Skip to main content
Log in

Complex Hybrid Numerical Model in Application to Failure Modelling in Multiphase Materials

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Development of a discrete/continuum numerical model of different failure modes operating in dual phase steels during deformation is the main goal of the research. Proposed approach is based on a random cellular automata (RCA) model incorporated in a fully coupled manner to the finite element (FE) framework. As a result, the RCAFE model that can take into account fracture initiation within martensite phase, delamination between martensite and ferrite phases, ferrite phase fracture and delamination between ferrite and ferrite grain boundaries was established. Details on the developed cellular automata model including random space definition, state of CA cells as well as properly defined transition rules are recapitulated in the work. Developed data bridging technique between RCA and FE models is discussed within that part. Particular attention, however, is put on model parameters identification stage, which was realized with the inverse analysis technique on the basis of in situ tensile tests. Finally, examples of model application to multiscale numerical simulation of three point bending, which was selected as a case study, are presented to highlight predictive capabilities of the developed RCAFE solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Pushkareva I (2009) Evolution microstructurale d’un acier dual phase. Oprimisation de la resistance a l’endommagement. Doctoral dissertation, Ecole des Mines Nancy

  2. Szewczyk AF, Gurland J (1982) A study of the deformation and fracture of a dual-phase steel. Metall Trans A 13:1821–1826. doi:10.1007/BF02647838

    Article  Google Scholar 

  3. Speich G, Miller R (1979) Mechanical properties of ferrite-martensite steels. The Metallurgical Society of AIME, Warrendale, pp 145–182

    Google Scholar 

  4. Balliger N (1982) Advances in the physical metallurgy and applications of steels. The Metals Society, London

    Google Scholar 

  5. Ahmad E, Manzoor T, Ali KL, Akhter JI (2000) Effect of microvoid formation on the tensile properties of dual-phase steel. J Mater Eng Perform 9:306–310. doi:10.1361/105994900770345962

    Article  Google Scholar 

  6. Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater 56:4954–4964. doi:10.1016/j.actamat.2008.06.015

    Article  Google Scholar 

  7. Avramovic-Cingara G, Ososkov Y, Jain MK, Wilkinson DS (2009) Effect of martensite distribution on damage behaviour in DP600 dual phase steels. Mater Sci Eng A 516:7–16. doi:10.1016/j.msea.2009.03.055

    Article  Google Scholar 

  8. Okayasu M, Sato K, Mizuno M et al (2008) Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel. Int J Fatigue 30:1358–1365. doi:10.1016/j.ijfatigue.2007.10.011

    Article  Google Scholar 

  9. Zok F, Embury JD (1990) On the analysis of delamination fractures in high-strength steels. Metall Trans A 21:2565–2575. doi:10.1007/BF02647002

    Article  Google Scholar 

  10. Kadkhodapour J, Schmauder S, Raabe D et al (2011) Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater 59:4387–4394. doi:10.1016/j.actamat.2011.03.062

    Article  Google Scholar 

  11. Golovashchenko SF, Gillard AJ, Mamutov AV (2013) Formability of dual phase steels in electrohydraulic forming. J Mater Process Technol 213:1191–1212. doi:10.1016/j.jmatprotec.2013.01.026

    Article  Google Scholar 

  12. Dalloz A, Besson J, Gourgues-Lorenzon A-F et al (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76:1411–1424. doi:10.1016/j.engfracmech.2008.10.009

    Article  Google Scholar 

  13. Soyarslan C, Malekipour Gharbi M, Tekkaya AE (2012) A combined experimental–numerical investigation of ductile fracture in bending of a class of ferritic–martensitic steel. Int J Solids Struct 49:1608–1626. doi:10.1016/j.ijsolstr.2012.03.009

    Article  Google Scholar 

  14. Ramazani A, Abbasi M, Prahl U, Bleck W (2012) Failure analysis of DP600 steel during the cross-die test. Comput Mater Sci 64:101–105. doi:10.1016/j.commatsci.2012.01.031

