Skip to main content

Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element Methods: A Survey

Abstract

The mesh partitioning in parallel Finite Element Method (FEM) is an NP-hard problem. During the past few decades, several heuristic approaches have been proposed to address this problem. In addition to mesh distribution, solving a large set of algebraic equations also significantly contributes to the performance of a parallel solution. A number of efficient equation solving techniques are developed which exploit inherent properties of large coefficient matrices (for instance, symmetry and positive definiteness). In the present study, the performance of a distributed FEM system on the basis of the mesh partitioning approaches and equation solvers is discussed. The work contributes towards: (i) categorizing mesh partitioning methods, (ii) examining implementation variations in linear and nonlinear solution of equations, and (iii) exploring the impact of mesh partitioning and an equation solver on the performance of a distributed FEM system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Hussain M, Kavokin A, (2009) A 2D parallel algorithm using MPICH for calculation of ground water flux at evaporation from water table. In: proceedings of FIT’09, Abbottabad.

  2. Hussain M, (2011) ALE moving mesh generation and high performance implementation using OpenMP and MPI libraries for FSI and Darcy flow problems, PhD Thesis, Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute

  3. Hussain M, Kavokin A (2012) A calculation of 3D model of ground water flux at evaporation from water table using parallel algorithm—MPICH. Int J Math Phys 3(2):128–132

    Google Scholar 

  4. Salmon JK (1991) Parallel Hierarchical N-Body Methods,” PhD Thesis, California Institute of Technology

  5. Keyser JD, Roose D (1992) Grid partition by inertial recursive bisection. Department of Computer Science, K. U. Leuven, Leuven

  6. LaSalle D, Karypis G (2013) Multi-threaded graph partitioning. 27th IEEE international parallel and distributed processing symposium

  7. Karypis G, Kumar V (1996) Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceedings of IEEE Supercomputing

  8. Gilbert JR, Miller GL, Teng SH,(1995) Geometric mesh partitioning: implementation and experiments. In: proceedings of the 9th international parallel processing symposium, IEEE Computer Society Press, 418–427

  9. Flaherty JE, Loy RM, Shephard MS, Szymanski BK, Teresko JD, Ziantz LH (1997) Adaptive local refinement with octree load balancing for the parallel solution of three-dimensional conservation laws. J Parallel Distrib Comput 47(2):139–152

    Article  Google Scholar 

  10. Karypis G, Kumar V (1998) A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J Parallel Distrib Comput 48:71–85

    Article  Google Scholar 

  11. Schloegel K, Karypis G, Kumar V (2002) Parallel static and dynamic multi-constraint graph partitioning. Concurr Comput 14:219–240

    Article  MATH  Google Scholar 

  12. Boman EG, Catalyurek UV, Chevalier C, Devine KD, Safro I, Wolf MM (2009) Advances in parallel partitioning, load balancing and matrix ordering for scientific computing. J Phys 180:12008

  13. Karypis G, Schloegel K (2013) PARMETIS: parallel graph partitioning and sparse matrix ordering library, version 4.0. University of Minnesota, Minneapolis

    Google Scholar 

  14. Hussain M, Abid M, Ahmad M, Hussain SF (2013) A parallel 2D stabilized finite element method for darcy flow on distributed systems. World Appl Sci J 27(9):1119–1125

    Google Scholar 

  15. George A, Liu JW (1981) Computer solution of large sparse positive definite systems. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  16. Farhat C (1988) A simple and efficient automatic FEM domain decomposer. Comput Struct 28(5):579–602

    Article  Google Scholar 

  17. Pothen A, Simon HD, Liou K (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal Appl 11(3):430–452

    MathSciNet  Article  MATH  Google Scholar 

  18. Karypis G, Kumar V (1998) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48:96–129

    Article  MATH  Google Scholar 

  19. Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392

    MathSciNet  Article  MATH  Google Scholar 

  20. G. Karypis, V. Kumar (1998) Multilevel algorithm for multi-constraint graph partitioning.In: proceedings of ACM/IEEE on Supercomputing, 1–13

  21. Hussain M, Abid M, Ahmad M (2012) Stabilized mixed finite elements for Darcy’s law on distributed memory systems. In: proceedings of international symposium on frontiers of computational sciences, Islamabad. pp. 39–47

  22. Chamberlain BL (1998) Graph partitioning algorithms for distributing workloads of parallel computations. Technical Report UW-CSE-98-10-03, University of Washington

  23. Karypis G, Kumar V (1999) Parallel Multilevel k-way partitioning scheme for irregular graphs. SIAM J Comput 41(2):278–300

    MathSciNet  MATH  Google Scholar 

  24. Warren MS, Salmon JK (1993) A parallel hashed oct-tree N-body algorithm. In: proceedings of supercomputing’93, ACM New York, NY,pp. 12–21

  25. Flaherty JE, Loy RM, Ozturan C, Shephard MS, Szymanski BK, Teresko JD, Ziantz LH (1998) “Parallel structures and dynamic load balancing for adaptive finite element computation”. Appl Numer Math 26(1): 241–263

