Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow

Original Paper
  • 313 Downloads

Abstract

The variational multiscale method is reviewed as a framework for developing computational methods for large-eddy simulation of turbulent flow. In contrast to other articles reviewing this topic, which focused on large-eddy simulation of turbulent incompressible flow, this study covers further aspects of numerically simulating turbulent flow as well as applications beyond incompressible single-phase flow. The various concepts for subgrid-scale modeling within the variational multiscale method for large-eddy simulation proposed by researchers in this field to date are illustrated. These conceptions comprise (i) implicit large-eddy simulation, represented by residual-based and stabilized methods, (ii) functional subgrid-scale modeling via small-scale subgrid-viscosity models and (iii) structural subgrid-scale modeling via the introduction of multifractal subgrid scales. An overview on exemplary numerical test cases to which the reviewed methods have been applied in the past years is provided, including explicit computational results obtained from turbulent channel flow. Wall-layer modeling, passive and active scalar transport as well as developments for large-eddy simulation of turbulent two-phase flow and combustion are discussed to complete this exposition.

Notes

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ahmed N, Chacón Rebollo T, John V, Rubino S (2017) A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch Comput Methods Eng 24:115. doi:  10.1007/s11831-015-9161-0 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Araya G, Bohr E, Jansen K, Castillo L, Peterson K (2006) Generation of turbulent inlet conditions for thermal/velocity boundary layer simulations. AIAA Paper 2006-0699, Reno, NVGoogle Scholar
  4. 4.
    Avila M, Codina R, Principe J (2014) Large eddy simulation of low Mach number flows using dynamic and orthogonal subgrid scales. Comput Fluids 99:44–66MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balaras E, Benocci C, Piomelli U (1996) Two layer approximate boundary conditions for large-eddy simulations. AIAA J 34:1111–1119MATHCrossRefGoogle Scholar
  6. 6.
    Bardina J, Ferziger JH, Reynolds WC (1980) Improved subgrid models for large eddy simulation. AIAA Paper 1980-1357, Snowmass, COGoogle Scholar
  7. 7.
    Bardina J, Ferziger JH, Reynolds WC (1983) Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Technical Report TF-19, Thermosciences Division, Department of Mechanical Engineering, Stanford UniversityGoogle Scholar
  8. 8.
    Bauer G, Gamnitzer P, Gravemeier V, Wall WA (2013) An isogeometric variational multiscale method for large-eddy simulation of coupled multi-ion transport in turbulent flow. J Comput Phys 251:194–208MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38:173–199MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MATHCrossRefGoogle Scholar
  14. 14.
    Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large eddy simulation of turbulent flows. Springer, BerlinMATHGoogle Scholar
  15. 15.
    Bilger RW, Pope SB, Bray KNC, Driscoll JF (2005) Paradigms in turbulent combustion research. Proc Combust Inst 30:21–42CrossRefGoogle Scholar
  16. 16.
    Bochev PB, Gunzburger MD, Lehoucq RB (2007) On stabilized finite element methods for the Stokes problem in the small time step limit. Int J Numer Methods Fluids 53:573–597MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Boris JP, Grinstein FF, Oran ES, Kolbe RL (1992) New insights into large-eddy simulation. Fluid Dyn Res 10:199–228CrossRefGoogle Scholar
  18. 18.
    van der Bos F, Gravemeier V (2009) Numerical simulation of premixed combustion using an enriched finite element method. J Comput Phys 228:3605–3624MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    van der Bos F, van der Vegt JJW, Geurts BJ (2007) A multi-scale formulation for compressible turbulent flows suitable for general variational discretization techniques. Comput Methods Appl Mech Eng 196:2863–2875MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Braack M, Burman E (2006) Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. Comput Methods Appl Mech Eng 43:2544–2566MathSciNetMATHGoogle Scholar
  21. 21.
    Braack M, Burman E, John V, Lube G (2007) Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Eng 196:853–866MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Bray KNC, Moss JB (1977) A unified statistical model of the premixed turbulent flame. Acta Astronaut 4:291–319CrossRefGoogle Scholar
  24. 24.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New YorkMATHCrossRefGoogle Scholar
  25. 25.
