Advertisement

Archives of Computational Methods in Engineering

, Volume 23, Issue 4, pp 595–622 | Cite as

Topology Optimization in Aircraft and Aerospace Structures Design

  • Ji-Hong ZhuEmail author
  • Wei-Hong Zhang
  • Liang XiaEmail author
Original Paper

Abstract

Topology optimization has become an effective tool for least-weight and performance design, especially in aeronautics and aerospace engineering. The purpose of this paper is to survey recent advances of topology optimization techniques applied in aircraft and aerospace structures design. This paper firstly reviews several existing applications: (1) standard material layout design for airframe structures, (2) layout design of stiffener ribs for aircraft panels, (3) multi-component layout design for aerospace structural systems, (4) multi-fasteners design for assembled aircraft structures. Secondly, potential applications of topology optimization in dynamic responses design, shape preserving design, smart structures design, structural features design and additive manufacturing are introduced to provide a forward-looking perspective.

Keywords

Topology Optimization Additive Manufacturing Design Domain Layout Design Solid Isotropic Material With Penalty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Prof. Moumni Zied from Ecole nationale supérieure de techniques avancées in France, Dr. Zheng Weidong, Dr. Zeng Dujuan and Dr. Wang Lipeng from China Academy of Launch Vehicle Technology, Dr. Yang Jun and Dr. Chang Nan from Chengdu Aircraft Design Institute, Prof. Chen Yuze and Dr. Mo Jun from China Academy of Engineering Physics for valuable discussions. This work is supported by National Natural Science Foundation of China (11432011, 11172236), the 111 Project (B07050), Science and Technology Research and development Projects in Shaanxi Province (2014KJXX-37), the Fundamental Research Funds for the Central Universities (3102014JC02020505).

