A Review of Multi-holes Drilling Path Optimization Using Soft Computing Approaches


In today’s competitive environment, optimization is considered as an important element for maintaining and improving both aspect of manufacturing such as quality and productivity. In multi-holes drilling process, 70% of the machining time involved the tool movement and tool switching. Various researches had been conducted to reduce the tool movement and switching time. This paper reviews the research publications on the drilling path optimization using soft computing approaches. In particular, this review focuses on four main aspects; drilling application areas, problem modeling, optimization algorithms and objective functions of drilling path optimization. Based on the review, the researchers’ interest in this area is still growing. However, the existing researches were limited to implement, modify and hybridized the well-established optimization algorithms. Furthermore, there is a lack of awareness to consider the environmental and sustainable issues in the existing research. In future, the researcher is suggested to give focus on energy consumption that related with sustainable manufacturing and also to explore the potential of new meta-heuristics algorithms that can lead to significant in reduction machining time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Setiawan K, Tambunan STB, Yuliana PE (2013) Adjustment of mill CNC parameters to optimize cutting operation and surface quality on acrylic sheet machining. Appl Mech Mater 377:117–122

    Article  Google Scholar 

  2. 2.

    Narooei KD, Ramli R, Nizam M, Rahman A, Iberahim F, Qudeiri JA (2014) Tool routing path optimization for multi-hole drilling based on ant colony optimization. World Appl Sci J 32(9):1894–1898

    Google Scholar 

  3. 3.

    Rao RV (2011) Advanced modeling and optimization of manufacturing processes: international research and development. In: Springer series in advanced manufacturing. Springer, London, pp 21–31

    Google Scholar 

  4. 4.

    Mundhekar AR, Jadhav SR (2015) Optimization of drilling process parameters: A. International conference advances in recent technologies in communication and computing, vol 3, pp 341–344

  5. 5.

    Tamta N, Jadoun RS (2015) Parametric optimization of drilling machining process for surface roughness on aluminium alloy 6082 using Taguchi method. J Mater Environ Sci 2(7):49–55

    Google Scholar 

  6. 6.

    Groover M (2010) Fundementals of modern manufacturing materials, processes and systems, vol 28. Wiley, New York

    Google Scholar 

  7. 7.

    Kalpajian, Kalpakjian S, Schmid SR (2003) Manufacturing processes for engineering materials, vol 25. Addison-Wesley, Reading

    Google Scholar 

  8. 8.

    Zhu GY, Chen LF (2011) Holes machining process optimization with genetic algorithm. Key Eng Mater 460–461:117–122

    Article  Google Scholar 

  9. 9.

    Borkar BR, Puri YM, Kuthe AM, Deshpande PS (2014) Automatic CNC part programming for through hole drilling. Proced Mater Sci 5:2513–2521

    Article  Google Scholar 

  10. 10.

    Lim WCE, Kanagaraj G, Ponnambalam SG (2014) A hybrid cuckoo search-genetic algorithm for hole-making sequence optimization. J Intell Manuf 27(2):417–429

    Article  Google Scholar 

  11. 11.

    Ghaiebi H, Solimanpur M (2007) An ant algorithm for optimization of hole-making operations. Comput Ind Eng 52(2):308–319

    Article  Google Scholar 

  12. 12.

    Ismail MM, Othman MA, Sulaiman HA, Misran MH, Ramlee RH, AFZ Abidin, Nordin NA, Zakaria MI, Ayob MN, Yakop F (2012) Firefly algorithm for path optimization in PCB holes drilling process. In: Proceedings of the 2012 international conference in green and ubiquitous technology, GUT 2012, pp 110–113

  13. 13.

    Tsai CY, Liu CH, Wang YC (2012) Application of genetic algorithm on IC substrate drilling path optimization. In: 2012 International conference on advanced mechatronic systems (ICAMechS), pp 441–446

  14. 14.

    Rini DP, Shamsuddin SM, Yuhaniz SS (2011) Particle swarm optimization: technique, system and challenges. Int J Comput Appl 14(1):19–27

    Google Scholar 

  15. 15.

    Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Inf Sci 3(1):180–184

    Google Scholar 

  16. 16.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

  17. 17.

    Eberhart RC, Yuhui S (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, vol 1, pp 81–86

  18. 18.

