Skip to main content

A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle

Abstract

The objective of this paper is to analyze free software for the design, analysis, modelling, and simulation of an unmanned aerial vehicle (UAV). Free software is the best choice when the reduction of production costs is necessary; nevertheless, the quality of free software may vary. This paper probably does not include all of the free software, but tries to describe or mention at least the most interesting programs. The first part of this paper summarizes the essential knowledge about UAVs, including the fundamentals of flight mechanics and aerodynamics, and the structure of a UAV system. The second section generally explains the modelling and simulation of a UAV. In the main section, more than 50 free programs for the design, analysis, modelling, and simulation of a UAV are described. Although the selection of the free software has been focused on small subsonic UAVs, the software can also be used for other categories of aircraft in some cases; e.g. for MAVs and large gliders. The applications with an historical importance are also included. Finally, the results of the analysis are evaluated and discussed—a block diagram of the free software is presented, possible connections between the programs are outlined, and future improvements of the free software are suggested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55

References

  1. 1.

    Vogeltanz T, Jašek R (2014) Free software for the modelling and simulation of a mini-UAV. In: Mathematics and computers in science and industry, Varna, Bulgaria, 13–15 September 2014, pp 210–215

  2. 2.

    Chen XQ, Chen YQ, Chase JG (2009) Mobile robots—state of the art in land, sea, air, and collaborative missions. In-Tech, Croatia, pp 177–201

    Book  Google Scholar 

  3. 3.

    Jodeh NM (2006) Development of autonomous unmanned aerial vehicle research platform: modeling, simulating, and flight testing. Wright-Patterson Air Force Base, Dayton

  4. 4.

    Abdunabi T (2006) Modelling and autonomous flight simulation of a small unmanned aerial vehicle. The University of Sheffield, Sheffield

    Google Scholar 

  5. 5.

    Petricca L, Ohlckers P, Grinde C (2011) Micro- and nano-air vehicles: state of the art. Int J Aerosp Eng. doi:10.1155/2011/214549

  6. 6.

    Mueller TJ, DeLaurier JD (2003) Aerodynamics of small vehicles. Annu Rev Fluid Mech 35(1):89–111. doi:10.1146/annurev.fluid.35.101101.161102

    Article  MATH  Google Scholar 

  7. 7.

    Swarup A, Sudhir (2014) Comparison of quadrotor performance using backstepping and sliding mode control. In: Proceedings of the 2014 international conference on circuits, systems and control, Interlaken, Switzerland, 22–24 February 2014, pp 79–82

  8. 8.

    Yun C, Li X (2013) Design of UAV flight simulation software based on simulation training method. WSEAS Trans Inf Sci Appl 10(2):37–46

    Google Scholar 

  9. 9.

    Naidoo Y, Stopforth R, Bright G (2011) Development of an UAV for search and rescue applications: mechatronic integration for a quadrotor helicopter. In: IEEE Africon 2011, Livingstone, Zambia, 13–15 September 2011

  10. 10.

    Kurnaz S, Cetin O, Kaynak O (2010) Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Syst Appl 37(2):1229–1234

    Article  Google Scholar 

  11. 11.

    Fabiani P, Fuertes V, Piquereau A, Mampey R, Teichteil-Königsbuch F (2007) Autonomous flight and navigation of VTOL UAVs: from autonomy demonstrations to out-of-sight flights. Aerosp Sci Technol 11(2–3):183–193

    Article  Google Scholar 

  12. 12.

    Kumar V, Yong H, Min D, Choi E (2010) Auto landing control for small scale unmanned helicopter with flight gear and HILS. In: Proceeding of the 5th international conference on computer sciences and convergence information technology, ICCIT 2010, Seoul, Korea, November 30–December 2, 2010, pp 676–681

  13. 13.

    Gol G, Bayraktar NF, Kiyak E (2014) PID controlling of the quadrotor and sensor performance tests. Int J Circuits Syst Signal Proces 8:266–275

    Google Scholar 

  14. 14.

    Ye J, Guo H, Tang S, Wang Q (2012) The research on visual flight simulation for unmanned helicopter. In: Communications in computer and information science, vol 325, CCIS, pp 332–341

  15. 15.