References

  1. 1.
    Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip Optim 28:87–98MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barrett RT (1992) Fastener design manual. NASA reference publication 1228Google Scholar
  4. 4.
    Beauchamps CH, Nadolink RH, Dickinson SC, Dean LM (1992) Proceedings I European conference on smart structures and materials, Glasgow, SPIE 1777:189Google Scholar
  5. 5.
    Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 10:193–202CrossRefGoogle Scholar
  7. 7.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using homogenization. Comput Methods Appl Mech Eng 71:197–224MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654zbMATHCrossRefGoogle Scholar
  9. 9.
    Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinzbMATHGoogle Scholar
  10. 10.
    Bianchi G, Aglietti GS, Richardson G (2007) Optimization of bolted joints connecting honeycomb panels. In: 1st CEAS, 10th European conference on spacecraft structures, materials and mechanical testing, Berlin, Germany, 10–13 Sept 2007Google Scholar
  11. 11.
    Bojczuk D, Szteleblak W (2008) Optimization of layout and shape of stiffeners in 2D structures. Comput Struct 86:1436–1446CrossRefGoogle Scholar
  12. 12.
    Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control Optim Calc Var 9:19–48MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459zbMATHCrossRefGoogle Scholar
  14. 14.
    Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidiscip Optim 29:245–256CrossRefGoogle Scholar
  15. 15.
    Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidiscip Optim 24:263–276CrossRefGoogle Scholar
  16. 16.
    Buhl T (2002) Simultaneous topology optimization of structure and supports. Struct Multidiscip Optim 23:336–346CrossRefGoogle Scholar
  17. 17.
    Bushnell D, Rankin C (2005) Optimum design of stiffened panels with substiffeners. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp 1–54Google Scholar
  18. 18.
    Cai WW, Hsieh CC, Long YF, Marin SP, Oh KP (2006) Digital panel assembly methodologies and applications for compliant sheet components. J Manuf Sci Eng-Trans ASME 128:270–279CrossRefGoogle Scholar
  19. 19.
    Camanho PP, Matthews FL (1997) Stress analysis and strength prediction of mechanically fastened joints in FRP: a review. Compos A Appl Sci Manuf 28:529–547CrossRefGoogle Scholar
  20. 20.
    Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization with topological changes and parametric control. Int J Numer Methods Eng 71(6):313–346MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural topology optimization. Comput Aided Des 40:951–962MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chickermane H, Gea HC (1997) Design of multi-component structural systems for optimal layout topology and joint locations. Eng Comput 13:235–243CrossRefGoogle Scholar
  24. 24.
    Chickermane H, Gea HC, Yang RJ, Chuang CH (1999) Optimal fastener pattern design considering bearing loads. Struct Optim 17:140–146CrossRefGoogle Scholar
  25. 25.
    Chintapalli S, Elsayed MS, Sedaghati R, Abdo M (2010) The development of a preliminary structural design optimization method of an aircraft wing-box skin-stringer panels. Aerosp Sci Technol 14:188–198CrossRefGoogle Scholar
  26. 26.
    Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ding X, Yamazaki K (2004) Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Struct Multidiscip Optim 26:99–110CrossRefGoogle Scholar
  28. 28.
    Donders S, Takahashi Y, Hadjit R et al (2009) A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45(6):439–455CrossRefGoogle Scholar
  29. 29.
    Ekh J, Schön J (2008) Finite element modelling and optimization of load transfer in multi-fastener joints using structural elements. Compos Struct 82(2):245–256CrossRefGoogle Scholar
  30. 30.
    Eschenauer HA, Kobelev HA, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51CrossRefGoogle Scholar
  31. 31.
    Fleury C (1989) First and second order convex approximation strategies in structural optimization. Struct Optim 1:3–10CrossRefGoogle Scholar
  32. 32.
    Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387–408MathSciNetCrossRefGoogle Scholar
  34. 34.
    Gaynor AT, Guest JK (2014) Topology optimization for additive manufacturing: considering maximum overhang constraint. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, 16–20 June 2014, Atlanta, GAGoogle Scholar