    Brezzi F, Franca LP, Hughes TJR, Russo A (1997) \(b = \int g.\) Comput Methods Appl Mech Eng 145:329–339Google Scholar
  26. 26.
    Brooks AN, Hughes TJR (1982) Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Buch KA, Dahm WJA (1998) Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 2. \({\text Sc}\approx 1\). J Fluid Mech 364:1–29MATHCrossRefGoogle Scholar
  28. 28.
    Burman E, Fernández MA, Hansbo P (2006) Continuous interior penalty finite element method for Oseen’s equations. SIAM J Numer Anal 44:1248–1274MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Burman E, Hansbo P (2004) Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput Methods Appl Mech Eng 193:1437–1453MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62:328–341MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Burman E, Hansbo P (2014) Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. ESAIM. Math Model Numer Anal 48:859–874MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Burman E, Zunino P (2012) Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Blowey J, Jensen M (eds) Frontiers in numerical analysis. Lecture Notes in Computational Science and Engineering, vol 85. Springer, Berlin, pp 227–282Google Scholar
  33. 33.
    Burton GC (2003) A multifractal subgrid-scale model for large-eddy simulation of turbulent flows. Dissertation, The University of MichiganGoogle Scholar
  34. 34.
    Burton GC (2008) The nonlinear large-eddy simulation method applied to \({\text Sc} \approx 1 \, {\text and} \; {\text Sc} \gg 1\) passive-scalar mixing. Phys Fluids 20:035103CrossRefGoogle Scholar
  35. 35.
    Borton GC, Dahm WJA (2005) Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Phys Fluid 17:075111MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Burton GC, Dahm WJA (2005) Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation. Phys Fluids 17:075112MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Cabot W, Moin P (1999) Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flows. Flow Turbul Combust 63:269–291MATHCrossRefGoogle Scholar
  38. 38.
    Calo VM (2004) Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition. Dissertation, Stanford UniversityGoogle Scholar
  39. 39.
    Cant RS, Mastorakos E (2008) An introduction to turbulent reacting flows. Imperial College Press, LondonMATHGoogle Scholar
  40. 40.
    Chacón Rebollo T, Gómez Mármol M, Rubino S (2015) Numerical analysis of a finite element projection-based VMS turbulence model with wall laws. Comput Methods Appl Mech Eng 285:379–405MathSciNetCrossRefGoogle Scholar
  41. 41.
    Chakravarthy VK, Menon S (2001) Large-eddy simulation of turbulent premixed flames in the flamelet regime. Combust Sci Technol 162:175–222CrossRefGoogle Scholar
  42. 42.
    Chapman DR (1979) Computational aerodynamics development and outlook. AIAA J 17:1293–1313MATHCrossRefGoogle Scholar
  43. 43.
    Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70:10–17MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Choi H, Moin P (1994) Effects of the computational time step on numerical solutions of turbulent flow. J Comput Phys 113:1–4MATHCrossRefGoogle Scholar
  45. 45.
    Choi H, Moin P (2012) Grid-point requirements for large eddy simulation: Chapman‘s estimates revisited. J Comput Phys 24:011702Google Scholar
  46. 46.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60:371–375MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Eng 191:4295–4321MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Codina R, Principe J, Avila M (2010) Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int J Numer Methods Heat Fluid Flow 20:492–515MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196:2413–2430MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Collis SS (2002) The DG/VMS method for unified turbulence simulation. AIAA Paper 2002-3124, St. Louis, MOGoogle Scholar
  51. 51.
    Collis SS (2001) Monitoring unresolved scales in multiscale turbulence modeling. Phys Fluids 13:1800–1806MATHCrossRefGoogle Scholar
  52. 52.
    Colomés O, Badia S, Codina R, Principe J (2015) Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows. Comput Methods Appl Mech Eng 285:32–63MathSciNetCrossRefGoogle Scholar
  53. 53.
    Comerford A, Gravemeier V, Wall WA (2013) An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent pulsatile flows in complex geometries with detailed insight into pulmonary airway flow. Int J Numer Methods Fluids 71:1207–1225MathSciNetCrossRefGoogle Scholar
  54. 54.
    De Mulder T (1998) The role of bulk viscosity in stabilized finite element formulations for incompressible flow: a review. Comput Methods Appl Mech Eng 163:1–10MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480MATHCrossRefGoogle Scholar
  56. 56.
