Skip to main content

Recent Advances on Topology Optimization of Multiscale Nonlinear Structures

Abstract

Research on topology optimization mainly deals with the design of monoscale structures, which are usually made of homogeneous materials. Recent advances of multiscale structural modeling enables the consideration of microscale material heterogeneities and constituent nonlinearities when assessing the macroscale structural performance. However, due to the modeling complexity and the expensive computing requirement of multiscale modeling, there has been very limited research on topology optimization of multiscale nonlinear structures. This paper reviews firstly recent advances made by the authors on topology optimization of multiscale nonlinear structures, in particular techniques regarding to nonlinear topology optimization and computational homogenization (also known as FE2) are summarized. Then the conventional concurrent material and structure topology optimization design approaches are reviewed and compared with a recently proposed FE2-based design approach, which treats the microscale topology optimization process integrally as a generalized nonlinear constitutive behavior. In addition, discussions on the use of model reduction techniques is provided in regard to the prohibitive computational cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreassen E, Jensen J (2014) Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct Multidiscip Optim 49(5):695–705

    Article  MathSciNet  Google Scholar 

  3. Andreassen E, Lazarov B, Sigmund O (2014) Design of manufacturable 3d extremal elastic microstructure. Mech Mater 69:1–10

    Article  Google Scholar 

  4. Bendsøe M, Guedes J, Plaxton S, Taylor J (1996) Optimization of structure and material properties for solids composed of softening material. Int J Solids Struct 33(12):1799–1813

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optimiz 1(4):193–202

    Article  Google Scholar 

  6. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  7. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  8. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  9. Bendsøe MP, Diaz AR, Lipton R, Taylor JE (1995) Optimal design of material properties and material distribution for multiple loading conditions. Int J Numer Meth Eng 38(7):1149–1170

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optimiz 46(3):369–384

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruns T, Tortorelli D (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Meth Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  12. Buhl T, Pedersen C, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optimiz 19(2):93–104

    Article  Google Scholar 

  13. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MathSciNet  MATH  Google Scholar 

  14. Cadman J, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48(1):51–66

    Article  Google Scholar 

  15. Cai S, Zhang W (2015) Stress constrained topology optimization with free-form design domains. Comput Methods Appl Mech Eng 289:267–290

    Article  MathSciNet  Google Scholar 

  16. Cai S, Zhang W, Zhu J, Gao T (2014) Stress constrained shape and topology optimization with fixed mesh: a b-spline finite cell method combined with level set function. Comput Methods Appl Mech Eng 278:361–387

    Article  MathSciNet  Google Scholar 

  17. Challis VJ, Roberts AP, Wilkins AH (2008) Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int J Solids Struct 45(14–15):4130–4146

    Article  MATH  Google Scholar 

  18. Challis VJ, Guest JK, Grotowski JF, Roberts AP (2012) Computationally generated cross-property bounds for stiffness and fluid permeability using topology optimization. Int J Solids Struct 49(23–24):3397–3408

    Article  Google Scholar 

  19. Chen W, Liu S (2014) Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct Multidiscip Optimiz 50(2):287–296

    Article  MathSciNet  Google Scholar 

  20. Clément A, Soize C, Yvonnet J (2012) Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Int J Numer Meth Eng 91(8):799–824

    Article  Google Scholar 

  21. Clément A, Soize C, Yvonnet J (2013) Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials. Comput Methods Appl Mech Eng 254:61–82

    Article  MathSciNet  MATH  Google Scholar 

  22. Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optimiz 35(2):107–115

    Article  Google Scholar 

  23. Coenen EWC, Kouznetsova VG, Geers MGD (2012) Multi-scale continuous–discontinuous framework for computational- homogenization-localization. J Mech Phys Solids 60(8):1486–1507

    Article  MathSciNet  Google Scholar 

  24. Cremonesi M, Néron D, Guidault PA, Ladevèze P (2013) A PGD-based homogenization technique for the resolution of nonlinear multiscale problems. Comput Methods Appl Mech Eng 267:275–292