  35. 35.
    Gea HC, Luo J (1999) Automated optimal stiffener pattern design. J Struct Mech 27:275–292Google Scholar
  36. 36.
    Gersborg AR, Andreasen CS (2011) An explicit parameterization for casting constraints in gradient driven topology optimization. Struct Multidiscip Optim 44:875–881CrossRefGoogle Scholar
  37. 37.
    Granville D, Reginster P, Lombard Y (2001) SAMCEF DESIGN, a new object oriented environment for the design of mechanical systems. European Space Agency, (Special Publication) ESA SP 468:309–315Google Scholar
  38. 38.
    Grihon S, Krog L, Bassir D (2009) Numerical optimization applied to structure sizing at AIRBUS: a multi-step process. Int J Simul Multi Des Optim 3:432–442CrossRefGoogle Scholar
  39. 39.
    Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37(5):463–473MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sin 26:807–823MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Guo X, Zhang W, Zhong W (2014) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidiscip Optim 11:1–12CrossRefGoogle Scholar
  45. 45.
    Hansen LU, Horst P (2008) Multilevel optimization in aircraft structural design evaluation. Comput Struct 86:104–118CrossRefGoogle Scholar
  46. 46.
    Hao XY, Li M, Jia HG, Xuan M (2010) Optimal design of strap-down inertial navigation support under random loads. In: 2010 IEEE international conference on information and automation (ICIA). IEEE, pp 1251–1255Google Scholar
  47. 47.
    Hao P, Wang B, Li G, Meng Z, Tian K, Tang X (2014) Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Struct 82:46–54CrossRefGoogle Scholar
  48. 48.
    Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. J Aerosp Eng 221:535–552Google Scholar
  49. 49.
    Hartl DJ, Lagoudas DC, Calkins FT, Mabe JH (2010) Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization. Smart Mater Struct 19:015020CrossRefGoogle Scholar
  50. 50.
    Harzheim L, Graf G (2006) A review of optimization of cast parts using topology optimization. Struct Multidiscip Optim 31:388–399CrossRefGoogle Scholar
  51. 51.
    Huang X, Xie YM (2010) Topology optimization of continuum structures: methods and applicationsn. Wiley, ChichesterCrossRefGoogle Scholar
  52. 52.
    Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683MathSciNetCrossRefGoogle Scholar
  53. 53.
    Huang X, Zhou SW, Xie YM, Li Q (2013) Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput Mater Sci 67:397–407CrossRefGoogle Scholar
  54. 54.
    Inoyama D, Sanders BP, Joo JJ (2008) Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J Aircr 45:1853–1862CrossRefGoogle Scholar
  55. 55.
    Jang G-W, Jeong JH, Kim YY, Sheen D, Park C, Kim M-N (2003) Checkerboard-free topology optimization using non-conforming finite elements. Int J Numer Methods Eng 57:1717–1735zbMATHCrossRefGoogle Scholar
  56. 56.
    Jang G-W, Shim HS, Kim YY (2009) Optimization of support locations of beam and plate structures under self-weight by using a sprung structure model. J Mech Des 131:021005CrossRefGoogle Scholar
  57. 57.
    Jiang T, Chirehdast M (1997) A systems approach to structural topology optimization: designing optimal connections. J Mech Des 119:40CrossRefGoogle Scholar
  58. 58.
    Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130:203–226MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Kang Z, Wang YQ (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Kim SI, Kim YY (2014) Topology optimization of planar linkage mechanisms. Int J Numer Methods Eng 98(4):265–286CrossRefGoogle Scholar
  61. 61.
    Kim YY, Jang G-W, Park JH, Hyun JS, Nam, SJ (2007) Automatic synthesis of a planar linkage mechanism with revolute joints by using spring-connected rigid block models. J Mech Des Trans ASME 129:930–940Google Scholar
  62. 62.
    Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part I). Commun Pure Appl Math 39(1):113–137MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part II). Commun Pure Appl Math 39(2):139–182MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Kohn R, Strang G (1986) Optimal design and relaxation of variational problems (part III). Commun Pure Appl Math 39(3):353–377MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Krog L, Tucker A, Rollema G (2002) Application of topology, sizing and shape optimization methods to optimal design of aircraft components. In: Proceedings of 3rd Altair UK HyperWorks users conferenceGoogle Scholar