    Babka DW (2011) Flight testing in a simulation based environment. California Polytechnic University, San Luis Obispo, California, USA [Online]. http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1045&context=aerosp

  16. 16.

    Foster TM (2005) Dynamic stability and handling qualities of small unmanned-aerial-vehicles. Brigham Young University, Brigham, p 125

    Google Scholar 

  17. 17.

    Austin R (2010) Unmanned aircraft systems: UAVs design, development and deployment. Wiley, Wiltshire, p 332

    Book  Google Scholar 

  18. 18.

    Shankar P, Chung W, Husman J, Wells V (2013) A novel software framework for teaching aircraft dynamics and control. Comput Appl Eng Educ. doi:10.1002/cae.21579

  19. 19.

    Uragun B (2011) Energy efficiency for unmanned aerial vehicles. In: 2011 10th international conference on machine learning and applications, Honolulu, Hawaii, USA, 18–21 December 2011. doi:10.1109/ICMLA.2011.159

  20. 20.

    Hahn AS (2010) Vehicle sketch pad: a parametric geometry modeler for conceptual aircraft design. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, USA, 4–7 January 2010

  21. 21.

    Belben JB, McDonaldy RA (2013) Enabling rapid conceptual design using geometry-based multi-fidelity models in VSP. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, grapevine (Dallas/Ft. Worth Region), Texas, USA, 7–10 January 2013

  22. 22.

    DG Hull (2007) Fundamentals of airplane flight mechanics. Springer, Berlin

  23. 23.

    Chelaru TV, Pana V, Chelaru A (2009) Dynamics and flight control of the UAV formations. WSEAS Trans Syst Control 4(4):198–210

    Google Scholar 

  24. 24.

    Mazhar F, Khan AM, Chaudhry IA, Ahsan M (2013) On using neural networks in UAV structural design for CFD data fitting and classification. Aerosp Sci Technol 30(1):210–225

    Article  Google Scholar 

  25. 25.

    Lissaman PBS (1983) Low-reynolds-number airfoils. Annu Rev Fluid Mech 15(1):223–239. doi:10.1146/annurev.fl.15.010183.001255

    Article  MATH  Google Scholar 

  26. 26.

    Boussalis H, Valavanis K, Guillaume D, Pena F, Diaz EU, Alvarenga J (2013) Control of a simulated wing structure with multiple segmented control surfaces. In: 21st Mediterranean conference on control and automation (Med), pp 501–506

  27. 27.

    Reynolds number calculator [Online]. http://airfoiltools.com/calculator/reynoldsnumber. Accessed 12 Dec 2014

  28. 28.

    Pederson DJ (2011) Conceptual design tool to analyze electrochemically-powered micro air vehicles. Wright-Patterson Air Force Base, Dayton, p 193

    Google Scholar 

  29. 29.

    U.S. Department of Transportation (2000) Rotorcraft flying handbook [Online]. U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service, FAA-H-8083-21, Washington, D.C., USA. http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/media/faa-h-8083-21.pdf

  30. 30.

    U.S. Department of Transportation (2012) Helicopter flying handbook [Online]. U.S. Department of Transportation, Federal Aviation Administration, Flight Standards Service, FAA-H-8083-21A, USA. http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/helicopter_flying_handbook.pdf

  31. 31.

    Jing D, Haifeng W (2013) System health management for unmanned aerial vehicle: conception, state-of-art, framework and challenge. In: The 11th IEEE international conference on electronic measurement and instruments, Harbin, China, 16–18 August 2013

  32. 32.

    Cetin O, Kurnaz S, Kaynak O (2011) Fuzzy logic based approach to design of autonomous landing system for unmanned aerial vehicles. J Intell Robot Syst Theory Appl 61(1–4):239–250

    Article  Google Scholar 

  33. 33.

    Perhinschi MG, Napolitano MR, Tamayo S (2010) Integrated simulation environment for unmanned autonomous systems—towards a conceptual framework. Model Simul Eng. doi:10.1155/2010/736201

  34. 34.

    Gonzalez-Espasandin O, Leo TJ, Navarro-Arevalo E (2014) Fuel cells: a real option for unmanned aerial vehicles propulsion. Sci World J. doi:10.1155/2014/497642

  35. 35.

