Multiscale Computational Homogenization: Review and Proposal of a New Enhanced-First-Order Method

Original Paper

Abstract

The continuous increase of computational capacity has encouraged the extensive use of multiscale techniques to simulate the material behaviour on several fields of knowledge. In solid mechanics, the multiscale approaches which consider the macro-scale deformation gradient to obtain the homogenized material behaviour from the micro-scale are called first-order computational homogenization. Following this idea, the second-order FE2 methods incorporate high-order gradients to improve the simulation accuracy. However, to capture the full advantages of these high-order framework the classical boundary value problem (BVP) at the macro-scale must be upgraded to high-order level, which complicates their numerical solution. With the purpose of obtaining the best of both methods i.e. first-order and second-order, in this work an enhanced-first-order computational homogenization is presented. The proposed approach preserves a classical BVP at the macro-scale level but taking into account the high-order gradient of the macro-scale in the micro-scale solution. The developed numerical examples show how the proposed method obtains the expected stress distribution at the micro-scale for states of structural bending loads. Nevertheless, the macro-scale results achieved are the same than the ones obtained with a first-order framework because both approaches share the same macro-scale BVP.

Notes

Acknowledgements

This work has been supported by European Research Council through of Advanced Grant: ERC-2012-AdG 320815 COMP-DES-MAT “Advanced tools for computational design of engineering materials”, by the Spanish Ministerio de Economia y Competividad through the project: MAT2014-60647-R “Multi-scale and multi-objective optimization of composite laminate structures (OMMC)”, by European Union 7th Framework Programme under an IRSES Marie Curie Action: PIRSES-GA-2013-612607 TCAiNMaND, by the collaboration effort between the EU-H2020 (Agreement No 690638) and the People’s Republic of China (Agreement No [2016]92) “ECOCOMPASS”, and by Universitat Politècnica de Catalunya (UPC). All this support is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animals Rights Statement

This work does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Amstutz S, Giusti SM, Novotny AA, De Souza Neto EA (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84(6):733–756. doi: 10.1002/nme.2922 (arXiv:1010.1724)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barbero EJ (2010) Introduction to composite materials design, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Bazant ZP (2010) Can multiscale-multiphysics methods predict softening damage and structural failure? Int J Multiscale Comput Eng 8(1):61–67. doi: 10.1615/IntJMultCompEng.v8.i1.50 CrossRefGoogle Scholar
  4. 4.
    Belytschko T, Loehnert S, Song JH (2008) Multiscale aggregating discontinuities: a method for circumventing loss of material stability. Int J Numer Methods Eng 73(6):869–894. doi: 10.1002/nme.2156 (arXiv:1010.1724)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Belytschko T, Song JH (2010) Coarse-graining of multiscale crack propagation. Int J Numer Methods Eng 81(5):537–563. doi: 10.1002/nme.2694 (arXiv:1010.1724)MATHGoogle Scholar
  6. 6.
    Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224. doi: 10.1016/0045-7825(88)90086-2 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bensoussan A, Lions J, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, AmsterdamMATHGoogle Scholar
  8. 8.
    Blanco PJ, Giusti SM (2014) Thermomechanical multiscale constitutive modeling: accounting for microstructural thermal effects. J Elast 115(1):27–46. doi: 10.1007/s10659-013-9445-2 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Broughton J, Abraham F, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4):2391–2403. doi: 10.1103/PhysRevB.60.2391 CrossRefGoogle Scholar
  10. 10.
    Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13(4):223–227. doi: 10.1016/0022-5096(65)90011-6 CrossRefGoogle Scholar
  11. 11.
    Chatzigeorgiou G, Javili A, Steinmann P (2014) Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math Mech Solids 19(2):193–211. doi: 10.1177/1081286512458109 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Chung PW, Tamma KK, Namburu RR (2001) Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Compos Part A Appl Sci Manuf 32(9):1291–1301. doi: 10.1016/S1359-835X(01)00100-2 CrossRefGoogle Scholar
  13. 13.