  66. 66.
    Krog L, Tucker A, Kemp M, Boyd R (2004) Topology optimization of aircraft wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, pp 1–11Google Scholar
  67. 67.
    Kudva J (2004) Overview of the DARPA smart wing project. J Intell Mater Syst Struct 15:261–267CrossRefGoogle Scholar
  68. 68.
    Langelaar M, Yoon GH, Kim YY, van Keulen F (2011) Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization. Int J Numer Methods Eng 88:817–840zbMATHCrossRefGoogle Scholar
  69. 69.
    Leiva JP, Watson BC, Kosaka I (2004) An analytical bi-directional growth parameterization to obtain optimal castable topology designs. In: Proceedings of 10th AIAA/ISSMO symposium on multidisciplinary analysis and optimization. Albany, NYGoogle Scholar
  70. 70.
    Li Q, Steven GP, Xie YM (2001) A simple checkerboard suppression algorithm for evolutionary structural optimization. Struct Multidiscip Optim 22(3):230–239CrossRefGoogle Scholar
  71. 71.
    Li Q, Steven GP, Xie YM (2001) Evolutionary structural optimization for connection topology design of multi-component systems. Eng Comput 18(3/4):460–479zbMATHCrossRefGoogle Scholar
  72. 72.
    Li Y, Xin X, Kikuchi N, Saitou K (2001) Optimal shape and location of piezoelectric materials for topology optimization of flextensional actuators. In: Proceedings of 2001 genetic and evolutionary computations conference, pp 1085–1089Google Scholar
  73. 73.
    Liu ST, Li QH, Chen WJ, Tong LY (2014) H-DGTP a heaviside-function based directional growth topology parameterization for design optimization of Stiffener’s layout and heights of thin-walled structures. In: 11th World Congress on computational mechanics (WCCM XI), Barcelona, SpainGoogle Scholar
  74. 74.
    Liu H, Zhang WH, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim. doi: 10.1007/s00158-014-1218-4 MathSciNetGoogle Scholar
  75. 75.
    Lu J, Chen Y (2012) Manufacturable mechanical part design with constrained topology optimization. Proc Inst Mech Eng Part B J Eng Manuf 226:1727–1735CrossRefGoogle Scholar
  76. 76.
    Luo J, Gea H (1998) A systematic topology optimization approach for optimal stiffener design. Struct Optim 16:280–288CrossRefGoogle Scholar
  77. 77.
    Luo J, Gea HC (2003) Optimal stiffener design for interior sound reduction using a topology optimization based approach. J Vib Acoust 125:267–273CrossRefGoogle Scholar
  78. 78.
    Martinez MP, Messac A, Rais-Rohani M (2001) Manufacturability-based optimization of aircraft structures using physical programming. AIAA J 39(3):517–525CrossRefGoogle Scholar
  79. 79.
    Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design. Adv Eng Softw 39:71–87CrossRefGoogle Scholar
  80. 80.
    Michailidis G (2014) Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. PhD thesis, Department of Applied Mathematics, Ecole PolytechniqueGoogle Scholar
  81. 81.
    Moumni Z, Zaki W, Nguyen QS (2008) Theoretical and numerical modeling of solid–solid phase change: application to the description of the thermomechanical behavior of shape memory alloys. Int J Plast 24:614–645zbMATHCrossRefGoogle Scholar
  82. 82.
    Moussa MO, Moumni Z, Doaré O, Touzé C, Zaki W (2012) Non-linear dynamic thermomechanical behaviour of shape memory alloys. J Intell Mater Syst Struct 23:1593–1611CrossRefGoogle Scholar
  83. 83.
    Niu MCY (1988) Airframe structural design: practical design information and data on aircraft structures. Technical Book Co, Los Angeles, CAGoogle Scholar
  84. 84.
    Niu C (1999) Airframe structural design: practical design information and data on aircraft structures. Conmilit Press Limited, Hong KongGoogle Scholar
  85. 85.
    Oberndorfer JM, Achtziger W, Hörnlein HR (1996) Two approaches for truss topology optimization: a comparison for practical use. Struct Optim 11:137–144CrossRefGoogle Scholar
  86. 86.
    Oh JH, Kim YG, Lee DG (1997) Optimum bolted joints for hybrid composite materials. Compos Struct 38(1):329–341MathSciNetCrossRefGoogle Scholar
  87. 87.
    Oinonen A, Tanskanen P, Björk T, Marquis G (2010) Pattern optimization of eccentrically loaded multi-fastener joints. Struct Multidiscip Optim 40(1–6):597–609CrossRefGoogle Scholar
  88. 88.