    Article  Google Scholar 

  15. Behrens B-A, Bouguecha A, Vucetic M, Peshekhodov I (2012) Characterisation of the quasi-static flow and fracture behaviour of dual-phase steel sheets in a wide range of plane stress states. Arch Civil Mech Eng 12:397–406. doi:10.1016/j.acme.2012.06.017

    Article  Google Scholar 

  16. Prawoto Y, Fanone M, Shahedi S et al (2012) Computational approach using Johnson–Cook model on dual phase steel. Comput Mater Sci 54:48–55. doi:10.1016/j.commatsci.2011.10.021

    Article  Google Scholar 

  17. Vajragupta N, Uthaisangsuk V, Schmaling B et al (2012) A micromechanical damage simulation of dual phase steels using XFEM. Comput Mater Sci 54:271–279. doi:10.1016/j.commatsci.2011.10.035

    Article  Google Scholar 

  18. Yu TT, Liu P (2011) Improved implementation of the extended finite element method for stress analysis around cracks. Arch Civil Mech Eng 11:787–805. doi:10.1016/S1644-9665(12)60116-2

    Article  Google Scholar 

  19. Jovicic G, Zivkovic M, Jovicic N et al (2010) Improvement of algorithm for numerical crack modelling. Arch Civil Mech Eng 10:19–35. doi:10.1016/S1644-9665(12)60134-4

    Article  Google Scholar 

  20. Madej Ł, Perzyński K (2013) Rozwój wieloskalowych metod obliczeniowych w zastosowaniu do modelowania procesów odkształcenia plastycznego. Hutnik, Wiadomości Hutnicze 80:242–247

    Google Scholar 

  21. Neumann J (1966) Theory of self-replicating automata. University of Illinois Press, Urbana

    Google Scholar 

  22. Bos C, Mecozzi MG, Sietsma J (2010) A microstructure model for recrystallisation and phase transformation during the dual-phase steel annealing cycle. Comput Mater Sci 48:692–699. doi:10.1016/j.commatsci.2010.03.010

    Article  Google Scholar 

  23. Salehi MS, Serajzadeh S (2012) Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model. Comput Mater Sci 53:145–152. doi:10.1016/j.commatsci.2011.09.026

    Article  Google Scholar 

  24. Peranio N, Li YJ, Roters F, Raabe D (2010) Microstructure and texture evolution in dual-phase steels: competition between recovery, recrystallization, and phase transformation. Mater Sci Eng A 527:4161–4168. doi:10.1016/j.msea.2010.03.028

    Article  Google Scholar 

  25. Thiessen R, Sietsma J, Palmer T et al (2007) Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel. Acta Mater 55:601–614. doi:10.1016/j.actamat.2006.08.053

    Article  Google Scholar 

  26. Wang M, Huang DW, Luo RM (2011) Shear failure of tungsten alloy at mesoscale modeled by movable cellular automata. Theor Appl Fract Mech 56:162–168. doi:10.1016/j.tafmec.2011.11.004

    Article  Google Scholar 

  27. Pak MH, Lee CY, Chai YS (2007) Fracture toughness calculation by movable cellular automata method. Key Eng Mater 353–358:774–779. doi:10.4028/www.scientific.net/KEM.353-358.774

    Article  Google Scholar 

  28. Ivanov D, Ivanov S, Lomov S, Verpoest I (2009) Strain mapping analysis of textile composites. Opt Lasers Eng 47:360–370. doi:10.1016/j.optlaseng.2008.05.013

    Article  Google Scholar 

  29. Franklin FJ, Garnham JE, Fletcher DI et al (2008) Modelling rail steel microstructure and its effect on crack initiation. Wear 265:1332–1341. doi:10.1016/j.wear.2008.03.027

    Article  Google Scholar 

  30. Khvastunkov MS, Leggoe JW (2004) Adapting cellular automata to model failure in spatially heterogeneous ductile alloys. Scr Mater 51:309–314. doi:10.1016/j.scriptamat.2004.04.028