    Domaradzki JA, Adams NA (2002) Direct modeling of subgrid-scales of turbulence in large eddy simulation. J Turbul 3:024CrossRefGoogle Scholar
  57. 57.
    Domaradzki JA, Loh K (1999) The subgrid-scale estimation model in the physical space representation. Phys Fluids 11:2330–2342MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Elgeti S, Sauerland H (2016) Deforming fluid domains within the finite element method: five mesh-based tracking methods in comparison. Arch Comput Methods Eng 23:323–361MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Erlebacher G, Hussaini MY, Speziale CG, Zang TA (1992) Toward the large-eddy simulation of compressible turbulent flows. J Fluid Mech 238:155–185MATHCrossRefGoogle Scholar
  60. 60.
    Farhat C, Rajasekharan A, Koobus B (2006) A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput Methods Appl Mech Eng 195:1667–1691MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Fedorchenko AT (1997) A model of unsteady subsonic flow with acoustics excluded. J Fluid Mech 334:135–155MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Franca LP, Hughes TJR (1988) Two classes of mixed finite element methods. Comput Methods Appl Mech Eng 69:89–129MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Franca LP, Nesliturk A (2001) On a two-level finite element method for the incompressible Navier-Stokes equations. Int J Numer Methods Eng 52:433–453MATHCrossRefGoogle Scholar
  64. 64.
    Frederiksen RD, Dahm WJA, Dowling DR (1997) Experimental assessment of fractal scale similarity in turbulent flows. Part 3. Multifractal scaling. J Fluid Mech 338:127–155CrossRefGoogle Scholar
  65. 65.
    Fries TP, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304MathSciNetMATHGoogle Scholar
  66. 66.
    Fröhlich J, Rodi W (2002) Introduction to large eddy simulation of turbulent flows. In: Launder BE, Sandham ND (eds) Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, pp 267–298CrossRefGoogle Scholar
  67. 67.
    Fröhlich J, von Terzi D (2008) Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci 44:349–377CrossRefGoogle Scholar
  68. 68.
    Gamnitzer P, Gravemeier V, Wall WA (2010) Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Comput Methods Appl Mech Eng 199:819–827MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Gamnitzer P, Gravemeier V, Wall WA (2012) A mixed/hybrid Dirichlet formulation for wall-bounded flow problems including turbulent flow. Comput Methods Appl Mech Eng 245–246:22–35MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Garnier E, Adams N, Sagaut P (2009) Large eddy simulation for compressible flows. Springer, New YorkMATHCrossRefGoogle Scholar
  71. 71.
    Georgiadis NJ, Rizzetta DP, Fureby C (2010) Large-eddy simulation: current capabilities, recommended practices, and future research. AIAA J 48:1772–1784CrossRefGoogle Scholar
  72. 72.
    Germano M (1992) Turbulence: the filtering approach. J Fluid Mech 238:325–336MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765MATHCrossRefGoogle Scholar
  74. 74.
    Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82:537–563MathSciNetMATHGoogle Scholar
  75. 75.
    Geurts BJ (2004) Elements of direct and large eddy simulation. R. T. Edwards, PhiladelphiaGoogle Scholar
  76. 76.
    Ghosal S, Lund TS, Moin P, Akselvoll K (1995) A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech 286:229–255MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Gicquel LYM, Staffelbach G, Poinsot T (2012) Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog Energy Combust Sci 38:782–817CrossRefGoogle Scholar
  78. 78.
    Gravemeier V (2006) A consistent dynamic localization model for large eddy simulation of turbulent flows based on a variational formulation. J Comput Phys 218:677–701MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Gravemeier V (2006) Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J Comput Phys 212:400–435MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Methods in Eng 13:249–324MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Gravemeier V (2007) Variational multiscale large eddy simulation of turbulent flow in a diffuser. Comput Mech 39:477–495MATHCrossRefGoogle Scholar
  82. 82.