    MathSciNet  Article  MATH  Google Scholar 

  26. TU T, O’Hallaron DR, Ghattas O, Scalable parallel octree meshing for terascale applications. In: proceedings of ACM/IEEE SC05, 2005

  27. Mitchell WF (2007) A refinement-tree based partitioning method for dynamic load balancing with adaptively refined grids. J Parallel Distrib Comput 67(4):417–429

    Article  MATH  Google Scholar 

  28. Pellegrini F (2011) Current challenges in parallel graph partitioning. C R Mecanique 339:90–95

    Article  MATH  Google Scholar 

  29. Bichot E, Siarry P (2013) Graph partitioning. Wiley, Hoboken, pp. 81–114

    Book  MATH  Google Scholar 

  30. Hendrickson B, Leland R (1995) An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J Sci Comput 16(2):452–469

    MathSciNet  Article  MATH  Google Scholar 

  31. Bui T, Jones C (1993) A heuristic for reducing fill in sparse matrix factorization. In: proceedings of the 6th SIAM conference on parallel processing for scientific computing, pp. 445–452

  32. Barnard ST (1995) A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems 1995

  33. Barnard ST, Simon HD (1994) A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurr Pract Exp 6(2):101–117

    Article  Google Scholar 

  34. Luby M (1986) A simple parallel algorithm for the maximal independent set problem. SIAM J Comput 15:1036–1053

    MathSciNet  Article  MATH  Google Scholar 

  35. George A (1973) Nested dissection of a regular finite element mesh. SIAM J Num Anal 10:345–363

    MathSciNet  Article  MATH  Google Scholar 

  36. Grama A, Gupta A, Karypis G, Kumar V, (2003) Introduction to parallel computing. 2nd edn Addison-Wesley, Boston

  37. Korošec P, Šilc J, Robič B (2004) Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput 30(5–6):785–801

    Article  MATH  Google Scholar 

  38. K. Taškova, P. Korošec, J. Šilc (2008) A distributed multilevel ant colonies approach. Informatica. 32(3):307–317

    MATH  Google Scholar 

  39. Davis TA (2006) Direct methods for sparse linear systems SIAM, Philadelphia

    Book  MATH  Google Scholar 

  40. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  41. Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015) Stabilized mixed galerkin method for transient analysis of Darcy flow. ICMSAO’15, Istanbul pp. 27–29

  42. Hussain M, Ahmad M, Abid M, Khokhar A (2009) Implementation of 2D parallel ale mesh generation technique in fsi problems using openmp. In: proceedings of fit’09, Abbottabad

  43. Hussain M, Abid M, Ahmad M, Khokhar A, Masud A (2011) A parallel implementation of ALE moving mesh technique for FSI Problems using OpenMP. Int J Parallel Progr 30:717–745

    Article  Google Scholar 

  44. Muhammad A, Khan A, Nash D, Hussain M, Wajid HA (2015) Simulation of optimized bolt tightening strategies for gasketed flanged pipe joints. In: proceedings of 14th International Conference on Pressure Vessel Technology, 23–26 September

  45. Muhammad A, Khan A, Hussain M, Wajid HA (2015) Optimized bolt tightening procedure for different tightening strategies—FEA study. Proc Inst Mech Eng Part E. doi:10.1177/0954408915589687

    Google Scholar 

  46. Woodfords C, Philips C, (2012) Numerical methods with worked examples: Matlab edition. 2nd ed, Springer, Dordrecht

  47. Lagrange JL (1811) Mécanique Analytique sect. IV 2 vol. Paris

  48. Masud A, Bhagvanwala M, Khurram RA (2005) An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction. Comput Fluids 36:77–91

    MathSciNet  Article  MATH  Google Scholar 

  49. Glowinski R (2008) Numerical methods for nonlinear variational problems Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  50. Hendrickson B, Devine K (2000) Dynamic load balancing in computational mechanics. Comput Methods Appl Mech Eng 184(2–4):485–500

    Article  MATH  Google Scholar 

  51. Schamberger S, Wierum JM (2005) Partitioning finite element meshes using space-filling curves. Future Gener Comput Syst 21:759–766

    Article  Google Scholar 

  52. Ansari SU, Hussain M, Rashid A, Mazhar S, Ahmad SM (2015) Parallel stabilized mixed galerkin method for three-dimensional Darcy flow using openMp. NSEC Islamabad, Dec 17

  53. Kaliakin VN (2001) Introduction to approximate solution techniques. In Numerical modeling, and finite element methods CRC Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tareq Manzoor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ansari, S.U., Hussain, M., Mazhar, S. et al. Mesh Partitioning and Efficient Equation Solving Techniques by Distributed Finite Element Methods: A Survey. Arch Computat Methods Eng 26, 1–16 (2019). https://doi.org/10.1007/s11831-017-9227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9227-2