    Erik M, Pedersen H, Pedersen MEH (2010) Good parameters for particle swarm optimization. Tech. Rep. HL1001, Hvass Lab, vol HL1001, pp 1–12

  19. 19.

    Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: Proceedings of the 2007 IEEE swarm intelligence symposium, SIS 2007, pp 120–127

  20. 20.

    Marini F, Walczak B (2015) Particle swarm optimization (PSO). A tutorial. Chemometr Intell Lab Syst 149:153–165

    Article  Google Scholar 

  21. 21.

    Kennedy J (2010) Particle swarm optimization. Encycl Mach Learn 46(11):685–691

    Google Scholar 

  22. 22.

    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  23. 23.

    Ebbesen S, Kiwitz P, Guzzella L (2012) A generic particle swarm optimization matlab function. In: American control conference (ACC), 2012, pp 1519–1524

  24. 24.

    Tufail PMS (2016) A review on optimization of drilling process parameters of AISI 304 austenite stainless steel by using response surface methodology. Procedia Eng 4(2):402–405

    MathSciNet  Google Scholar 

  25. 25.

    Dalavi AM, Pawar PJ, Singh TP, Warke AS, Paliwal PD (2016) Review on optimization of hole-making operations for injection mould using non-traditional algorithms. Int J Ind Eng Manag 7(1):9–14

    Google Scholar 

  26. 26.

    Linn RJ, Liu J, Kowe PSH (1999) Efficient Heuristics for drilling route optimization in printed circuit board manufacturing. J Electron Manuf 8(2):127–138

    Article  Google Scholar 

  27. 27.

    Noorfarooque S, Faizan AM, Shaikh J, Pal P (2015) Automated PCB drilling machine with efficient path planning. Int J Adv Res Comput Commun Eng 4(4):108–110

    Google Scholar 

  28. 28.

    Othman MH, Abidin AFZ, Adam A, Yusof ZM, Ibrahim Z, Mustaza SM, Lai YY (2011) A binary particle swarm optimization approach for routing in PCB holes drilling process. In: 1st international conference on robotics and automation system, vol 2, pp 201–206

  29. 29.

    Saealal MS, Abidin AFZ, Adam A, Mukred JAA, Khalil K, Yusof ZM, Ibrahim Z, Nordin NA (2012) An ant colony system for routing in PCB holes drilling process. Int Symp Innov Manag Inf Prod 3(1):50–56

    Google Scholar 

  30. 30.

    Dalavi AM (2016) Optimal sequence of hole-making operations using particle swarm optimisation and shuffled frog leaping algorithm. In: 8th international conference on intelligent system design and applications, vol 36, pp 187–196

  31. 31.

    Yang HC, Liu KJ, Hung MH (2012) Drill-path optimization with time limit and thermal protection. Adv Mater Res 579:153–159

    Article  Google Scholar 

  32. 32.

    Ismail MM, Othman MA, Sulaiman HA, Meor Said MA, Misran MH, Ramlee RA, Sinnappa M, Zakaria Z, Ahmad BH, MZA Abd Aziz, Osman K, Sulaiman SF, Jaafar HI, Jusoff K, Nordin NA, Othman MH, Saeala MS, Adam A, Amer H, AFZ Abidin, Khalid NS, Tunnur M, Majid MA, Suhaimi S (2013) Route planning analysis in holes drilling process using magnetic optimization algorithm for electronic manufacturing sector. World Appl Sci J 21(2):91–97

    Google Scholar 

  33. 33.

    Abdullah H, Ramli R, Wahab DA, Qudeiri JA (2015) Simulation approach of cutting tool movement using artificial intelligence method. In: Journal of engineering science and technology special issue on 4th international technical conference (ITC), vol 10, pp 35–44

  34. 34.

    Tahir Z, Abu NA, Sahib S, Herman NS (2010) CNC PCB drilling machine using novel natural approach to euclidean TSP. In: 2010 3rd IEEE international conference on computer science and information technology (ICCSIT), vol 5, pp 481–485

  35. 35.

    El-Midany TT, Kohail AM, Tawfik H (2007) A proposed algorithm for optimizing the toolpoint path of the small-hole EDM-drilling. In: Geometric modeling and imaging, GMAI 2007, IEEE, pp 25–29

  36. 36.

    Zhu GY (2006) Drilling path optimization based on swarm intelligent algorithm. In: 2006 IEEE international conference on robotics and biomimetics, ROBIO 2006, vol 1, pp 193–196

  37. 37.