  25. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optimiz 49(1):1–38

    Article  MathSciNet  Google Scholar 

  26. Deng J, Yan J, Cheng G (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optimiz 47(4):583–597

    Article  MathSciNet  MATH  Google Scholar 

  27. Duva J, Hutchinson J (1984) Constitutive potentials for dilutely voided nonlinear materials. Mech Mater 3(1):41–54

    Article  Google Scholar 

  28. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Meth Eng 43(8):1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  29. El Halabi F, González D, Chico A, Doblaré M (2013) Fe2 multiscale in linear elasticity based on parametrized microscale models using proper generalized decomposition. Comput Methods Appl Mech Eng 257:183–202

    Article  MATH  Google Scholar 

  30. Feyel F, Chaboche J (2000) \(\text{FE }^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  31. Filomeno Coelho R, Breitkopf P, Knopf-Lenoir C (2008) Model reduction for multidisciplinary optimization—application to a 2D wing. Struct Multidiscip Optimiz 37(1):29–48

    Article  MATH  Google Scholar 

  32. Filomeno Coelho R, Breitkopf P, Knopf-Lenoir C, Villon P (2009) Bi-level model reduction for coupled problems. Struct Multidiscip Optimiz 39(4):401–418

    Article  MATH  Google Scholar 

  33. Forrester A, Keane A (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1–3):50–79

    Article  Google Scholar 

  34. Fritzen F, Böhlke T (2011) Nonuniform transformation field analysis of materials with morphological anisotropy. Compos Sci Technol 71:433–442

    Article  Google Scholar 

  35. Fritzen F, Böhlke T (2013) Reduced basis homogenization of viscoelastic composites. Compos Sci Technol 76:84–91

    Article  Google Scholar 

  36. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154

    Article  MathSciNet  MATH  Google Scholar 

  37. Fritzen F, Hodapp M, Leuschner M (2014) Gpu accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217

    Article  MathSciNet  Google Scholar 

  38. Fujii D, Chen BC, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Meth Eng 50(9):2031–2051

    Article  MathSciNet  MATH  Google Scholar 

  39. Ganapathysubramanian B, Zabaras N (2007) Modeling diffusion in random heterogeneous media: data-driven models, stochastic collocation and the variational multiscale method. J Comput Phys 226(1):326–353

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Meth Eng 91(1):98–114

    Article  MATH  Google Scholar 

  41. Gao T, Zhang WH, Duysinx P (2013) Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct Multidiscip Optimiz 48(6):1075–1088

    Article  MathSciNet  Google Scholar 

  42. Gea H, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20–21):1977–1985

    Article  Google Scholar 

  43. Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234(7):2175–2182

    Article  MATH  Google Scholar 

  44. Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int J Solids Struct 38(14):2335–2385

    Article  MATH  Google Scholar 

  45. Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MathSciNet  MATH  Google Scholar 

  46. Gu X, Zhu J, Zhang W (2012) The lattice structure configuration design for stereolithography investment casting pattern using topology optimization. Rapid Prototyping J 18(5):353–361

    Article  Google Scholar 

  47. Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    Article  MathSciNet  MATH  Google Scholar 

  48. Guessasma S, Babin P, Della Valle G, Dendieve R (2008) Relating cellular structure of open solid food foams to their young’s modulus: finite element calculation. Int J Solids Struct 45(10):2881–2896

    Article  MATH  Google Scholar 

  49. Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22–23):7028–7047

    Article  MATH  Google Scholar 

  50. Guest JK, Prévost JH (2007) Design of maximum permeability material structures. Comput Methods Appl Mech Eng 196(4–6):1006–1017

    Article  MathSciNet  MATH  Google Scholar 

  51. Guo X, Zhang W, Wang M, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  52. Guo X, Zhao X, Zhang W, Yan J, Sun G (2015) Multi-scale robust design and optimization considering load uncertainties. Comput Methods Appl Mech Eng 283:994–1009

    Article  MathSciNet  Google Scholar 

  53. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech Trans ASME 50(3):481–505

    Article  MATH  Google Scholar 

  54. Hassani B, Hinton E (1998a) A review of homogenization and topology optimization. I. Homogenization theory for media with periodic structure. Comput Struct 69(6):707–717

    Article  MATH  Google Scholar 

  55. Hassani B, Hinton E (1998b) A review of homogenization and topology opimization. II. Analytical and numerical solution of homogenization equations. Comput Struct 69(6):719–738