    Article  Google Scholar 

  31. Khvastunkov MS, Leggoe JW (2004) Modeling the influence of the nature of spatial heterogeneity on the deformation and failure of porous ductile alloys. Mater Sci Eng A 383:347–355. doi:10.1016/j.msea.2004.05.031

    Article  Google Scholar 

  32. Matic P, Geltmacher AB (2001) A cellular automaton-based technique for modeling mesoscale damage evolution. Comput Mater Sci 20:120–141. doi:10.1016/S0927-0256(00)00133-6

    Article  Google Scholar 

  33. Madej Ł, Mrozek A, Kuś W et al (2008) Concurrent and upscaling methods in multi scale modelling—case studies. Comput Methods Mater Sci 8:1–15

    Google Scholar 

  34. Beynon J, Das S, Howard I et al (2002) The combination of cellular automata and finite elements for the study of fracture; the CAFE model of fracture. EMAS Publishing, Krakow, pp 241–248

    Google Scholar 

  35. Beynon JH, Das S, Howard IC, Chterenlikht A (2002) Extending the local approach to fracture: methods for direct incorporation of microstructural effects into finite element models of fracture. New and emerging computational methods: applications to fracture, damage, and reliability. ASME, New York, pp 229–237

    Google Scholar 

  36. Shterenlikht A, Howard IC (2006) The CAFE model of fracture—application to a TMCR steel. Fatigue Fract Eng Mater Struct 29:770–787. doi:10.1111/j.1460-2695.2006.01031.x

    Article  Google Scholar 

  37. Makarov PV, Romanova VA (2000) Mesoscale plastic flow generation and development for polycrystals. Theor Appl Fract Mech 33:1–7. doi:10.1016/S0167-8442(99)00045-2

    Article  Google Scholar 

  38. Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087. doi:10.1063/1.1699114

    Article  Google Scholar 

  39. Blikstein P, Tschiptschin AP (1999) Monte Carlo simulation of grain growth. Materi Res. doi:10.1590/S1516-14391999000300004

    Google Scholar 

  40. Zeghadi A, N’guyen F, Forest S et al (2007) Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure – Part 1: anisotropic elastic behaviour. Philos Mag 87:1401–1424. doi:10.1080/14786430601009509

    Article  Google Scholar 

  41. Choi S-H, Kim DW, Seong BS, Rollett AD (2011) 3-D simulation of spatial stress distribution in an AZ31 Mg alloy sheet under in-plane compression. Int J Plast 27:1702–1720. doi:10.1016/j.ijplas.2011.05.014

    Article  MATH  Google Scholar 

  42. Sieradzki L, Madej L (2013) A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials. Comput Mater Sci 67:156–173. doi:10.1016/j.commatsci.2012.08.047

    Article  Google Scholar 

  43. Madej L (2012) Realistic description of dual phase steels morphology on the basis of Monte Carlo method. Comput Methods Mater Sci 12:197–206

    Google Scholar 

  44. Anderson MP, Grest GS, Srolovitz DJ (1989) Computer simulation of normal grain growth in three dimensions. Philos Mag Part B 59:293–329. doi:10.1080/13642818908220181

    Article  Google Scholar 

  45. Poulsen SO, Voorhees PW, Lauridsen EM (2013) Three-dimensional simulations of microstructural evolution in polycrystalline dual-phase materials with constant volume fractions. Acta Mater 61:1220–1228. doi:10.1016/j.actamat.2012.10.032

    Article  Google Scholar 

  46. Ganchenkova MG, Borodin VA (2004) Monte-Carlo simulation of crack propagation in polycrystalline materials. Mater Sci Eng A 387–389:372–376. doi:10.1016/j.msea.2003.12.088

    Article  Google Scholar 

  47. Arafin MA, Szpunar JA (2009) A Markov Chain–Monte Carlo model for intergranular stress corrosion crack propagation in polycrystalline materials. Mater Sci Eng A 513–514:254–266. doi:10.1016/j.msea.2009.01.072