    Gravemeier V, Comerford A, Yoshihara L, Ismail M, Wall WA (2012) A novel formulation for Neumann inflow boundary conditions in biomechanics. Int J Numer Methods Biomed Eng 28:560–573MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199:853–864MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Gravemeier V, Gee MW, Wall WA (2009) An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems. Comput Methods Appl Mech Eng 198:3821–3835MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Gravemeier V, Kronbichler M, Gee MW, Wall WA (2011) An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-\(\alpha\) time integration, Fourier analysis and application to turbulent flow past a square-section cylinder. Comput Mech 47:217–233MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Gravemeier V, Lenz S, Wall WA (2008) Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods. Comput Mech 41:279–291MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Gravemeier V, Wall WA (2010) An algebraic variational multiscale-multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number. J Comput Phys 229:6047–6070MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Gravemeier V, Wall WA (2011) Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number. Int J Numer Methods Fluids 65:1260–1278MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Gravemeier V, Wall WA (2011) Variational multiscale methods for premixed combustion based on a progress-variable approach. Combust Flame 158:1160–1170CrossRefGoogle Scholar
  90. 90.
    Gravemeier V, Wall WA, Ramm E (2004) A three-level finite element method for the instationary incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 193:1323–1366MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Gravemeier V, Wall WA, Ramm E (2005) Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int J Numer Methods Fluids 48:1067–1099MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Gresho PM, Sani RL (2000) Incompressible flow and the finite element method, volume 1, advection-diffusion. Wiley, ChichesterMATHGoogle Scholar
  93. 93.
    Gresho PM, Sani RL (2000) Incompressible flow and the finite element method, volume 2, isothermal laminar flow. Wiley, ChichesterMATHGoogle Scholar
  94. 94.
    Guermond JL (1999) Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math Model Numer Anal 33:1293–1316MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    Guermond JL, Oden JT, Prudhomme S (2004) Mathematical perspectives on large eddy simulation models for turbulent flows. J Math Fluid Mech 6:194–248MathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Hachem E, Rivaux B, Kloczko T, Digonnet H, Coupez T (2010) Stabilized finite element method for incompressible flows with high Reynolds number. J Comput Phys 229:8643–8665MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:5537–5552MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Hansbo P, Larson MG, Zahedi S (2014) A cut finite element method for a Stokes interface problem. Appl Numer Math 85:90–114MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Harari I, Hauke G (2007) Semidiscrete formulations for transient transport at small time steps. Int J Numer Methods Fluids 54:731–743MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    Härtel C, Kleiser L, Unger F, Friedrich R (1994) Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys Fluids 6:3130–3143MATHCrossRefGoogle Scholar
  101. 101.
    Harten A (1996) Multiresolution representation of data: a general framework. SIAM J Numer Anal 33:1205–1256MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Henke F (2012) An extended finite element method for turbulent premixed combustion. Dissertation, Technische Universität MünchenGoogle Scholar
  103. 103.
    Henke F, Winklmaier M, Gravemeier V, Wall WA (2014) A semi-Lagrangean time-integration approach for extended finite element methods. Int J Numer Methods Eng 98:174–202MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Hickel S, Adams NA, Domaradzki JA (2006) An adaptive local deconvolution method for implicit LES. J Comput Phys 213:413–436MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Hsu TC, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Hughes TJR, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—A paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3–24MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation. Comput Methods Appl Mech Eng 59:85–99MATHCrossRefGoogle Scholar
  109. 109.
    Hughes TJR, Franca LP, Hulbert M (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59MATHCrossRefGoogle Scholar
  111. 111.
    Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512MATHCrossRefGoogle Scholar
  112. 112.
    Hughes TJR, Wells GN (2005) Conservation properties for the Galerkin and stabilised forms of the advection-diffusion and incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 194:1141–1159MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Janicka J, Sadiki A (2005) Large eddy simulation of turbulent combustion systems. Proc Combust Inst 30:537–547CrossRefGoogle Scholar
  114. 114.
    Jansen KE, Tejada-Martínez AE (2002) An evaluation of the variational multiscale model for large-eddy simulation while using a hierarchical basis. AIAA Paper 2002-0283, Reno, NVGoogle Scholar
  115. 115.
    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Jeanmart H, Winckelmans GS (2007) Investigation of eddy-viscosity models modified using discrete filters: a simplified “regularized variational multiscale model” and an “enhanced field model”. Phys Fluids 19:055110MATHCrossRefGoogle Scholar
  117. 117.
