Skip to main content

Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems

Abstract

This article proposes a benchmark set of problems for fixed mesh topology optimization in 2 dimensions. We have established the problems based on an analysis of more than 100 articles from the topology optimization specialized literature, gathering the most common dimensions, loads and fixed regions used by researchers. Most of the problems reported in specialized literature present differences in specifications such as lengths, units, materials among others. For instance, some articles propose the same proportions and geometrical shapes but different dimensions. Hence, the purpose of this benchmark is to unify geometrical and mechanical characteristics and load conditions, considering that the proposed problems must be realistic, in the sense that the units are in the International System and a real-world material and load conditions are used. The final benchmark integrates 13 problems for plane stress using ASTM A-36 steel. Additionally, we report approximations to the optimum solutions for both: compliance and volume minimization problems using the Solid Isotropic Material with Penalization (SIMP) and a novel version of SIMP proposed in this article.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64

References

  1. 1.

    Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53. doi:10.1016/j.cma.2014.08.028

    MathSciNet  Google Scholar 

  2. 2.

    Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194:3269–3290. doi:10.1016/j.cma.2004.12.018

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. Comptes Rendu Math. 334:1125–1130

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393. doi:10.1016/j.jcp.2003.09.032

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Amstutz S, Andra H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216:573–588. doi:10.1016/j.jcp.2005.12.015

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises stress constraints. Struct Multidiscip Optim 41(3):407–420

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Amstutz S, Novotny AA, de Souza Neto EA (2012) Topological derivative-based topology optimization of structures subject to drucker-prager stress constraints. Comput Methods Appl Mech Eng 233–236:123–136. doi:10.1016/j.cma.2012.04.004

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Balamurugan R, Ramakrishnan C, Singh N (2008) Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Appl Soft Comput 8:1607–1624

    Google Scholar 

  9. 9.

    Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    MATH  Google Scholar 

  11. 11.

    Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8:351–385

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanism. Int J Numer Methods Eng 57:1413–1430. doi:10.1002/nme.783

    MATH  Google Scholar 

  13. 13.

    Bureerat S, Limtragool J (2006) Performance enhancement of evolutionary search for structural topology optimisation. Finite Elem Anal Des 42:547–566

    MathSciNet  Google Scholar 

  14. 14.

    Bureerat S, Limtragool J (2008) Structural topology optimisation using simulated annealing with multiresolution design variables. Finite Elem Anal Des 44:738–747. doi:10.1016/j.finel.2008.04.002

    Google Scholar 

  15. 15.

    Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267–290. doi:10.1016/j.cma.2015.02.012

    MathSciNet  Google Scholar 

  16. 16.

    Cai S, Zhang W, Zhu J, Gao T (2014) Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level-set function. Comput Methods Appl Mech Eng 278:361–387. doi:10.1016/j.cma.2014.06.007

    MathSciNet  Google Scholar 

  17. 17.

    Carrasco M, Ivorra B, Ramos AM (2015) Stochastic topology design optimization for continuous elastic materials. Comput Methods Appl Mech Eng 289:131–154. doi:10.1016/j.cma.2015.02.003

    MathSciNet  Google Scholar 

  18. 18.

    Cazacu R, Grama L (2014) Overview of structural optimization methods for plane and solid structures. Ann Univ Oradea

  19. 19.

    Cea J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 37:57–70

    MATH  Google Scholar 

  21. 21.

    Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40:951–962. doi:10.1016/j.cad.2008.07.004

    Google Scholar 

  22. 22.

    Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38. doi:10.1007/s00158-013-0956-z

    MathSciNet  Google Scholar 

  23. 23.

    Dede L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465. doi:10.1007/s11831-012-9075-z

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Emmendoerfer H Jr, Fancello EA (2014) A level set approach for topology optimization with local stress constraints. Int J Numer Methods Eng 99:129–156. doi:10.1002/nme.4676

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Google Scholar 

  26. 26.

    Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2013) An improved robust topology optimization approach using multiobjective evolutionary algorithms. Comput Struct 125:1–10. doi:10.1016/j.compstruc.2013.04.025

    Google Scholar 

  27. 27.

    Guest JK, Genut LCS (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Eng 81:1019–1045. doi:10.1002/nme.2724

    MATH  Google Scholar 

  28. 28.

    Guo X, Zhang W, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368. doi:10.1016/j.cma.2012.09.005

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378. doi:10.1016/j.cma.2014.01.010

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200:3439–3452. doi:10.1016/j.cma.2011.08.016

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Hansel W, Treptow A, Becker W, Freisleben B (2002) A heuristic and a genetic topology optimization algorithm for weight-minimal laminate structures. Compos Struct 58:287–294

    Google Scholar 

  32. 32.

    Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40:409–416. doi:10.1007/s00158-009-0382-4

    MathSciNet  MATH  Google Scholar 

  33. 33.

    James KA, Lee E, Martins JR (2012) Stress-based topology optimization using an isoparametric level set method. Finite Elem Anal Des 58:20–30. doi:10.1016/j.finel.2012.03.012

    Google Scholar 

  34. 34.

    Jeong SH, Choi DH, Yoon GH (2014) Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials. Finite Elem Anal Des 82:16–31. doi:10.1016/j.finel.2013.12.003

    MathSciNet  Google Scholar 

  35. 35.

    Jeong SH, Yoon GH, Takezawa A, Choi DH (2014) Development of a novel phase-field method for local stress-based shape and topology optimization. Comput Struct 132:84–98. doi:10.1016/j.compstruc.2013.11.004

    Google Scholar 

  36. 36.

    Kang Z, Wang Y (2011) Structural topology optimization based on non-local shepard interpolation of density field. Comput Methods Appl Mech Eng 200:3515–3525. doi:10.1016/j.cma.2011.09.001

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Kang Z, Wang Y (2012) A nodal variable method of structural topology optimization based on shepard interpolant. Int J Numer Methods Eng 90:329–342. doi:10.1002/nme.3321

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13. doi:10.1016/j.cma.2012.11.006

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Kim SY, Kim IY, Mechefske CK (2012) A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design varialbe method. Int J Numer Methods Eng 90:752–783. doi:10.1002/nme.3343

    MATH  Google Scholar 

  40. 40.

    Kutuk MA, Gov I (2013) A finite element removal method for 3d topology optimization. Adv Mech Eng. doi:10.1155/2013/413463

    Google Scholar 

  41. 41.

    Lee E, Gea HC (2014) A strain based topology optimization method for compliant mechanism design. Struct Multidiscip Optim 49:199–207. doi:10.1007/s00158-013-0971-0

    MathSciNet  Google Scholar 

  42. 42.

    Lewinski T, Rozvany G (2007) Exact analytical solutions for some popular benchmark problems in topology optimization ii: thress-sided polygonal supports. Struct Multidiscip Optim 33:337–349. doi:10.1007/s00158-007-0093-7

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Lewinski T, Rozvany G (2008) Analytical benchmark for topological optimization IV: square-shaped line support. Struct Multidiscip Optim 36:143–158. doi:10.1007/s00158-007-0205-4

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Lewinski T, Rozvany G, Sokol T, Bolbotowski K (2013) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains revisited. Struct Multidiscip Optim 47:937–942. doi:10.1007/s00158-012-0865-6

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Luh GC, Chun-Yi L, Yu-Shu L (2011) A binary particle swarm optimization for continuum structural topology optimization. Appl Soft Comput 11(2):2833–2844

    Google Scholar 

  46. 46.

    Luh GC, Lin CY (2009) Structural topology optimization using ant colony optimization algorithm. Appl Soft Comput 9:1343–1353. doi:10.1016/j.asoc.2009.06.001

    Google Scholar 

  47. 47.