    Srivastava PR (2015) A cooperative approach to optimize the printed circuit boards drill routing process using intelligent water drops. Comput Electr Eng 43:270–277

    Article  Google Scholar 

  38. 38.

    Kentli A, Alkaya AF (2009) Deterministic approach to path optimization problem. J Appl Sci 2(2):149–157

    Google Scholar 

  39. 39.

    Kolahan F, Liang M (1996) A tabu search approach to optimization of drilling operations. Comput Ind Eng 31(1–2):371–374

    Article  Google Scholar 

  40. 40.

    Kolahan F, Liang M (2000) Optimization of hole-making operations: a tabu-search approach. Int J Mach Tools Manuf 40(12):1735–1753

    Article  Google Scholar 

  41. 41.

    Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput J 11(8):5508–5518

    Article  Google Scholar 

  42. 42.

    Fister I, Yang XS, Fister D, Fister I (2014) Cuckoo search: a brief literature review. Stud Comput Intell 516:49–62

    MATH  Google Scholar 

  43. 43.

    Zhu G-Y, Zhang W-B (2008) Drilling path optimization by the particle swarm optimization algorithm with global convergence characteristics. Int J Prod Res 46(8):2299–2311

    MATH  Article  Google Scholar 

  44. 44.

    Onwubolu GC, Clerc M (2004) Optimal path for automated drilling operations by a new heuristic approach using particle swarm optimization. Int J Prod Res 42(3):473–491

    MATH  Article  Google Scholar 

  45. 45.

    Hu X, Eberhart RC, Shi Y (2003) Engineering optimization with particle swarm. In: Swarm intelligence symposium 2003 (SIS’03). Proceedings of the 2003 IEEE, pp 53–57

  46. 46.

    Adam A, Abidin AFZ, Ibrahim Z, Husain AR, Yusof ZM, Ibrahim I (2010) A particle swarm optimization approach to robotic drill route optimization. In: 2010 fourth Asia international conference on mathematical/analytical modelling and computer simulation (AMS), vol 2, pp 60–64

  47. 47.

    Iberahim F, Ramli R, Narooei KD, Qudeiri JA (2014) Tool path optimization for drilling process by CNC milling machine using ant colony optimization (ACO). Aust J Basic Appl Sci 8:385–389

    Google Scholar 

  48. 48.

    Medina-Rodriguez N, Montiel-Ross O (2012) Tool path optimization for computer numerical control machines based on parallel ACO. Eng Lett 20(1):8

    Google Scholar 

  49. 49.

    Eldos T, Kanan A, Aljumah A (2013) Adapting the ant colony optimization algorithm to the printed circuit board drilling problem. World Comput Sci Inf Technol J 3(5):100–104

    Google Scholar 

  50. 50.

    Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373

    Article  Google Scholar 

  51. 51.

    Abbas AT, Aly MF, Hamza K (2011) Optimum drilling path planning for a rectangular matrix of holes using ant colony optimisation. Int J Prod Res 49(19):5877–5891

    Article  Google Scholar 

  52. 52.

    Zhang J (2012) Optimization algorithm of holes machining path Jing Zhang. In: 2nd international conference on mechanical, electronic and information technology engineering, vol 2, pp 1871–1874

  53. 53.

    Nabeel P, Abid K, Abdulrazzaq HF (2014) Tool path optimization of drilling sequence in CNC machine using genetic algorithm. Innov Syst Des Eng 5(1):15–26

    Google Scholar 

  54. 54.

    Al-Janan DH, Liu T-K (2014) Path optimization of CNC PCB drilling using hybrid Taguchi genetic algorithm. Kybernetes 43(6):107–125

    Google Scholar 

  55. 55.

    Kumar A, Pachauri PP (2012) Optimization drilling sequence by genetic algorithm. Int J Sci Res Publ 2(9):1–7

    Google Scholar 

  56. 56.

    Katalinic EB (2011) Utilization of genetic algorithms by the tool path programming. In: 22nd international DAAAM symposium, vol 22, pp 63–64

  57. 57.

    Chen JM, Guo WG (2012) Path optimization of the drilling hole based on genetic algorithm. Adv Mater Res 497:382–386

    Article  Google Scholar 

  58. 58.