    Article  Google Scholar 

  48. Lawson L (1997) Microstructural fracture in metal fatigue. Int J Fatigue 19:61–67. doi:10.1016/S0142-1123(97)90037-2

    Article  Google Scholar 

  49. Fyllingen Ø, Hopperstad OS, Lademo O-G, Langseth M (2009) Estimation of forming limit diagrams by the use of the finite element method and Monte Carlo simulation. Comput Struct 87:128–139. doi:10.1016/j.compstruc.2008.07.002

    Article  Google Scholar 

  50. Hao S, Liu WK, Moran B et al (2004) Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput Methods Appl Mech Eng 193:1865–1908. doi:10.1016/j.cma.2003.12.026

    Article  MATH  Google Scholar 

  51. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29:6443–6453. doi:10.1103/PhysRevB.29.6443

    Article  Google Scholar 

  52. Latapie A, Farkas D (2004) Molecular dynamics investigation of the fracture behavior of nanocrystalline-Fe. Phys Rev B. doi:10.1103/PhysRevB.69.134110

    Google Scholar 

  53. Wang G, Ostoja-Starzewski M, Radziszewski P, Ourriban M (2006) Particle modeling of dynamic fragmentation—II: fracture in single- and multi-phase materials. Comput Mater Sci 35:116–133. doi:10.1016/j.commatsci.2005.03.011

    Article  Google Scholar 

  54. Burczyński T, Kuś W, Mrozek A et al (2009) Advanced continuum-atomistic model of materials based on coupled boundary element and molecular approaches. In: Pyrz R, Rauhe JC (eds) IUTAM symposium on modelling nanomaterials and nanosystems. Springer, Dordrecht, pp 231–240

    Chapter  Google Scholar 

  55. Madej L, Rauch L, Perzynski K, Cybulka P (2011) Digital Material Representation as an efficient tool for strain inhomogeneities analysis at the micro scale level. Arch Civil Mech Eng 11:661–679. doi:10.1016/S1644-9665(12)60108-3

    Article  Google Scholar 

  56. Cornwell C, Noack R, Abed E (2006) Three-dimensional digital microstructures, project report documentation prepared by High Performance Technologies. http://handle.dtic.mil/100.2/ADA481869

  57. Bernacki M, Digonnet H, Resk H et al (2007) Development of numerical tools for the multiscale modelling of recrystallization in metals, based on a digital material framework. AIP Conference Proceedings. AIP, pp 375–380

  58. Logé R, Bernacki M, Resk H et al (2008) Linking plastic deformation to recrystallization in metals using digital microstructures. Philos Mag 88:3691–3712. doi:10.1080/14786430802502575

    Article  Google Scholar 

  59. Raabe D, Becker R (2010) Recrystallization simulation by coupling of a crystal plasticity FEM with a cellular automaton method. Modell Simul Mater Sci Eng 8:445–462

    Article  Google Scholar 

  60. Loge R, Resk H, Sun Z et al (2010) Modelling of plastic deformation and recrystalization of polycrystals using digital microstructures and adaptive meshing techniques. Steel Res Int 81:1420–1425

    Google Scholar 

  61. Milenin A, Kustra P (2008) The multi-scale FEM simulation of wire fracture during drawing of perlitic steel. Steel Res Int 79:717–722

    Article  Google Scholar 

  62. Rauch Ł, Madej Ł (2010) Application of the automatic image processing in modelling of the deformation mechanisms based on the digital representation of microstructure. Int J Multiscale Comput Eng 8:343–356

    Article  Google Scholar 

  63. Bala P, Tsyrulin K, Jaksch H, Stepien M (2015) 3D reconstruction and characterization of carbides in Ni-based high carbon alloy in a FIB-SEM system. Int J Mater Res 106:764–770. doi:10.3139/146.111225