    Luo J, Luo Z, Chen L, Tong L, Wang MY (2008) A semi-implicit level set method for structural shape and topology optimization. J Comput Phys 227:5561–5581. doi:10.1016/j.jcp.2008.02.003

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker-Prager yield. Comput Struct 90–91:65–75. doi:10.1016/j.compstruc.2011.10.008

    Google Scholar 

  49. 49.

    Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41. doi:10.1016/j.cma.2012.10.019

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76:862–892. doi:10.1002/nme.2352

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Luo Z, Tong L, Kang Z (2009) A level set method for structural shape and topology optimization using radial basis functions. Comput Struct 87:425–434. doi:10.1016/j.compstruc.2009.01.008

    Google Scholar 

  52. 52.

    Luo Z, Wang MY, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Methods Eng 76:1–26. doi:10.1002/nme.2092

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Luo Z, Zhang N, Gao W, Ma H (2012) Structural shape and topology optimization using a meshless Galerkin level set method. Int J Numer Methods Eng 90:369–389. doi:10.1002/nme.3325

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59:1925–1944. doi:10.1002/nme.945

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural desing using multiscale topology optimization. Comput Methods Appl Mech Eng 261–252:167–176. doi:10.1016/j.cma.2012.12.018

    MATH  Google Scholar 

  56. 56.

    Neches LC, Cisilino AP (2008) Topology optimization of 2D elastic structures using boundary elements. Eng Anal Bound Elem 32:533–544. doi:10.1016/j.enganabound.2007.10.003

    MATH  Google Scholar 

  57. 57.

    Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92:507–530. doi:10.1002/nme.4344

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Noilublao N, Bureerat S (2013) Simultaneous topology, shape, and sizing optimisation of plane trusses with adaptive ground finite elements using moeas. Math Probl Eng. doi:10.1155/2013/838102

    Google Scholar 

  59. 59.

    Papadrakakis M, Lagaros ND, Tsompanakis Y, Plevris V (2001) Large scale structural optimization: computational methods and optimization algorithms. Arch Comput Methods Eng 3:239–301

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Paris J, Colominas I, Navarrina F, Casteleiro M (2013) Parallel computing in topology optimization of structures with stress constraints. Comput Struct 125:62–73. doi:10.1016/j.compstruc.2013.04.016

    MATH  Google Scholar 

  61. 61.

    Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571–586. doi:10.1016/j.cma.2014.10.011

    MathSciNet  Google Scholar 

  62. 62.

    Qian X (2013) Topology optimization in B-spline space. Comput Methods Appl Mech Eng 265:15–35. doi:10.1016/j.cma.2013.06.001

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Querin OM, Victoria M, Marti P (2010) Topology optimization of truss-like continua with different material properties in tension and compression. Struct Multidiscip Optim 42:25–32. doi:10.1007/s00158-009-0473-2

    Google Scholar 

  64. 64.

    Riehl S, Steinmann P (2015) A staggered approach to shape and topology optimization using the traction method and an evolutionary-type advancing front. Comput Methods Appl Mech Eng 287:1–30. doi:10.1016/j.cma.2015.01.007

    MathSciNet  Google Scholar 

  65. 65.

    Rong JH, Liu XH, Yi JJ, Yi JH (2011) An efficient structural topological optimization method for continuum structures with multiple displacement constraints. Finite Elem Anal Des 47:913–921. doi:10.1016/j.finel.2011.03.002

    Google Scholar 

  66. 66.

    Rozvany G (1998) Exact analytical solutions for some popular benchmark problems in topology optimization. Struct Optim 15:42–48

    MATH  Google Scholar 

  67. 67.

    Shin H, Todoroki A, Hirano Y (2013) Elite-initial population for efficient topology optimization using multi-objective genetic algorithms. Int J Aeronaut Space Sci 14:324–333

    Google Scholar 

  68. 68.

    Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21:120–127

    Google Scholar 

  69. 69.

    Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22:116–124

    Google Scholar 

  70. 70.

    Svanberg K, Werme M (2006) Topology optimization by a neighbourhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67:1670–1699. doi:10.1002/nme.1677

    MathSciNet  MATH  Google Scholar 

  71. 71.