    Article  Google Scholar 

  56. Hernandez J, Oliver J, Huespe A, Caicedo M, Cante J (2014) High-performance model reduction techniques in computational multiscale homogenization. Comput Methods Appl Mech Eng 276:149–189

    Article  MathSciNet  Google Scholar 

  57. Huang X, Xie Y (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43(14):1039–1049

    Article  Google Scholar 

  58. Huang X, Xie Y (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30(7):2057–2068

    Article  Google Scholar 

  59. Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43(3):393–401

    Article  MathSciNet  MATH  Google Scholar 

  60. Huang X, Xie YM (2010) Topology optimization of continuum structures: methods and applications. Wiley, Chichester

    Book  MATH  Google Scholar 

  61. Huang X, Xie Y, Lu G (2007) Topology optimization of energy-absorbing structures. Int J Crashworthiness 12(6):663–675

    Article  Google Scholar 

  62. Huang X, Radman A, Xie YM (2011) Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput Mater Sci 50(6):1861–1870

    Article  Google Scholar 

  63. Huang X, Xie YM, Jia B, Li Q, Zhou SW (2012) Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct Multidiscipl Optimiz 46(3):385–398

    Article  MathSciNet  MATH  Google Scholar 

  64. Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407

    Article  Google Scholar 

  65. Huang X, Zhou S, Sun G, Li G, Xie Y (2015) Topology optimization for microstructures of viscoelastic composite materials. Comput Methods Appl Mech Eng 283:503–516

    Article  Google Scholar 

  66. Ibrahimbegovic A, Markovic D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192(28–30):3089–3107

    Article  MATH  Google Scholar 

  67. Ibrahimbegovic A, Papadrakakis M (2010) Multi-scale models and mathematical aspects in solid and fluid mechanics. Comput Methods Appl Mech Eng 199(21–22):1241

    Article  MathSciNet  Google Scholar 

  68. Jung D, Gea H (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40(11):1417–1427

    Article  Google Scholar 

  69. Kato J, Yachi D, Terada K, Kyoya T (2014) Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis. Struct Multidiscipl Optimiz 49(4):595–608

    Article  MathSciNet  Google Scholar 

  70. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48

    Article  MATH  Google Scholar 

  71. Lamari H, Ammar A, Cartraud P, Legrain G, Chinesta F, Jacquemin F (2010) Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. Arch Comput Methods Eng 17(4):373–391

    Article  MathSciNet  MATH  Google Scholar 

  72. Le B, Yvonnet J, He QC (2015) Computational homogenization of nonlinear elastic materials using neural networks. Int J Numer Meth Eng. doi:10.1002/nme.4953

    MathSciNet  MATH  Google Scholar 

  73. Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscipl Optimiz 41(4):605–620

    Article  Google Scholar 

  74. Li Q, Steven G, Xie Y (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscipl Optimiz 22(3):230–239

    Article  Google Scholar 

  75. Liu S, Hou Y, Sun X, Zhang Y (2012) A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters. Compos Struct 94(12):3529–3537

    Article  Google Scholar 

  76. Luo Y, Wang M, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441

    Article  MathSciNet  Google Scholar 

  77. Lv J, Zhang H, Chen B (2014) Shape and topology optimization for closed liquid cell materials using extended multiscale finite element method. Struct Multidiscipl Optimiz 49(3):367–385

    Article  MathSciNet  Google Scholar 

  78. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optimiz 15(2):81–91

    Article  Google Scholar 

  79. Michel JC, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40:6937–6955

    Article  MathSciNet  MATH  Google Scholar 

  80. Michel JC, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502

    Article  MathSciNet  MATH  Google Scholar 

  81. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143

    Article  MathSciNet  MATH  Google Scholar 

  82. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Meth Eng 55:1285–1322

    Article  MathSciNet  MATH  Google Scholar 

  83. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418

    Article  MathSciNet  MATH  Google Scholar 

  84. Miled B, Ryckelynck D, Cantournet S (2013) A priori hyper-reduction method for coupled viscoelastic-viscoplastic composites. Comput Struct 119:95–103

    Article  Google Scholar 

  85. Mosby M, Matous K (2014) Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers. Int J Numer Meth Eng 102(3–4):748–765