    John V (2004) Large eddy simulation of turbulent incompressible flows. Springer, BerlinCrossRefGoogle Scholar
  118. 118.
    John V (2006) On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows. Appl Math 51:321–353MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    John V, Kaya S (2005) A finite element variational multiscale method for the Navier-Stokes equations. SIAM J Sci Comput 26:1485–1503MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    John V, Kaya S (2008) Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity. J Math Anal Appl 344:627–641MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    John V, Kindl A (2010) Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput Methods Appl Mech Eng 199:841–852MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    John V, Kindl A (2010) A variational multiscale method for turbulent flow simulation with adaptive large scale space. J Comput Phys 229:301–312MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Johnson C, Nävert U, Pitkäranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Kamran K, Rossi R, Oñate E (2015) A locally extended finite element method for the simulation of multi-fluid flows using the particle level set method. Comput Methods Appl Mech Eng 294:1–18MathSciNetCrossRefGoogle Scholar
  125. 125.
    Kawamura H, Ohsaka K, Abe H, Yamamoto K (1998) DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int J Heat Fluid Flow 19:482–491CrossRefGoogle Scholar
  126. 126.
    Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230:4536–4558MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Knaepen B, Debliquy O, Carati D (2005) Large-eddy simulation without filter. J Comput Phys 205:98–107MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In: Proceedings of the Royal Society of London A: Mathematical, Physical & Engineering Sciences, vol 434, pp 9–13 (republished English translation of Doklady Akademii Nauk SSSR, vol 30, pp 299–303, 1941 in Russian)Google Scholar
  129. 129.
    Koobus B, Farhat C (2004) A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes - application to vortex shedding. Comput Methods Appl Mech Eng 193:1367–1383MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Krank B, Wall WA (2016) A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys 316:94–116MathSciNetMATHCrossRefGoogle Scholar
  131. 131.
    Labourasse E, Lacanette D, Toutant A, Lubin P, Vincent S, Lebaigue O, Caltagirone JP, Sagaut P (2007) Towards large eddy simulation of isothermal two-phase flows: governing equations and a priori tests. Int J Multiph Flow 33:1–39CrossRefGoogle Scholar
  132. 132.
    Lallemand MH, Steve H, Dervieux A (1992) Unstructured multigridding by volume agglomeration: current status. Comput Fluids 21:397–433MATHCrossRefGoogle Scholar
  133. 133.
    Larsson J, Kawai S, Bodart J, Bermejo-Moreno I (2016) Large eddy simulation with modeled wall-stress: recent progress and future directions. Mech Eng Rev 3:15–00418CrossRefGoogle Scholar
  134. 134.
    Layton W (1999) Weak imposition of “no-slip” conditions in finite element methods. Comput Math Appl 38:129–142MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Layton W, Röhe L, Tran H (2011) Explicitly uncoupled VMS stabilization of fluid flow. Comput Methods Appl Mech Eng 200:3183–3199MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Layton WJ (2002) A connection between subgrid scale eddy viscosity and mixed methods. Appl Math Comput 133:147–157MathSciNetMATHGoogle Scholar
  137. 137.
    Leonard A (1974) Energy cascade in large eddy simulation of turbulent fluid flow. Adv Geophys A 18:237–248CrossRefGoogle Scholar
  138. 138.
    Lesieur M, Métais O (1996) New trends in large-eddy simulations of turbulence. Annu Rev Fluid Mech 28:45–82MathSciNetCrossRefGoogle Scholar
  139. 139.
    Lessani B, Papalexandris MV (2006) Time-accurate calculation of variable density flows with strong temperature gradients and combustion. J Comput Phys 212:218–246MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids 4:633–635CrossRefGoogle Scholar
  141. 141.
    Lin PT, Sala M, Shadid JN, Tuminaro RS (2006) Performance of fully coupled algebraic multilevel domain decomposition preconditioners for incompressible flow and transport. Int J Numer Methods Eng 67:208–225MATHCrossRefGoogle Scholar
  142. 142.
    Lins EF, Elias RN, Fuerra GM, Rochinha FA, Coutinho ALGA (2009) Edge-based finite element implementation of the residual-based variational multiscale method. Int J Numer Methods Fluids 61:1–22MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    Liu S, Meneveau C, Katz J (1994) On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech 215:83–119CrossRefGoogle Scholar
  144. 144.