    Patnaik SN, Hopkins DA (2000) General-purpose optimization method for multidisciplinary design applications. Adv Eng Softw 31(1):57–63CrossRefGoogle Scholar
  89. 89.
    Patnaik SN, Gendy AS, Hopkins DA (1994) Design optimization of large structural systems with substructuring in a parallel computational environment. Comput Syst Eng 5(4):425–440CrossRefGoogle Scholar
  90. 90.
    Poon C, Xiong Y (1995) Design of bolted joints for composite structures. Woodhead Publishing Limited, UK, pp 629–636Google Scholar
  91. 91.
    Qian Z, Ananthasuresh GK (2004) Optimal embedding of rigid objects in the topology design of structures. Mech Based Des Struct Mach 32:165–193CrossRefGoogle Scholar
  92. 92.
    Qiao HT, Liu ST (2009) Concurrent optimum design of components layout and connection in a structure. Chin J Theor Appl Mech 41(2):222–228MathSciNetGoogle Scholar
  93. 93.
    Querin OM, Young V (2000) Computational efficiency and validation of bi-directional evolutionary structure optimization. Comput Methods Appl Mech Eng 189:559–573zbMATHCrossRefGoogle Scholar
  94. 94.
    Rais-Rohani M, Lokits J (2007) Reinforcement layout and sizing optimization of composite submarine sail structures. Struct Multidiscip Optim 34:75–90CrossRefGoogle Scholar
  95. 95.
    Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41:913–934CrossRefGoogle Scholar
  96. 96.
    Reich GW, Sanders B, Joo JJ (2007) Development of skins for morphing aircraft applications via topology optimization. J Intell Mater Syst Struct 20:1–13Google Scholar
  97. 97.
    Remouchamps A, Bruyneel M, Fleury C, Grihon S (2011) Application of a bi-level scheme including topology optimization to the design of an aircraft pylon. Struct Multidiscip Optim 44:739–750CrossRefGoogle Scholar
  98. 98.
    Rong JH, Xie YM, Yang XY, Liang QQ (2000) Topology optimization of structures under dynamic response constraints. J Sound Vib 234:177–189CrossRefGoogle Scholar
  99. 99.
    Rong JH, Tang ZL, Xie YM, Li FY (2013) Topological optimization design of structures under random excitations using SQP method. Eng Struct 56:2098–2106CrossRefGoogle Scholar
  100. 100.
    Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108CrossRefGoogle Scholar
  101. 101.
    Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Santiago OF, Reutlingen TSE (2002) Automatic welding spot minimization with BOSS Quattro. BOSS Quattro Documentation, Siemens-SamtechGoogle Scholar
  103. 103.
    Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Shan P (2008) Optimal embedding objects in the topology design of structure. Master thesis of Dalian University of TechnologyGoogle Scholar
  105. 105.
    Shapiro V (1988) Theory of R-functions and applications: a primer. Technical Report, Cornell UniversityGoogle Scholar
  106. 106.
    Shu L, Wang MY, Fang ZD, Ma ZD, Wei P (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330:5820–5834CrossRefGoogle Scholar
  107. 107.
    Sigmund O (2001) A 99 line topology optimization code written in MATLAB. Structure and Multidisciplinary Optimization. 21:120–127CrossRefGoogle Scholar
  108. 108.
    Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424CrossRefGoogle Scholar
  109. 109.
    Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48:1031–1055MathSciNetCrossRefGoogle Scholar
  110. 110.
    Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscip Optim. 16:68–75CrossRefGoogle Scholar
  111. 111.
    Sokołowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37:1251–1272MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Stanford B, Beran P (2012) Optimal compliant flapping mechanism topologies with multiple load cases. J Mech Des 134(5):051007Google Scholar
  113. 113.
    Stanford B, Beran P, Kobayashi M (2013) Simultaneous topology optimization of membrane wings and their compliant flapping mechanisms. AIAA J 51:1431–1441CrossRefGoogle Scholar
  114. 114.
    Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318zbMATHCrossRefGoogle Scholar
  115. 115.
    Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Svanberg K (1995) A globally convergent version of MMA without linesearch. In: 1st World Congress of structural and multidisciplinary optimization. Pergamon, New YorkGoogle Scholar
  117. 117.
    Svanberg K (2007) On a globally convergent version of MMA. In: 7th World Congress on structural and multidisciplinary optimization. COEX Seoul, KoreaGoogle Scholar
  118. 118.
    Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191:5485–5498zbMATHCrossRefGoogle Scholar
  119. 119.
    Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622zbMATHCrossRefGoogle Scholar
  120. 120.
    Tomlin M, Meyer J (2011) Topology optimization of an additive layer manufactured (ALM) aerospace part. In: The 7th Altair CAE technology conferenceGoogle Scholar
  121. 121.
    Van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472MathSciNetCrossRefGoogle Scholar
  122. 122.
    Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A-Struct 273:134–148CrossRefGoogle Scholar
  123. 123.
    Vitali R, Park O, Haftka RT, Sankar BV, Rose CA (2002) Structural optimization of a hat-stiffened panel using response surfaces. J Aircr 39(1):158–166CrossRefGoogle Scholar
  124. 124.
    Wang MY, Chen SK, Wang XM, Mel YL (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941–956CrossRefGoogle Scholar
  125. 125.
    Wang B, Hao P, Li G, Tian K, Du K, Wang X, Zhang X, Tang X (2014) Two-stage size-layout optimization of axially compressed stiffened panels. Struct Multidiscip Optim 50(2):313–327CrossRefGoogle Scholar
  126. 126.
    Wang B, Hao P, Li G, Zhang JX, Du KF, Tian K, Wang XJ, Tang XH (2014) Optimum design of hierarchical stiffened shells for low imperfection sensitivity. Acta Mech Sin 30:391–402CrossRefGoogle Scholar
  127. 127.
    Watson A, Featherston CA, Kennedy D (2007) Optimization of postbuckled stiffened panels with multiple stiffener sizes. In: Proceedings of the forty eighth AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Honolulu, Hawaii, pp 23–26Google Scholar
  128. 128.
    Xia L, Breitkopf P (2014) Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework. Comput Methods Appl Mech Eng 278:524–542MathSciNetCrossRefGoogle Scholar
  129. 129.
    Xia L, Breitkopf P (2014) A reduced multiscale model for nonlinear structural topology. Comput Methods Appl Mech Eng 280:117–134MathSciNetCrossRefGoogle Scholar
  130. 130.
    Xia L, Breitkopf P (2015) Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput Methods Appl Mech Eng 286:147–167MathSciNetCrossRefGoogle Scholar
  131. 131.
    Xia Q, Shi T, Wang MY, Liu S (2010) A level set based method for the optimization of cast part. Struct Multidiscip Optim 41:735–747CrossRefGoogle Scholar
  132. 132.
    Xia L, Zhu JH, Zhang WH (2012) A superelement formulation for the efficient layout design of complex multi-component system. Struct Multidiscip Optim 45:643–655MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Xia L, Zhu JH, Zhang WH (2012) Sensitivity analysis with the modified Heaviside function for the optimal layout design of multi-component systems. Comput Methods Appl Mech Eng 241–244:142–154MathSciNetCrossRefGoogle Scholar
  134. 134.
    Xia L, Zhu JH, Zhang WH, Breitkopf P (2013) An implicit model for the integrated optimization of component layout and structure topology. Comput Methods Appl Mech Eng 257:87–102MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896CrossRefGoogle Scholar
  136. 136.
    Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, BerlinzbMATHCrossRefGoogle Scholar
  137. 137.
    Xie K, Wells L, Camelio JA, Youn BD (2007) Variation propagation analysis on compliant assemblies considering contact interaction. ASME 129:934–942CrossRefGoogle Scholar
  138. 138.
    Yan X, Huang X, Zha Y, Xie YM (2014) Concurrent topology optimization of structures and their composite microstructures. Comput Struct 133:103–110CrossRefGoogle Scholar
  139. 139.
    Yang XY, Xie YM (2003) Perimeter control in the bi-direction evolutionary optimization method. Struct Multidiscip Optim 24:430–440MathSciNetGoogle Scholar
  140. 140.
    Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23:49–62CrossRefGoogle Scholar
  141. 141.
    Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199:1744–1763MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Zhang WH, Duysinx P (2003) Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Comput Struct 81:2173–2181CrossRefGoogle Scholar
  143. 143.
    Zhang WH, Sun SP (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68:993–1011zbMATHCrossRefGoogle Scholar
  144. 144.
    Zhang WH, Zhu JH (2006) A new finite-circle family method for optimal multi-component packing design. WCCM VII, Los AngelesGoogle Scholar
  145. 145.