    Coenen E, Kouznetsova V, Geers M (2012a) Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng 90(1):1–21. doi: 10.1002/nme.3298 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Coenen EWC, Kouznetsova VG, Geers MGD (2012b) Multi-scale continuous-discontinuous framework for computational- homogenization-localization. J Mech Phys Solids 60(8):1486–1507. doi: 10.1016/j.jmps.2012.04.002 MathSciNetCrossRefGoogle Scholar
  15. 15.
    de Souza Neto EA, Feijóo RA (2006) Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation. Techinical report, LNCC research and development report, No 16. National laboratory for scientific computing, PetrópolisGoogle Scholar
  16. 16.
    de Souza Neto E, Feijóo R (2008) On the equivalence between spatial and material volume averaging of stress in large strain multi-scale solid constitutive models. Mech Mater 40(10):803–811. doi: 10.1016/j.mechmat.2008.04.006 CrossRefGoogle Scholar
  17. 17.
    Dong JW, Feng MI (2010) Asymptotic expansion homogenization for simulating progressive damage of 3D braided composites. Compos Struct 92(4):873–882. doi: 10.1016/j.compstruct.2009.09.026 CrossRefGoogle Scholar
  18. 18.
    Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524. doi: 10.1016/0022-5096(96)00007-5 MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Elmekati A, Shamy UE (2010) A practical co-simulation approach for multiscale analysis of geotechnical systems. Comput Geotech 37(4):494–503. doi: 10.1016/j.compgeo.2010.02.002 CrossRefGoogle Scholar
  20. 20.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys Eng Sci 241:376–396. doi: 10.1098/rspa.1957.0133 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ferrer A, Oliver J, Cante JC, Lloberas-Valls O (2016) Vademecum-based approach to multi-scale topological material design. Adv Model Simul Eng Sci 3(1):1–22. doi: 10.1186/s40323-016-0078-4 CrossRefGoogle Scholar
  22. 22.
    Feyel F (1998) Application du calcul parallèle aux modèlles à grand nombre de variables inernes. Ph.D. thesis, Ecole des Mines de ParisGoogle Scholar
  23. 23.
    Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354. doi: 10.1016/S0927-0256(99)00077-4 CrossRefGoogle Scholar
  24. 24.
    Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244. doi: 10.1016/S0045-7825(03)00348-7 MATHCrossRefGoogle Scholar
  25. 25.
    Feyel F, Chaboche JL (2000) FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330. doi: 10.1016/S0045-7825(99)00224-8 MATHCrossRefGoogle Scholar
  26. 26.
    Fish J, Shek K, Pandheeradi M, Shephard MS (1997) Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput Methods Appl Mech Eng 148(1–2):53–73. doi: 10.1016/S0045-7825(97)00030-3 MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Fish J, Yu Q, Shek K (1999) Computational damage mechanics for composite materials based on mathematical homogenization. Int J Numer Methods Eng 45(11):1657–1679. doi: 10.1002/(SICI)1097-0207(19990820)45:11<1657::AID-NME648>3.0.CO;2-H MATHCrossRefGoogle Scholar
  28. 28.
    Fish J, Yuan Z (2005) Multiscale enrichment based on partition of unity. Int J Numer Methods Eng 62(10):1341–1359. doi: 10.1002/nme.1230 MATHCrossRefGoogle Scholar
  29. 29.
    Geers MGD, Coenen EWC, Kouznetsova VG (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci Eng 15(4):S393–S404. doi: 10.1088/0965-0393/15/4/S06 CrossRefGoogle Scholar
  30. 30.
    Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182. doi: 10.1016/j.cam.2009.08.077 MATHCrossRefGoogle Scholar
  31. 31.
    Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385. doi: 10.1016/S0020-7683(00)00167-0 MATHCrossRefGoogle Scholar
  32. 32.
    Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level model for damage evolution in microstructurally debonding composites. Mech Mater 39(3):241–266. doi: 10.1016/j.mechmat.2006.05.004 CrossRefGoogle Scholar
  33. 33.
    Gitman I, Askes H, Sluys L (2007) Representative volume: existence and size determination. Eng Fract Mech 74(16):2518–2534. doi: 10.1016/j.engfracmech.2006.12.021 CrossRefGoogle Scholar
  34. 34.
    Giusti S, Blanco P, de Souza Netoo E, Feijóo R (2009) An assessment of the Gurson yield criterion by a computational multi-scale approach. Eng Comput 26(3):281–301. doi: 10.1108/02644400910943626 MATHCrossRefGoogle Scholar
  35. 35.
    González C, Segurado J, LLorca J (2004) Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models. J Mech Phys Solids 52(7):1573–1593. doi: 10.1016/j.jmps.2004.01.002 MATHCrossRefGoogle Scholar
  36. 36.
    Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198. doi: 10.1016/0045-7825(90)90148-F MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I–yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99(1):2–15. doi: 10.1115/1.3443401 CrossRefGoogle Scholar
  38. 38.
    Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29(1):143–150. doi: 10.1115/1.3636446 MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10(4):335–342. doi: 10.1016/0022-5096(62)90004-2 MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140. doi: 10.1016/0022-5096(63)90060-7 MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Hernández J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189. doi: 10.1016/j.cma.2014.03.011 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372. doi: 10.1016/0022-5096(63)90036-X MATHCrossRefGoogle Scholar
  43. 43.
    Hill R (1965a) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222. doi: 10.1016/0022-5096(65)90010-4 CrossRefGoogle Scholar
  44. 44.
    Hill R (1965b) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13(2):89–101. doi: 10.1016/0022-5096(65)90023-2 MATHCrossRefGoogle Scholar
  45. 45.
    Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond A 326(1565):131–147. doi: 10.1098/rspa.1972.0001 MATHCrossRefGoogle Scholar
  46. 46.
    Hill R (1984) On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math Proc Camb Philos Soc 95(03):481. doi: 10.1017/S0305004100061818 MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Hund A, Ramm E (2007) Locality constraints within multiscale model for non-linear material behaviour. Int J Numer Methods Eng 70(13):1613–1632. doi: 10.1002/nme.1953 MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Ilic S, Hackl K (2009) Application of the multiscale FEM to the modeling of nonlinear multiphase materials. J Theor Appl Mech 47(3):537–551Google Scholar
  49. 49.
    Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(25–26):4197–4216. doi: 10.1016/j.ijsolstr.2013.08.024 CrossRefGoogle Scholar
  50. 50.
    Kaczmarczyk L, Pearce CJ, Bićanić N (2008) Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. Int J Numer Methods Eng 74(3):506–522. doi: 10.1002/nme.2188 MATHCrossRefGoogle Scholar
  51. 51.
    Kalamkarov AL, Andrianov IV, Danishevs’kyy VV (2009) Asymptotic homogenization of composite materials and structures. Appl Mech Rev 62(3):030,802, doi: 10.1115/1.3090830, arXiv:77950863481
  52. 52.
    Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S (2006) Apparent and effective physical properties of heterogeneous materials: representativity of samples of two materials from food industry. Comput Methods Appl Mech Eng 195(33–36):3960–3982. doi: 10.1016/j.cma.2005.07.022 MATHCrossRefGoogle Scholar
  53. 53.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679. doi: 10.1016/S0020-7683(03)00143-4 MATHCrossRefGoogle Scholar
  54. 54.
    Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75. doi: 10.1007/s11831-008-9028-8 MATHCrossRefGoogle Scholar
  55. 55.