    Liu W (2009) A triple level finite element method for large eddy simulations. J Comput Phys 228:2690–2706MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    Majda A, Sethian J (1985) The derivation and numerical solution of the equations for zero Mach number combustion. Combust Sci Technol 42:185–205CrossRefGoogle Scholar
  146. 146.
    Martin MP, Piomelli U, Candler GV (2000) Subgrid-scale models for compressible large-eddy simulations. Theor Comput Fluid Dyn 13:361–376MATHGoogle Scholar
  147. 147.
    Masud A, Calderer R (2011) A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput Methods Appl Mech Eng 200:2577–2593MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    Mavriplis DJ, Venkatakrishnan V (1996) A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes. Int J Numer Methods Fluids 23:527–544MATHCrossRefGoogle Scholar
  149. 149.
    Meneveau C (2012) Germano identity-based subgrid-scale modeling: a brief survey of variations on a fertile theme. Phys Fluids 24:121301CrossRefGoogle Scholar
  150. 150.
    Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation. Annu Rev Fluid Mech 32:1–32MathSciNetMATHCrossRefGoogle Scholar
  151. 151.
    Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484MATHCrossRefGoogle Scholar
  152. 152.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150MATHCrossRefGoogle Scholar
  153. 153.
    Moin P (2002) Advances in large eddy simulation methodology for complex flows. Int J Heat Fluid Flow 23:710–720CrossRefGoogle Scholar
  154. 154.
    Moin P, Squires K, Cabot W, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids 3:2746–2757MATHCrossRefGoogle Scholar
  155. 155.
    Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re\(_\tau\) = 590. Phys Fluids 11:943–945MATHCrossRefGoogle Scholar
  156. 156.
    Müller B (1998) Low-Mach-number asymptotics of the Navier-Stokes equations. J Eng Math 34:97–109MathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    Mullin JA, Dahm WJA (2006) Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. II. Experimental results. Phys Fluids 18:035102CrossRefGoogle Scholar
  158. 158.
    Munts EA, Hulshoff SJ, de Borst R (2007) A modal-based multiscale method for large eddy simulation. J Comput Phys 224:389–402MathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    Nagrath S, Jansen KE, Lahey RT Jr (2005) Computation of incompressible bubble dynamics with a stabilized finite element level set method. Comput Methods Appl Mech Eng 194:4565–4587MathSciNetMATHCrossRefGoogle Scholar
  160. 160.
    Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36:9–15MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Oñate E (1998) Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–265MathSciNetMATHCrossRefGoogle Scholar
  162. 162.
    Oñate E, Valls A, Garcia J (2007) Computation of turbulent flows using a finite calculus-finite element formulation. Int J Numer Methods Fluids 54:609–637MathSciNetMATHCrossRefGoogle Scholar
  163. 163.
    Oberai AA, Liu J, Sondak D, Hughes TJR (2014) A residual based eddy viscosity model for the large eddy simulation of turbulent flows. Comput Methods Appl Mech Eng 282:54–70MathSciNetCrossRefGoogle Scholar
  164. 164.
    Oberai AA, Wanderer J (2005) Variational formulation of the Germano identity for the Navier-Stokes equations. J Turbul 6:1–17MathSciNetMATHCrossRefGoogle Scholar
  165. 165.
    Olshanskii M, Lube G, Heister T, Löwe J (2009) Grad-div stabilization and pressure models for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 198:3975–3988MathSciNetMATHCrossRefGoogle Scholar
  166. 166.
    Peters N (2000) Turbulent combustion. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  167. 167.
    Piomelli U (1999) Large-eddy simulation: Achievements and challenges. Prog Aerosp Sci 35:335–362CrossRefGoogle Scholar
  168. 168.
    Piomelli U (2008) Wall-layer models for large-eddy simulations. Prog Aerosp Sci 44:437–446CrossRefGoogle Scholar
  169. 169.
    Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech 34:349–374MathSciNetMATHCrossRefGoogle Scholar
  170. 170.
    Piomelli U, Cabot WH, Moin P, Lee S (1991) Subgrid-scale backscatter in turbulent and transitional flows. Phys Fluids A 3:1766–1771MATHCrossRefGoogle Scholar
  171. 171.