    Kahale E, Garcia PC, Bestaoui Y (2013) Autonomous path tracking of a kinematic airship in presence of unknown gust. J Intell Robot Syst 69(1–4):431–446. doi:10.1007/s10846-012-9709-2

    Article  Google Scholar 

  36. 36.

    Syamlal M, O’Brien TJ, Benyahia S, Gel A, Pannala S (2008) Open-source software in computational research: a case study. Model Simul Eng. doi:10.1155/2008/937542

  37. 37.

    Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Sandia Report SAND2002-0529, Sandia National Laboratories, Albuquerque, NM, USA

  38. 38.

    Srikanth MB, Dydek ZT, Annaswamy AM, Lavretsky E (2009) A robust environment for simulation and testing of adaptive control for mini-UAVs. In: 2009 American control conference, St. Louis, MO, USA, 10–12 June 2009

  39. 39.

    JSBSim Contributors. JSBSim open source flight dynamics model [Online]. http://jsbsim.sourceforge.net/

  40. 40.

    JSBSim Contributors (2005) Aeromatic: version 0.9 [Online]. http://jsbsim.sourceforge.net/aeromatic2.html

  41. 41.

    FlightGear Contributors. FlightGear flight simulator: introduction [Online]. http://www.flightgear.org/about/

  42. 42.

    Berndt JS (2004) JSBSim: An open source flight dynamics model in C ++. In: Collection of technical papers—AIAA modeling and simulation technologies conference, vol 1, pp 261–287

  43. 43.

    Berndt JS, De Marco A (2009) Progress on and usage of the open source flight dynamics model software library, JSBSim. In: AIAA modeling and simulation technologies conference, Chicago, Illinois, USA, 10–12 August 2009

  44. 44.

    Lim SK, Hao CC (2012) Modeling unmanned vehicle system [Online]. https://engineering.purdue.edu/HSL/uploads/papers/UVG_S10.pdf

  45. 45.

    Berndt JS, the JSBSim Development Team. (2011) JSBSim: an open source, platform-independent, flight dynamics model in C++ [Online]. http://jsbsim.sourceforge.net/JSBSimReferenceManual.pdf

  46. 46.

    Gidenstam A (2013) Lighter-than-air support for airship and balloon simulation in JSBSim and FlightGear [Online]. http://www.gidenstam.org/FlightGear/Airships/

  47. 47.

    FlightGear Contributors. FlightGear flight simulator: features [Online]. http://www.flightgear.org/about/features/

  48. 48.

    Qi J, Liu J, Zhao B, Mei S, Han J, Shang H (2014) Visual simulation system design of soft-wing UAV based on FlightGear. In: IEEE international conference on mechatronics and automation, IEEE ICMA 2014, Tianjin, China, 2–5 August 2014, pp 1188–1192

  49. 49.

    Basler M, Spott M, Buchanan S, Berndt J et al (2014) The FlightGear manual [Online]. http://mapserver.flightgear.org/getstart.pdf

  50. 50.

    Zhang J, Geng Q, Fei Q (2012) UAV flight control system modeling and simulation based on flightgear. In: IET conference publications, Xiamen, China, 3–5 March 2012

  51. 51.

    FlightGear Contributors (2014) FlightGear Wiki—UIUC [Online]. http://wiki.flightgear.org/UIUC

  52. 52.

    Selig MS, Deters R, Dimock G (2002) Aircraft dynamics models for use with FlightGear: modeling and simulation [Online]. http://m-selig.ae.illinois.edu/apasim/Aircraft-uiuc.html

  53. 53.

    3DRobotics (2014) HIL quad simulator [Online]. http://copter.ardupilot.com/wiki/hil-quad/

  54. 54.

    Hodson D (2014) OpenEaagles simulation framework [Online]. http://www.openeaagles.org

  55. 55.

    Hodson D (2012) OpenEaagles simulation framework: overview [Online]. http://www.openeaagles.org/wiki/doku.php?id=overview:overview

  56. 56.

    Hodson D, Gehl D, Baldwin R (2006) Building distributed simulations utilizing the EAAGLES framework. In: Interservice/industry training, simulation, and education conference (I/ITSEC), vol 5, no. 2

  57. 57.

