26, 143–161 (2019). https://doi.org/10.1007/s11831-017-9230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9230-7

Navigation