    MathSciNet  MATH  Google Scholar 

  86. Nakshatrala PB, Tortorelli DA, Nakshatrala KB (2013) Nonlinear structural design using multiscale topology optimization. part I: static formulation. Comput Methods Appl Mech Eng 261–262:167–176

    Article  MathSciNet  MATH  Google Scholar 

  87. Neves MM, Rodrigues H, Guedes JM (2000) Optimal design of periodic linear elastic microstructures. Comput Struct 76(1):421–429

    Article  Google Scholar 

  88. Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Meth Eng 54(6):809–834

    Article  MathSciNet  MATH  Google Scholar 

  89. Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscipl Optimiz 39(2):115–132

    Article  Google Scholar 

  90. Nix W, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  91. Oskay C, Fish J (2007) Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput Methods Appl Mech Eng 196(7):1216–1243

    Article  MathSciNet  MATH  Google Scholar 

  92. Pedersen C, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Meth Eng 50(12):2683–2705

    Article  MATH  Google Scholar 

  93. Queipo NB, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  94. Raghavan B, Xia L, Breitkopf P, Rassineux A, Villon P (2013) Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design. Comput Methods Appl Mech Eng 265(1):174–185

    Article  MathSciNet  MATH  Google Scholar 

  95. Rodrigues H, Guedes JM, Bendsøe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscipl Optimiz 24(1):1–10

    Article  Google Scholar 

  96. Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15–17):2135–2155

    Article  MATH  Google Scholar 

  97. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  98. Setoodeh S, Abdalla MM, Gürdal Z (2005) Combined topology and fiber path design of composite layers using cellular automata. Struct Multidiscipl Optimiz 30(6):413–421

    Article  Google Scholar 

  99. Setoodeh S, Abdalla M, Gürdal Z (2006) Design of variable-stiffness laminates using lamination parameters. Compos Part B Eng 37(4–5):301–309

    Article  Google Scholar 

  100. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  101. Sigmund O (2000) New class of extremal composites. J Mech Phys Solids 48(2):397–428

    Article  MathSciNet  MATH  Google Scholar 

  102. Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscipl Optimiz 21(2):120–127

    Article  MathSciNet  Google Scholar 

  103. Sigmund O, Maute K (2013) Topology optimization approaches—a comparative review. Struct Multidiscipl Optimiz 48(6):1031–1055

    Article  Google Scholar 

  104. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  105. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192

    Article  MATH  Google Scholar 

  106. Su W, Liu S (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidiscipl Optimiz 42(2):243–254

    Article  Google Scholar 

  107. Temizer I, Wriggers P (2007) An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput Methods Appl Mech Eng 196(35–36):3409–3423

    Article  MathSciNet  MATH  Google Scholar 

  108. Temizer I, Zohdi T (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40(2):281–298

    Article  MATH  Google Scholar 

  109. Theocaris PS, Stavroulaki GE (1999) Optimal material design in composites: an iterative approach based on homogenized cells. Comput Methods Appl Mech Eng 169(1–2):31–42

    Article  MATH  Google Scholar 

  110. Tran A, Yvonnet J, He QC, Toulemonde C, Sanahuja J (2011) A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials. Comput Methods Appl Mech Eng 200(45–46):2956–2970

    Article  MathSciNet  MATH  Google Scholar 

  111. Wang F, Lazarov B, Sigmund O, Jensen J (2014a) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472

    Article  MathSciNet  Google Scholar 

  112. Wang F, Sigmund O, Jensen J (2014b) Design of materials with prescribed nonlinear properties. J Mech Phys Solids 69(1):156–174

    Article  MathSciNet  Google Scholar 

  113. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  114. Xia L, Breitkopf P (2014a) Concurrent topology optimization design of material and structure within Fe\(^{2}\) nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542

    Article  MathSciNet  Google Scholar 

  115. Xia L, Breitkopf P (2014b) A reduced multiscale model for nonlinear structural topology optimization. Comput Methods Appl Mech Eng 280:117–134

    Article  MathSciNet  Google Scholar 

  116. Xia L, Breitkopf P (2015a) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167

    Article  MathSciNet  Google Scholar 

  117. Xia L, Breitkopf P (2015b) Design of of materials using topology optimization and energy-based homogenization approach in matlab. Struct Multidiscipl Optimiz 52(6):1229–1241