    Zhang WH, Xia L, Zhu JH, Zhang Q (2011) Some recent advances in the integrated layout design of multicomponent systems. ASME J Mech Des 133:104503-1–10450315Google Scholar
  146. 146.
    Zhang J, Zhang WH, Zhu JH, Xia L (2012) Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput Methods Appl Mech Eng 245:75–89MathSciNetCrossRefGoogle Scholar
  147. 147.
    Zhang WS, Sun G, Guo X, Shan P (2013) A level set-based approach for simultaneous optimization of the structural topology and the layout of embedding structural components. Eng Mech 30(7):22–27Google Scholar
  148. 148.
    Zhang WS, Zhang WL, Guo X (2015) Explicit layout control in optimal design of structural systems with multiple embedding components. Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2015.03.007 MathSciNetGoogle Scholar
  149. 149.
    Zhao MY, Yang L, Wan XP (1996) Load distribution in composite multifastener joints. Comput Struct 60(2):337–342CrossRefGoogle Scholar
  150. 150.
    Zhou M (2001) Rozvany GIN (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21:80–83CrossRefGoogle Scholar
  151. 151.
    Zhou M (2004) Topology optimization for shell structures with linear buckling responses. WCCM VI, Beijing, ChinaGoogle Scholar
  152. 152.
    Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224CrossRefGoogle Scholar
  153. 153.
    Zhou M, Fleury R, Shyy Y-K, Thomas H, Brennan J (2002) Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO conference AIAA-2002-4901Google Scholar
  154. 154.
    Zhu JH (2010) Advanced structural topology optimization and application. In: ASMDO conference 2010, Paris, France, 2010 June 21–23Google Scholar
  155. 155.
    Zhu JH, Zhang WH (2006a) Coupled design of components layout and supporting structures using shape and topology optimization. In: Proceedings of CJK-OSM IV 2006, Kunming ChinaGoogle Scholar
  156. 156.
    Zhu JH, Zhang WH (2006) Maximization of structural natural frequency with optimal support layout. Struct Multidiscip Optim 31(6):462–469CrossRefGoogle Scholar
  157. 157.
    Zhu JH, Zhang WH (2010) Integrated layout design of supports and structures. Comput Methods Appl Mech Eng 199:557–569zbMATHCrossRefGoogle Scholar
  158. 158.
    Zhu JH, Zhang WH, Qiu KP (2007) Bi-directional evolutionary topology optimization using element replaceable method. Comput Mech 40:97–109zbMATHCrossRefGoogle Scholar
  159. 159.
    Zhu JH, Zhang WH, Beckers P, Chen YZ, Guo ZZ (2008) Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct Multidiscip Optim 36:29–41MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    Zhu JH, Zhang WH, Beckers P (2009) Integrated layout design of multi-component system. Int J Numer Methods Eng 78:631–651zbMATHCrossRefGoogle Scholar
  161. 161.
    Zhu JH, Zhang WH, Xia L, Zhang Q, Bassir DH (2012) Optimal packing configuration design with finite-circle method. J Intell Robot Syst 67:185–199zbMATHCrossRefGoogle Scholar
  162. 162.
    Zhu JH, Gu XJ, Zhang WH, Beckers P (2013) Structural design of aircraft skin stretch-forming die using topology optimization. J Comput Appl Math 246:278–288MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Zhu JH, Gao HH, Zhang WH, Zhou Y (2014) A multi-point constraints based integrated layout and topology optimization design of multi-component systems. Struct Multidiscip Optim 51:397–407CrossRefGoogle Scholar
  164. 164.
    Zhu JH, Hou J, Zhang WH, Li Y (2014) Structural topology optimization with constraints on multi-fastener joint loads. Struct Multidiscip Optim 50(4):561–571MathSciNetCrossRefGoogle Scholar
  165. 165.
    Zhu JH, Hou J, He F, Zhang WH (2014b) Topology optimization of assembled aircraft structure with joint load constraints. In: Proceedings of eighth China–Japan–Korea joint symposium on optimization of structural and mechanical systems, Gyeongju, KoreaGoogle Scholar
  166. 166.
    Zhu JH, Li Y, Zhang WH (2014d) Topology optimization with shape preserving design. In: Proceedings of 5th international conference on computational methods, Cambridge, UKGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2015

Authors and Affiliations

  1. 1.Engineering Simulation and Aerospace Computing (ESAC)Northwestern Polytechnical UniversityXi’anChina
  2. 2.CNRS, UMR 7337 Roberval, Centre de Recherches de RoyallieuUniversité de Technologie de Compiègne, Sorbonne UniversitésCompiègne CedexFrance

Personalised recommendations