    Swan CC, Kosaka I (1997) Voigt-Reuss topology optimization structures with linear elastic material behaviours. Int J Numer Methods Eng 40:3033–3057

    MathSciNet  MATH  Google Scholar 

  72. 72.

    Takezawa A, Yoon GH, Jeong SH, Kobashi M, Kitamura M (2014) Structural topology optimization with strength and heat conduction constraints. Comput Methods Appl Mech Eng 276:341–361. doi:10.1016/j.cma.2014.04.003

    MathSciNet  Google Scholar 

  73. 73.

    Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82:671–698. doi:10.1002/nme.2763

    MATH  Google Scholar 

  74. 74.

    Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen—Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565. doi:10.1016/j.cma.2014.03.021

    MathSciNet  Google Scholar 

  75. 75.

    Tong L, Lin J (2011) Structural topology optimization with implicit design variable-optimality and algorithm. Finite Elem Anal Des 47:922–932. doi:10.1016/j.finel.2011.03.004

    Google Scholar 

  76. 76.

    Ullah B, Trevelyan J (2013) Correlation between hole insertion criteria in a boundary element and level set based topology optimisation method. Eng Anal Bound Elem 37:1457–1470. doi:10.1016/j.enganabound.2013.08.003

    MathSciNet  MATH  Google Scholar 

  77. 77.

    van Dijk NP, Langelaar M, van Keulen F (2012) Explicit level-set-based topology optimization using an exact heaviside function and consistent sensitivity analysis. Int J Numer Methods Eng 91:67–97. doi:10.1002/nme.4258

    MathSciNet  MATH  Google Scholar 

  78. 78.

    Wallin M, Ristinmaa M (2013) Howard’s algorithm in a phase-field topology optimization approach. Int J Numer Methods Eng 94:43–59. doi:10.1002/nme.4434

    MathSciNet  MATH  Google Scholar 

  79. 79.

    Wallin M, Ristinmaa M (2014) Boundary effects in a phase-field approach to topology optimization. Comput Methods Appl Mech Eng 278:145–159. doi:10.1016/j.cma.2014.05.012

    MathSciNet  Google Scholar 

  80. 80.

    Wallin M, Ristinmaa M (2015) Topology optimization utilizing inverse motion based form finding. Comput Methods Appl Mech Eng 289:316–331. doi:10.1016/j.cma.2015.02.015

    MathSciNet  Google Scholar 

  81. 81.

    Wang F, Lazarov BS, Sigmund O, Jasen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472. doi:10.1016/j.cma.2014.03.021

    MathSciNet  Google Scholar 

  82. 82.

    Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63:1911–1938. doi:10.1002/nme.1347

    MathSciNet  MATH  Google Scholar 

  83. 83.

    Wang MY, Wang X (2004) “Color” level sets: a multiphase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496. doi:10.1016/j.cma.2003.10.008

    MATH  Google Scholar 

  84. 84.

    Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput Aided Des 37:321–337. doi:10.1016/j.cad.2004.03.007

    Google Scholar 

  85. 85.

    Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    MathSciNet  MATH  Google Scholar 

  86. 86.

    Wang SY, Lim KM, Khoo BC, Wang MY (2007) An extended level set method for shape and topology optimization. J Comput Phys 221:395–421. doi:10.1016/j.jcp.2006.06.029

    MathSciNet  MATH  Google Scholar 

  87. 87.

    Wang SY, Wang MY (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65:18–44. doi:10.1002/nme.1435

    MATH  Google Scholar 

  88. 88.

    Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61. doi:10.1016/j.compstruc.2014.01.008

    Google Scholar 

  89. 89.

    Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586. doi:10.1016/j.cma.2014.11.002

    MathSciNet  Google Scholar 

  90. 90.

    Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within fe\(^2\) nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542. doi:10.1016/j.cma.2014.05.022

    MathSciNet  Google Scholar 

  91. 91.