    Pitsch H (2006) Large-eddy simulation of turbulent combustion. Annu Rev Fluid Mech 38:453–482MathSciNetMATHCrossRefGoogle Scholar
  172. 172.
    Poinsot T, Veynante D (2005) Theoretical and numerical combustion. R.T. Edwards, PhiladelphiaGoogle Scholar
  173. 173.
    Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  174. 174.
    Prasad RR, Meneveau C, Sreenivasan KR (1988) Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. Phys Rev Lett 61:74–77CrossRefGoogle Scholar
  175. 175.
    Ramakrishnan S, Collis SS (2006) Partition selection in multiscale turbulence modeling. Phys Fluids 18:075105MathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    Rasquin M, Smith C, Chitale K, Seol ES, Matthews BA, Martin JL, Sahni O, Loy RM, Shephard MS, Jansen KE (2014) Scalable implicit flow solver for realistic wing simulations with flow control. Comput Sci Eng 16:13–21CrossRefGoogle Scholar
  177. 177.
    Rasthofer U (2015) Computational multiscale methods for turbulent single and two-phase flows. Dissertation, Technische Universität MünchenGoogle Scholar
  178. 178.
    Rasthofer U, Burton GC, Wall WA, Gravemeier V (2014) An algebraic variational multiscale-multigrid-multifractal method (AVM\(^4\)) for large-eddy simulation of turbulent variable-density flow at low Mach number. Int J Numer Meth Fluids 76:416–449MathSciNetCrossRefGoogle Scholar
  179. 179.
    Rasthofer U, Burton GC, Wall WA, Gravemeier V (2014) Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers. Phys Fluids 26:055108CrossRefGoogle Scholar
  180. 180.
    Rasthofer U, Gravemeier V (2013) Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow. J Comput Phys 234:79–107MathSciNetMATHCrossRefGoogle Scholar
  181. 181.
    Rasthofer U, Henke F, Wall WA, Gravemeier V (2011) An extended residual-based variational multiscale method for two-phase flow including surface tension. Comput Methods Appl Mech Eng 200:1866–1876MathSciNetMATHCrossRefGoogle Scholar
  182. 182.
    Rasthofer U, Wall WA, Gravemeier V (2016) An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow (under review) Google Scholar
  183. 183.
    Rehm RG, Baum HR (1978) The equations of motion for thermally driven, buoyant flows. J Res Natl Bur Sci 83:297–308MATHCrossRefGoogle Scholar
  184. 184.
    Rodriguez JM, Sahni O, Lahey RT Jr, Jansen KE (2013) A parallel adaptive mesh method for the numerical simulation of multiphase flows. Comput Fluids 87:115–131MathSciNetMATHCrossRefGoogle Scholar
  185. 185.
    Rogallo RS, Moin P (1984) Numerical simulation of turbulent flows. Annu Rev Fluid Mech 16:99–137MATHCrossRefGoogle Scholar
  186. 186.
    Röhe L, Lube G (2010) Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput Methods Appl Mech Eng 199:2331–2342MathSciNetMATHCrossRefGoogle Scholar
  187. 187.
    Russo A (1996) Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 132:335–343MathSciNetMATHCrossRefGoogle Scholar
  188. 188.
    Sagaut P (2006) Large eddy simulation for incompressible flows. Springer, BerlinMATHGoogle Scholar
  189. 189.
    Sagaut P, Ciardi M (2006) A finite-volume variational multiscale method coupled with a discrete interpolation filter for large-eddy simulation of isotropic turbulence and fully developed channel flow. Phys of Fluids 18:115101MATHCrossRefGoogle Scholar
  190. 190.
    Sagaut P, Deck S, Terracol M (2006) Multiscale and multiresolution approaches in turbulence. Imperial College Press, LondonMATHCrossRefGoogle Scholar
  191. 191.
    Sauerland H, Fries TP (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230:3369–3390MathSciNetMATHCrossRefGoogle Scholar
  192. 192.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31:567–603MathSciNetCrossRefGoogle Scholar
  193. 193.
    Schott B, Rasthofer U, Gravemeier V, Wall WA (2015) A face-oriented stabilized Nitsche-type extended variational multiscale method for incompressible two-phase flow. Int J Numer Methods Eng 104:721–748MathSciNetMATHCrossRefGoogle Scholar
  194. 194.