    Article  MathSciNet  Google Scholar 

  118. Xia L, Raghavan B, Breitkopf P, Zhang W (2013) Numerical material representation using proper orthogonal decomposition and diffuse approximation. Appl Math Comput 224:450–462

    MathSciNet  MATH  Google Scholar 

  119. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40(8):1907–1921

    Article  MATH  Google Scholar 

  120. Xia Z, Zhou C, Yong Q, Wang X (2006) On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 43(2):266–278

    Article  MathSciNet  MATH  Google Scholar 

  121. Xiao M, Breitkopf P, Filomeno Coelho R, Knopf-Lenoir C, Sidorkiewicz M, Villon P (2010) Model reduction by cpod and kriging: application to the shape optimization of an intake port. Struct Multidiscipl Optimiz 41(4):555–574

    Article  MathSciNet  MATH  Google Scholar 

  122. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  123. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, London

    Book  MATH  Google Scholar 

  124. Xu B, Xie Y (2015) Concurrent design of composite macrostructure and cellular microstructure under random excitations. Compos Struct 123:65–77

    Article  Google Scholar 

  125. Xu B, Jiang J, Xie Y (2015b) Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos Struct 128:221–233

    Article  Google Scholar 

  126. Xu Y, Zhang W (2011) Numerical modelling of oxidized microstructure and degraded properties of 2d c/sic composites in air oxidizing environments below 800 °C. Mater Sci Eng A 528(27):7974–7982

    Article  Google Scholar 

  127. Xu Y, Zhang W (2012) A strain energy model for the prediction of the effective coefficient of thermal expansion of composite materials. Comput Mater Sci 53(1):241–250

    Article  Google Scholar 

  128. Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110

    Article  Google Scholar 

  129. Yi YM, Park SH, Youn SK (2000) Design of microstructures of viscoelastic composites for optimal damping characteristics. Int J Solids Struct 37(35):4791–4810

    Article  MATH  Google Scholar 

  130. Yoon G, Kim Y (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983–2009

    Article  MathSciNet  MATH  Google Scholar 

  131. Yoon G, Kim Y (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Meth Eng 69(10):2196–2218

    Article  MathSciNet  MATH  Google Scholar 

  132. Yuan Z, Fish J (2009) Multiple scale eigendeformation-based reduced order homogenization. Comput Methods Appl Mech Eng 198(21–26):2016–2038

    Article  MATH  Google Scholar 

  133. Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optimiz 10(3–4):197–208

    Article  Google Scholar 

  134. Yuge K, Iwai N, Kikuchi N (1999) Optimization of 2-d structures subjected to nonlinear deformations using the homogenization method. Struct Optimiz 17(4):286–299

    Article  Google Scholar 

  135. Yvonnet J, He QC (2007) The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J Comput Phys 223(1):341–368

    Article  MathSciNet  MATH  Google Scholar 

  136. Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737

    Article  MATH  Google Scholar 

  137. Yvonnet J, Monteiro E, He QC (2013) Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int J Multiscale Comput Eng 11(3):201–225

    Article  Google Scholar 

  138. Zhang W, Sun S (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Meth Eng 68(9):993–1011

    Article  MATH  Google Scholar 

  139. Zhang W, Dai G, Wang F, Sun S, Bassir H (2007) Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures. Acta Mech Sinica/Lixue Xuebao 23(1):77–89

    Article  MathSciNet  MATH  Google Scholar 

  140. Zhang W, Guo X, Wang M, Wei P (2013) Optimal topology design of continuum structures with stress concentration alleviation via level set method. Int J Numer Meth Eng 93(9):942–959

    Article  MathSciNet  MATH  Google Scholar 

  141. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  142. Zhu J, Zhang W, Qiu K (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40(1):97–109

    Article  MATH  Google Scholar 

  143. Zhu J, Zhang W, Xia L (2015) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng. doi:10.1007/s11831-015-9151-2

  144. Zuo Z, Huang X, Rong J, Xie Y (2013) Multi-scale design of composite materials and structures for maximum natural frequencies. Mater Des 51:1023–1034

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Xia.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Breitkopf, P. Recent Advances on Topology Optimization of Multiscale Nonlinear Structures. Arch Computat Methods Eng 24, 227–249 (2017). https://doi.org/10.1007/s11831-016-9170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9170-7

Keywords