    Xia L, Breitkopf P (2014) A reduced multiscale model for nonlinear structural topology optimization. Comput Methods Appl Mech Eng 280:117–134. doi:10.1016/j.cma.2014.07.024

    MathSciNet  Google Scholar 

  92. 92.

    Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167. doi:10.1016/j.cma.2014.12.018

    MathSciNet  Google Scholar 

  93. 93.

    Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102. doi:10.1016/j.cma.2013.01.008

    MathSciNet  MATH  Google Scholar 

  94. 94.

    Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90–91:55–64. doi:10.1016/j.compstruc.2011.10.009

    Google Scholar 

  95. 95.

    Xia Q, Wang MY, Shi T (2014) A level set method for shape and topology optimization of both structure and support of continuum structures. Comput Methods Appl Mech Eng 272:340–353. doi:10.1016/j.cma.2014.01.014

    MathSciNet  MATH  Google Scholar 

  96. 96.

    Xia Q, Wang MY, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195. doi:10.1016/j.cma.2014.09.022

    MathSciNet  Google Scholar 

  97. 97.

    Xia Q, Wang Y (2008) Simultaneous optimization of the materials properties and the topology of functionally graded structures. Comput Aided Des 40:660–675. doi:10.1016/j.cad.2008.01.014

    Google Scholar 

  98. 98.

    Xu H, Guan L, Chen X, Wang L (2013) Guide-weight motion for topology optimization of continuum structures including body forces. Finite Elem Anal Des 75:38–49. doi:10.1016/j.finel.2013.07.002

    MathSciNet  MATH  Google Scholar 

  99. 99.

    Yamasaki S, Kawamoto A, Nomura T, Fujita K (2015) A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh. Int J Numer Methods Eng 101:744–773. doi:10.1002/nme.4826

    MathSciNet  MATH  Google Scholar 

  100. 100.

    Yamasaki S, Nishiwaki S, Yamada T, Izui K, Yoshimura M (2010) A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int J Numer Methods Eng 83:1580–1624. doi:10.1002/nme.2874

    MathSciNet  MATH  Google Scholar 

  101. 101.

    Yifei T, Wei Y, Zhen Y, Dongbo L, Xiangdong L (2013) Research on multidisciplinary optimization design of bridge crane. Math Probl Eng. doi:10.1155/2013/763545

    Google Scholar 

  102. 102.

    Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35:415–441. doi:10.1016/j.advengsoft.2004.06.004

    MATH  Google Scholar 

  103. 103.

    Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in simp-based topology optimization. Comput Methods Appl Mech Eng 282:71–86. doi:10.1016/j.cma.2014.08.027

    MathSciNet  Google Scholar 

  104. 104.

    Zhao H, Long K, Ma ZD (2010) Homogenization topology optimization method based on continuous field. Adv Mech Eng. doi:10.1155/2010/528397

    Google Scholar 

  105. 105.

    Zhao J, Wang C (2014) Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Comput Methods Appl Mech Eng 272:204–218. doi:10.1016/j.cma.2014.01.018

    MathSciNet  MATH  Google Scholar 

  106. 106.

    Zhu B, Zhang X, Fatikow S (2015) Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput Methods Appl Mech Eng 283:1214–1239. doi:10.1016/j.cma.2014.08.017

    MathSciNet  Google Scholar 

  107. 107.

    Zhu JH, Zhang WH, Xia L (2015) Topology optimization in aircraft and aerospace structures. Arch Comput Methods Eng

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ivvan Valdez.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valdez, S.I., Botello, S., Ochoa, M.A. et al. Topology Optimization Benchmarks in 2D: Results for Minimum Compliance and Minimum Volume in Planar Stress Problems. Arch Computat Methods Eng 24, 803–839 (2017). https://doi.org/10.1007/s11831-016-9190-3

Download citation

Keywords

  • Test Problem
  • Topology Optimization
  • Young Modulus
  • Volume Constraint
  • Stress Constraint