    Hodson D (2008) OPENEAAGLES, an open source simulation framework. In: A publication of the AIAA Modeling and Simulation Technical Committee, vol 1, no 1

  58. 58.

    Carter P (2014) SOFTWARE [Online]. http://www.esotec.org/sw/swhome.html

  59. 59.

    Drela M (2014) Index of/drela/Public/web [Online]. http://web.mit.edu/drela/Public/web/

  60. 60.

    Drela M (2010) TASOPT 2.00: transport aircraft system optimization—technical description [Online]. http://web.mit.edu/drela/Public/web/tasopt/TASOPT_doc.pdf

  61. 61.

    Turan M (2009) Tools for the conceptual design and engineering analysis of micro air vehicles. Wright-Patterson Air Force Base, Dayton, p 156

    Google Scholar 

  62. 62.

    Drela M, Youngren H (2014) AVL overview [Online]. http://web.mit.edu/drela/Public/web/avl/

  63. 63.

    Drela M, Youngren H (2010) AVL 3.30 user primer [Online]. http://web.mit.edu/drela/Public/web/avl/avl_doc.txt

  64. 64.

    Drela M (2013) XFOIL: subsonic airfoil development system [Online]. http://web.mit.edu/drela/Public/web/xfoil/

  65. 65.

    Lafountain C, Cohen K, Abdallah S (2012) Use of XFOIL in design of camber-controlled morphing UAVs. Comput Appl Eng Educ 20(4):673–680. doi:10.1002/cae.20437

    Article  Google Scholar 

  66. 66.

    Drela M (2001) XFOIL 6.9 user primer [Online]. http://web.mit.edu/drela/Public/web/xfoil/xfoil_doc.txt

  67. 67.

    Silva NA (2014) Parametric design, aerodynamic analysis and parametric optimization of a solar UAV. Instituto Superior Técnico, Lisboa, p 10

    Google Scholar 

  68. 68.

    Wald QR (2006) The aerodynamics of propellers. Prog Aerosp Sci 42(2):85–128

    MathSciNet  Article  Google Scholar 

  69. 69.

    Drela M (2007) QPROP: propeller/windmill analysis and design [Online]. http://web.mit.edu/drela/Public/web/qprop/

  70. 70.

    Drela M (2006) QPROP formulation [Online]. http://web.mit.edu/drela/Public/web/qprop/qprop_theory.pdf

  71. 71.

    Betz A (1919) Airscrews with minimum energy loss. Report, Kaiser Wilhelm Institute for Flow Research

  72. 72.

    Goldstein S (1929) On the vortex theory of screw propellers. In: Proceedings of the royal society, vol 123, 1929

  73. 73.

    Theodorsen T (1948) Theory of propellers. McGraw-Hill, New York

    MATH  Google Scholar 

  74. 74.

    Larrabee EE, French SE (1983) Minimum induced loss windmills and propellers. J Wind Eng Ind Aerodyn 15(1–3):317–327. doi:10.1016/0167-6105(83)90201-5

    Article  Google Scholar 

  75. 75.

    Drela M (2007) QPROP user guide [Online]. http://web.mit.edu/drela/Public/web/qprop/qprop_doc.txt

  76. 76.

    Drela M (2005) QMIL user guide [Online]. http://web.mit.edu/drela/Public/web/qprop/qmil_doc.txt

  77. 77.

    Drela M, Youngren H (2011) XROTOR download page [Online]. http://web.mit.edu/drela/Public/web/xrotor/

  78. 78.

    Drela M, Youngren H (2003) XROTOR user guide [Online]. http://web.mit.edu/drela/Public/web/xrotor/xrotor_doc.txt

  79. 79.

    Thipyopas C, Kaewsutthi S, Tohwae-A-Yee A (2013) High performance propeller system for a multi-mission micro aerial vehicle. Int J Micro Air Veh 5(3):179–191

    Article  Google Scholar 

  80. 80.

    Carter P (2014) CROTOR: XROTOR on steroids [Online]. http://www.esotec.org/sw/crotor.html

  81. 81.

    Carter P (2011) SUBROUTINE CROTOR user guide [Online]. http://www.esotec.org/sw/dl/CRotor_doc.txt

  82. 82.