    Liu YC, Liu YB (2011) Application of genetic algorithms in the optimization of the drilling path on the printed circuit board. Adv Mater Res 187:133–138

    Article  Google Scholar 

  59. 59.

    Qudeiri JEA, Khadra FYA, Al-Ahmari A (2013) GA support system to optimize the sequence of multi-level and multi-tool operations in CNC machines. In: SNPD 2013–14th ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 231–236

  60. 60.

    Alrabghi A, Tiwari A (2015) State of the art in simulation-based optimisation for maintenance systems. Comput Ind Eng 82:167–182

    Article  Google Scholar 

  61. 61.

    Abbas AT, Hamza K, Aly MF (2014) CNC machining path planning optimization for circular hole patterns via a hybrid ant colony optimization approach. Mech Eng Res 4(2):16–29

    Article  Google Scholar 

  62. 62.

    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  63. 63.

    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Article  Google Scholar 

  64. 64.

    Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  65. 65.

    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  66. 66.

    Mirjalili S, Jangir P, Saremi S (2016) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 83:1–17

    Google Scholar 

  67. 67.

    Fister I Jr, Fister D, Fistar I (2013) A comprehensive review of Cuckoo search: variants and hybrids. Int J Math Model Numer Optim 4(4):387–409

    MATH  Google Scholar 

  68. 68.

    Kanagaraj G, Ponnambalam SG, Lim WCE (2014) Application of a hybridized cuckoo search-genetic algorithm to path optimization for PCB holes drilling process. In: IEEE international conference on automation science and engineering, pp 373–378

  69. 69.

    Sigl S, Mayer HA (2005) Hybrid evolutionary approaches to CNC drill route optimization. In: Computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, vol 1, pp 905–910

  70. 70.

    Ancău M (2008) The optimization of printed circuit board manufacturing by improving the drilling process productivity. Comput Ind Eng 55(2):279–294

    Article  Google Scholar 

  71. 71.

    Ancau M (2009) The processing time optimization of printed circuit board. Circuit World 35(3):21–28

    Article  Google Scholar 

  72. 72.

    Guo E, Wu T, Zhang LB, Huang FL (2014) Study on the path optimized method based on an improved clustering ant colony algorithm for CNC laser drilling. Appl Mech Mater 556–562:4439–4442

    Article  Google Scholar 

  73. 73.

    Yu DL, Shihtao H (2012) Application of immune algorithm on IC substrate drilling path optimization. J Qual 19(4):339–348

    Google Scholar 

  74. 74.

    Montiel-Ross O, Medina-Rodríguez N, Sepúlveda R, Melin P (2012) Methodology to optimize manufacturing time for a CNC using a high performance implementation of ACO. Int J Adv Robot Syst 9:1–10

    Article  Google Scholar 

  75. 75.

    Khalkar S, Yadav D, Singh A (2015) Optimization of hole making operations for sequence precedence constraint. Int J Innov Emerg Res Eng 2(7):26–31

    Google Scholar 

  76. 76.

    Aciu R, Ciocarlie H (2014) G-code optimization algorithm and its application on printed circuit board drilling. In: 9th IEEE international symposium on applied computational Intelligence and informatics, vol 9, pp 43–47

  77. 77.

    Lim WCE, Kanagaraj G, Ponnambalam SG (2014) PCB drill path optimization by combinatorial cuckoo search algorithm. Sci World J 2014:11

    Google Scholar 

  78. 78.

    Abdullah Make MRA, Rashid MFFA, Razali MM (2016) A review of two-sided assembly line balancing problem. Int J Adv Manuf Technol 2016:1–21

    Google Scholar 

  79. 79.

    Rao RV, Kalyankar VD (2011) Parameters optimization of advanced machining processes using TLBO algorithm. EPPM Singap 2011:21–31

    Google Scholar 

Download references


This study was funded by Universiti Malaysia Pahang (UMP) under grant number RDU160356.

Author information



Corresponding author

Correspondence to Mohd Fadzil Faisae Ab Rashid.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zainal Abidin, N.W., Ab Rashid, M.F.F. & Nik Mohamed, N.M.Z. A Review of Multi-holes Drilling Path Optimization Using Soft Computing Approaches. Arch Computat Methods Eng 26, 107–118 (2019). https://doi.org/10.1007/s11831-017-9228-1

Download citation


  • Drilling process
  • Toolpath optimization
  • Soft computing