    Schott B, Wall WA (2014) A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 276:233–265MathSciNetCrossRefGoogle Scholar
  195. 195.
    Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18:376–404MATHCrossRefGoogle Scholar
  196. 196.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  197. 197.
    Spalart PR (2009) Detached-eddy simulation. Annu Rev Fluid Mech 41:181–202MATHCrossRefGoogle Scholar
  198. 198.
    Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20:181–195MATHCrossRefGoogle Scholar
  199. 199.
    Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu C, Liu Z (eds) Advances in DNS/LES. Greyden Press, Columbus, pp 137–147Google Scholar
  200. 200.
    Spalding DB (1961) A single formula for the law of the wall. J Appl Mech 28:444–458MATHCrossRefGoogle Scholar
  201. 201.
    Sreenivasan KR (1991) Fractals and multifractals in fluid turbulence. Annu Rev Fluid Mech 23:539–600MathSciNetCrossRefGoogle Scholar
  202. 202.
    Sreenivasan KR, Stolovitzky G (1995) Turbulent cascades. J Stat Phys 78:311–333MATHCrossRefGoogle Scholar
  203. 203.
    Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63:139–148MathSciNetMATHCrossRefGoogle Scholar
  204. 204.
    Stolz S, Adams NA (1999) An approximate deconvolution procedure for large-eddy simulation. Phys Fluids 11:1699–1701MATHCrossRefGoogle Scholar
  205. 205.
    Stolz S, Schlatter P, Kleiser L (2005) High-pass filtered eddy-viscosity models for large-eddy simulations of transitional and turbulent flow. Phys Fluids 17:065103MATHCrossRefGoogle Scholar
  206. 206.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MathSciNetMATHCrossRefGoogle Scholar
  207. 207.
    Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, CambridgeMATHGoogle Scholar
  208. 208.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242MATHCrossRefGoogle Scholar
  209. 209.
    Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430MATHCrossRefGoogle Scholar
  210. 210.
    Tryggvason G, Scardovelli R, Zaleski S (2011) Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press, New YorkMATHCrossRefGoogle Scholar
  211. 211.
    Tuminaro R, Tong C (2000) Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: J. Donnelley (ed.) Super computing 2000 proceedingsGoogle Scholar
  212. 212.
    Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56:179–196MathSciNetMATHCrossRefGoogle Scholar
  213. 213.
    Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci 28:192–266CrossRefGoogle Scholar
  214. 214.
    Vreman AW (2003) The filtering analog of the varaitional multiscale method in large-eddy simulation. Phys Fluids 15:L61–L64MathSciNetCrossRefGoogle Scholar
  215. 215.
    Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids 16:3670–3681MATHCrossRefGoogle Scholar
  216. 216.
    Wanderer J, Oberai AA (2008) A two-parameter variational multiscale method for large eddy simulation. Phys Fluids 20:085107MATHCrossRefGoogle Scholar
  217. 217.
    Wang M, Moin P (2002) Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys Fluids 14:2043–2051MathSciNetMATHCrossRefGoogle Scholar
  218. 218.
    Warnatz J, Maas U, Dibble RW (2001) Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Springer, BerlinMATHCrossRefGoogle Scholar
  219. 219.
    Wasberg CE, Gjesdal T, Reif BAP, Andreassen O (2009) Variational multiscale turbulence modelling in a high order spectral element method. J Comput Phys 228:7333–7356MathSciNetMATHCrossRefGoogle Scholar
  220. 220.
    Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis. Int J Numer Methods Fluids 35:93–116MATHCrossRefGoogle Scholar
  221. 221.
    Williams FA (1985) Combustion theory. Perseus Books, ReadingGoogle Scholar
  222. 222.
    Zang Y, Street RL, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys Fluids 5:3186–3196MATHCrossRefGoogle Scholar
  223. 223.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method, Volume 1, its basis & fundamentals. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2017

Authors and Affiliations

  1. 1.Computational Science and Engineering LaboratoryETH ZurichZurichSwitzerland
  2. 2.Institute for Computational MechanicsTechnical University of MunichGarchingGermany

Personalised recommendations