    Kato J, Yachi D, Terada K, Kyoya T (2014) Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis. Struct Multidiscip Optim 49(4):595–608. doi: 10.1007/s00158-013-0994-6 MathSciNetCrossRefGoogle Scholar
  56. 56.
    Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79. doi: 10.1016/j.cma.2014.04.020 MathSciNetCrossRefGoogle Scholar
  57. 57.
    Klinge S, Hackl K (2012) Application of the multiscale fem to the modeling of nonlinear composites with a random microstructure. Int J Multiscale Comput Eng 10(3):213–227. doi: 10.1615/IntJMultCompEng.002059 CrossRefGoogle Scholar
  58. 58.
    Kouznetsova VG (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The NetherlandsGoogle Scholar
  59. 59.
    Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. doi: 10.1007/s004660000212 MATHCrossRefGoogle Scholar
  60. 60.
    Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260. doi: 10.1002/nme.541 MATHCrossRefGoogle Scholar
  61. 61.
    Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550. doi: 10.1016/j.cma.2003.12.073 MATHCrossRefGoogle Scholar
  62. 62.
    Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Numer Methods Eng 52(12):121–138. doi: 10.1002/nme.274 CrossRefGoogle Scholar
  63. 63.
    Lahellec N, Suquet P (2007) On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids 55(9):1932–1963. doi: 10.1016/j.jmps.2007.02.003 MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Lamari H, Ammar A, Cartraud P, Legrain G, Chinesta F, Jacquemin F (2010) Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. Arch Comput Methods Eng 17(4):373–391. doi: 10.1007/s11831-010-9051-4 MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Larsson R, Diebels S (2007) A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Int J Numer Methods Eng 69(12):2485–2512. doi: 10.1002/nme.1854. arXiv:1010.1724 MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Larsson R, Zhang Y (2007) Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. J Mech Phys Solids 55(4):819–841. doi: 10.1016/j.jmps.2006.09.010 MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) On micro-to-macro connections in domain decomposition multiscale methods. Comput Methods Appl Mech Eng 225:177–196. doi: 10.1016/j.cma.2012.03.022 MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Mandel J (1971) Plasticité Classique Et Viscoplasticité. International Centre for Mechanical Sciences. Courses and lectures, Springer, Udine, https://books.google.es/books?id=zvHaoAEACAAJ
  69. 69.
    Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82(7–8):593–606. doi: 10.1016/j.compstruc.2004.01.004 CrossRefGoogle Scholar
  70. 70.
    McDowell DL (2010) A perspective on trends in multiscale plasticity. Int J Plast 26(9):1280–1309. doi: 10.1016/j.ijplas.2010.02.008 MATHCrossRefGoogle Scholar
  71. 71.
    Melro A, Camanho P, Pinho S (2012) Influence of geometrical parameters on the elastic response of unidirectional composite materials. Compos Struct 94(11):3223–3231. doi: 10.1016/j.compstruct.2012.05.004 CrossRefGoogle Scholar
  72. 72.
    Michel J, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143. doi: 10.1016/S0045-7825(98)00227-8 MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418. doi: 10.1016/S0045-7825(98)00218-7 MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322. doi: 10.1002/nme.515 MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Miehe C, Schröder J, Bayreuther C (2002) On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure. Acta Mech 155(1–2):1–16. doi: 10.1007/BF01170836 MATHCrossRefGoogle Scholar
  76. 76.
    Miehe C, Dettmar J, Zäh D (2010) Homogenization and two-scale simulations of granular materials for different microstructural constraints. Int J Numer Methods Eng 83(8–9):1206–1236. doi: 10.1002/nme.2875 MATHCrossRefGoogle Scholar
  77. 77.
    Miehe C, Vallicotti D, Teichtmeister S (2016) Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. Application to soft matter EE, ME and MEE composites. Comput Methods Appl Mech Eng 300:294–346. doi: 10.1016/j.cma.2015.10.013 MathSciNetCrossRefGoogle Scholar
  78. 78.
    Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72(4–5):300–317. doi: 10.1007/s00419-002-0212-2 MATHCrossRefGoogle Scholar
  79. 79.
    Monteiro E, Yvonnet J, He Q (2008) Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Comput Mater Sci 42(4):704–712. doi: 10.1016/j.commatsci.2007.11.001 CrossRefGoogle Scholar
  80. 80.
    Mosby M, Matouš K (2015) Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. Int J Numer Methods Eng 102(3–4):748–765. doi: 10.1002/nme.4755 MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Nemat-Nasser S (1999a) Averaging theorems in finite deformation plasticity. Mech Mater 31(8):493–523. doi: 10.1016/S0167-6636(98)00073-8 CrossRefGoogle Scholar
  82. 82.
    Nemat-Nasser S (1999b) Averaging theorems in finite deformation plasticity. Mech Mater 31(8):493–523. doi: 10.1016/S0167-6636(98)00073-8 CrossRefGoogle Scholar
  83. 83.
    Nguyen VPHU, Stroeven M, Sluys LJ (2011) Multiscale continuous and discontinuous modeling of heterogeneous materials : a review on recent developments. J Multiscale Model 3(4):1–42. doi: 10.1142/S1756973711000509 MathSciNetCrossRefGoogle Scholar
  84. 84.
    Oden JT, Vemaganti K, Moës N (1999) Hierarchical modeling of heterogeneous solids. Comput Methods Appl Mech Eng 172(1):3–25. doi: 10.1016/S0045-7825(98)00224-2 MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Oliver J (1996) Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: fundamentals. Int J Numer Methods Eng 39(21):3575–3600. doi: 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E MATHCrossRefGoogle Scholar
  86. 86.
    Oliver J, Caicedo M, Roubin E, Huespe AE, Hernández JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427. doi: 10.1016/j.cma.2015.05.012 MathSciNetCrossRefGoogle Scholar
  87. 87.
    Oliver J, Huespe AE (2004a) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193(30–32):3195–3220. doi: 10.1016/j.cma.2003.07.013 MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Oliver J, Huespe AE (2004b) Theoretical and computational issues in modelling material failure in strong discontinuity scenarios. Comput Methods Appl Mech Eng 193(27–29):2987–3014. doi: 10.1016/j.cma.2003.08.007 MATHCrossRefGoogle Scholar
  89. 89.
    Oller S, Miquel Canet J, Zalamea F (2005) Composite material behavior using a homogenization double scale method. J Eng Mech 131(1):65–79. doi: 10.1061/(ASCE)0733-9399(2005)131:1(65) CrossRefGoogle Scholar
  90. 90.
    Ostoja-Starzewski M (2002) Microstructural randomness versus representative volume element in thermomechanics. J Appl Mech 69(1):25–35. doi: 10.1115/1.1410366 MATHCrossRefGoogle Scholar
  91. 91.
    Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132. doi: 10.1016/j.probengmech.2005.07.007 MathSciNetCrossRefGoogle Scholar
  92. 92.
    Otero F (2016) Multiscale numerical modelling of microstructured reinforced composites. Ph.D. thesis, Universitat Politècnica de Catalunya (BarcelonaTECH). doi: 10.13140/RG.2.1.5155.5600
  93. 93.
    Otero F, Martinez X, Oller S, Salomón O (2015) An efficient multi-scale method for non-linear analysis of composite structures. Compos Struct 131:707–719. doi: 10.1016/j.compstruct.2015.06.006 CrossRefGoogle Scholar
  94. 94.
    Otero F, Oller S, Martinez X, Salomón O (2015b) Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations. Compos Struct 122:405–416. doi: 10.1016/j.compstruct.2014.11.041 CrossRefGoogle Scholar
  95. 95.
    Özdemir I, Brekelmans WAM, Geers MGD (2008) FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(3–4):602–613. doi: 10.1016/j.cma.2008.09.008 MATHCrossRefGoogle Scholar
  96. 96.