    Article  Google Scholar 

  64. Madej Ł (2010) Digital material representation—new perspectives in numerical simulations of inhomogenous deformation. Comput Methods Mater Sci 10:143–155

    Google Scholar 

  65. Cao J, Zhuang W, Wang S, Lin J (2010) Development of a VGRAIN system for CPFE analysis in micro-forming applications. Int J Adv Manuf Technol 47:981–991. doi:10.1007/s00170-009-2135-3

    Article  Google Scholar 

  66. Madej Ł (2010) Development of the modeling strategy for the strain localization simulation based on the digital material representation. AGH University Press, Krakow

    Google Scholar 

  67. Perzynski K, Madej L, Wang J et al (2014) Numerical investigation of influence of the martensite volume fraction on DP steels fracture behavior on the basis of digital material representation model. Metall Mater Trans A 45:5852–5865. doi:10.1007/s11661-014-2579-4

    Article  Google Scholar 

  68. Perzynski K, Madej L (2016) Fracture modeling in dual-phase steel grades based on the random cellular automata finite element approach. Simulation 92:195–207. doi:10.1177/0037549715622280

    Article  Google Scholar 

  69. Trebacz L, Madej L, Wajda W, Paul H (2008) Simulation of plastic behaviour of FCC metals accounting for latice orientation, 8th. World Congress on Computational Mechanics (WCCM8) 5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, Italy, 30 June–5 July 2008

  70. Wajda W, Paul H (2009) Modeling of microstructure and texture evolution of channel-die deformed aluminum bicrystals with {100} < 001 >/{110} < 011 > grains orientation. Comput Methods Mater Sci 9:277–282

    Google Scholar 

  71. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53:1821–1830. doi:10.1016/j.actamat.2004.12.031

    Article  Google Scholar 

  72. Fei H, Abraham A, Chawla N, Jiang H (2012) Evaluation of micro-pillar compression tests for accurate determination of elastic–plastic constitutive relations. J Appl Mech 79:061011. doi:10.1115/1.4006767

    Article  Google Scholar 

  73. Schwiedrzik J, Raghavan R, Bürki A et al (2014) In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nat Mater 13:740–747. doi:10.1038/nmat3959

    Article  Google Scholar 

  74. Madej L, Kruzel P, Cybulka P et al (2012) Generation of dedicated finite element meshes for multiscale applications with Delaunay triangulation and adaptive finite element—cellular automata algorithms. Comput Methods Mater Sci 12:85–96

    Google Scholar 

  75. Fischer-Cripps AC (2011) Nanoindentation. Mech Eng Ser. doi:10.1007/978-1-4419-9872-9

    Article  Google Scholar 

  76. Perzynski K, Sitko M, Madej L (2014) Numerical modelling of fracture based on coupled cellular automata finite element approach. Lect Notes Comput Sci 8751:156–165

    Article  Google Scholar 

  77. Ghadbeigi H, Pinna C, Celotto S (2013) Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater Sci Eng A 588:420–431. doi:10.1016/j.msea.2013.09.048

    Article  Google Scholar 

  78. Ghadbeigi H, Pinna C, Celotto S, Yates JR (2010) Local plastic strain evolution in a high strength dual-phase steel. Mater Sci Eng A 527:5026–5032. doi:10.1016/j.msea.2010.04.052

    Article  Google Scholar 

  79. Kadkhodapour J, Butz A, Ziaei Rad S (2011) Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater 59:2575–2588. doi:10.1016/j.actamat.2010.12.039

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science Centre under the 2014/14/E/ST8/00332 project. FEM calculations were realized at the ACK CYFRONET AGH under the computing grant no. MNiSW/IBM_BC_HS21/AGH/076/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Perzynski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perzynski, K., Madej, L. Complex Hybrid Numerical Model in Application to Failure Modelling in Multiphase Materials. Arch Computat Methods Eng 24, 869–890 (2017). https://doi.org/10.1007/s11831-016-9195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9195-y

Keywords

Navigation