    Pérez MA, Martínez X, Oller S, Gil L, Rastellini F, Flores F (2013) Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced mixing theory. Compos Struct 104:239–248. doi: 10.1016/j.compstruct.2013.04.021 CrossRefGoogle Scholar
  97. 97.
    Perić D, de Souza Neto EA, Feijóo RA, Partovi M, Molina AJC (2011) On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Int J Numer Methods Eng 87(1–5):149–170. doi: 10.1002/nme.3014 MATHCrossRefGoogle Scholar
  98. 98.
    Pinho-da Cruz J, Oliveira J, Teixeira-Dias F (2009) Asymptotic homogenisation in linear elasticity. Part I: mathematical formulation and finite element modelling. Comput Mater Sci 45(4):1073–1080. doi: 10.1016/j.commatsci.2009.02.025 CrossRefGoogle Scholar
  99. 99.
    PLCd research group (1991-to present) PLCd: Non-linear thermo-mechanic finite element code for research-oriented applications. Free access code developed at CIMNE. http://www.cimne.com/PLCd
  100. 100.
    Reis FJP, Andrade Pires FM (2013) An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems. Comput Methods Appl Mech Eng 257:164–182. doi: 10.1016/j.cma.2013.01.003 MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Renard J, Marmonier MF (1987) Etude de l’initiation de l’endommagement dans la matrice d’un matériau composite par une méthode d’homogénéisation. Aerosp Sci Technol 6:37–51Google Scholar
  102. 102.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. In: Lecture Notes in Physics, Lecture Notes in Physics, vol 127, Springer, Berlin, Heidelberg. doi: 10.1007/3-540-10000-8
  103. 103.
    Sanchez-Palencia E (1983) Homogenization method for the study of composite media. In: Verhulst F (ed) Asymptotic analysis II, Lecture Notes in mathematics, vol 985, Springer, Berlin, Heidelberg, pp 192–214. doi: 10.1007/BFb0062368
  104. 104.
    Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46(3):595–599. doi: 10.1016/j.commatsci.2009.03.035 CrossRefGoogle Scholar
  105. 105.
    Schröder J (2014) A numerical two-scale homogenization scheme: the FE2-method. In: Plasticity and Beyond: Microstructures, Crystal-Plasticity and Phase Transitions, vol 550, pp 1–64. doi: 10.1007/978-3-7091-1625-8_1
  106. 106.
    Schury F, Stingl M, Wein F (2012) Efficient two-scale optimization of manufacturable graded structures. SIAM J Sci Comput 34(6):B711–B733. doi: 10.1137/110850335 MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121. doi: 10.1016/S0022-5096(02)00021-2 MATHCrossRefGoogle Scholar
  108. 108.
    Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192. doi: 10.1016/S0045-7825(97)00139-4 MATHCrossRefGoogle Scholar
  109. 109.
    Smit R, Brekelmans W, Meijer H (1999) Prediction of the large-strain mechanical response of heterogeneous polymer systems: local and global deformation behaviour of a representative volume element of voided polycarbonate. J Mech Phys Solids 47(2):201–221. doi: 10.1016/S0022-5096(98)00089-1 MATHCrossRefGoogle Scholar
  110. 110.
    Somer DD, de Souza Neto EA, Dettmer WG, Perić D (2009) A sub-stepping scheme for multi-scale analysis of solids. Comput Methods Appl Mech Eng 198(9–12):1006–1016. doi: 10.1016/j.cma.2008.11.013 MATHCrossRefGoogle Scholar
  111. 111.
    Song JH, Belytschko T (2009) Multiscale aggregating discontinuities method for micro-macro failure of composites. Compos Part B Eng 40(6):417–426. doi: 10.1016/j.compositesb.2009.01.007 CrossRefGoogle Scholar
  112. 112.
    Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877–6896. doi: 10.1016/j.ijsolstr.2003.07.001 MATHCrossRefGoogle Scholar
  113. 113.
    Suquet PM (1985) Local and global aspects in the mathematical theory of plasticity. In: Sawczuk A, Bianchi G (eds) Plasticity today—modeling methods and applications. Elsevier, London, pp 279–310Google Scholar
  114. 114.
    Swan CC (1994) Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Comput Methods Appl Mech Eng 117(3–4):249–267. doi: 10.1016/0045-7825(94)90117-1 MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Takano N, Ohnishi Y, Zako M, Nishiyabu K (2000) The formulation of homogenization method applied to large deformation problem for composite materials. Int J Solids 37(44):6517–6535. doi: 10.1016/S0020-7683(99)00284-X MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Temizer I (2012) On the asymptotic expansion treatment of two-scale finite thermoelasticity. Int J Eng Sci 53:74–84. doi: 10.1016/j.ijengsci.2012.01.003 MathSciNetCrossRefGoogle Scholar
  117. 117.
    Temizer I, Wriggers P (2011a) An adaptive multiscale resolution strategy for the finite deformation analysis of microheterogeneous structures. Comput Methods Appl Mech Eng 200(37):2639–2661. doi: 10.1016/j.cma.2010.06.013 MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Temizer I, Wriggers P (2011b) Homogenization in finite thermoelasticity. J Mech Phys Solids 59(2):344–372. doi: 10.1016/j.jmps.2010.10.004 MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Temizer I, Zohdi TI (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40(2):281–298. doi: 10.1007/s00466-006-0097-y MATHCrossRefGoogle Scholar
  120. 120.
    Terada K, Hori M, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct 37(16):2285–2311. doi: 10.1016/S0020-7683(98)00341-2 MATHCrossRefGoogle Scholar
  121. 121.
    Terada K, Saiki I, Matsui K, Yamakawa Y (2003) Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Comput Methods Appl Mech Eng 192(31–32):3531–3563. doi: 10.1016/S0045-7825(03)00365-7 MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Terada K, Kurumatani M, Ushida T, Kikuchi N (2010) A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput Mech 46(2):269–285. doi: 10.1007/s00466-009-0400-9 MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190(40–41):5427–5464. doi: 10.1016/S0045-7825(01)00179-7 MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Unger JF (2013) An FE2-X1 approach for multiscale localization phenomena. J Mech Phys Solids 61(4):928–948. doi: 10.1016/j.jmps.2012.12.010 MathSciNetCrossRefGoogle Scholar
  125. 125.
    van der Sluis O, Schreurs PJG, Meijer HEH (1999) Effective properties of a viscoplastic constitutive model obtained by homogenization. Mech Mater 31(11):743–759. doi: 10.1016/S0167-6636(99)00028-9 CrossRefGoogle Scholar
  126. 126.
    van der Sluis O, Schreurs P, Brekelmans W, Meijer H (2000) Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech Mater 32(8):449–462. doi: 10.1016/S0167-6636(00)00019-3 CrossRefGoogle Scholar
  127. 127.
    Wellmann C, Wriggers P (2012) A two-scale model of granular materials. Comput Methods Appl Mech Eng 205:46–58. doi: 10.1016/j.cma.2010.12.023 MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542. doi: 10.1016/j.cma.2014.05.022 CrossRefGoogle Scholar
  129. 129.
    Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368. doi: 10.1016/j.jcp.2006.09.019 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2016

Authors and Affiliations

  1. 1.Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI)PortoPortugal
  2. 2.Departament d’Enginyeria Civil i AmbientalETSECCPB, Technical University of CataloniaBarcelonaSpain
  3. 3.Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)BarcelonaSpain
  4. 4.Departamento de Ciencia e Ingeniería Náutica, FNBTechnical University of CataloniaBarcelonaSpain

Personalised recommendations