    Carter P (2014) ESPROP [Online]. http://www.esotec.org/sw/esprop.html

  83. 83.

    Carter P (2014) SUBROUTINE ESLOFTX user guide [Online]. http://www.esotec.org/sw/dl/Esloftx_doc.txt

  84. 84.

    Youngren H, Drela M (2005) DFDC 0.70 user primer [Online]. http://web.mit.edu/drela/Public/web/dfdc/DFDC_v0.70.zip

  85. 85.

    Youngren H, Drela M, Sanders S (2005) DFDC summary [Online]. http://web.mit.edu/drela/Public/web/dfdc/

  86. 86.

    Carter P (2014) DFDC: Ducted Fan Design Code—a diamond in the rough [Online]. http://www.esotec.org/sw/DFDC.html

  87. 87.

    Gao X-Z, Hou Z-X, Guo Z, Fan R-F, Chen X-Q (2014) Analysis and design of guidance-strategy for dynamic soaring with UAVs. Control Eng Pract 32:218–226

    Article  Google Scholar 

  88. 88.

    Drela M (2008) DSOPT: dynamic soaring simulation and optimization program [Online]. http://web.mit.edu/drela/Public/web/dsopt/summary.txt

  89. 89.

    Carmichael R (2013) Public Domain Aeronautical Software [Online]. http://www.pdas.com

  90. 90.

    Carmichael R (2013) Public Domain Aeronautical Software: contents [Online]. http://www.pdas.com/contents15.html

  91. 91.

    Carmichael R (2014) Properties of The U.S. standard atmosphere 1976 [Online]. http://www.pdas.com/atmos.html

  92. 92.

    Carmichael R (2013) Real gas properties [Online]. http://www.pdas.com/gasp.html

  93. 93.

    Carmichael R (2013) Thermodynamic and transport properties of fluids [Online]. http://www.pdas.com/fluid.html

  94. 94.

    Carmichael R (2013) vuCalc—a compressible flow calculator [Online]. http://www.pdas.com/vucalc.html

  95. 95.

    Carmichael R (2013) Turbulent skin friction by the reference temperature method of Sommer and Short [Online]. http://www.pdas.com/turbsf.html

  96. 96.

    Kroo I, Alonso J (2014) Skin friction and roughness drag [Online]. http://adg.stanford.edu/aa241/drag/skinfriction.html. Accessed 16 Dec 2014

  97. 97.

    Carmichael R (2013) A segmented mission analysis program for low and high speed aircraft (NSEG) [Online]. http://www.pdas.com/nseg.html

  98. 98.

    Carmichael R (2013) Conical relaxation program for supersonic wing design and analysis (COREL) [Online]. http://www.pdas.com/corel.html

  99. 99.

    Carmichael R (2013) W12SC3: supersonic wing design and analysis [Online]. http://www.pdas.com/w12sc3.html

  100. 100.

    Carmichael R (2013) Two-dimensional grids about airfoils and other shapes by the use of Poisson’s equation (GRAPE) [Online]. http://www.pdas.com/grape.html

  101. 101.

    Carmichael R (2013) NASA-AMES WingBody panel code [Online]. http://www.pdas.com/wingbody.html

  102. 102.

    Carmichael R (2013) V/STOL aircraft sizing and performance (VASCOMP II) [Online]. http://www.pdas.com/vascomp.html

  103. 103.

    Carmichael R (2013) PROFILE—the Eppler airfoil code [Online]. http://www.pdas.com/eppler.html

  104. 104.

    Eppler R, Somers DM (1980) A computer program for the design and analysis of low-speed airfoils. NASA technical memorandum 80210

  105. 105.

    Carmichael R (2013) Minimum drag camber surface by vortex lattice [Online]. http://www.pdas.com/vlmd.html

  106. 106.

    Carmichael R (2013) Induced drag from span load distribution [Online]. http://www.pdas.com/induced.html

  107. 107.

    Lundry JL (1977) Calculation of lift and induced drag from sparse span loading data. J Aircr 14(3):309–311

    Article  Google Scholar 

  108. 108.

    Carmichael R (2013) Modified strip analysis method for predicting wing flutter at subsonic to hypersonic speeds [Online]. http://www.pdas.com/flutter.html

  109. 109.

    Carmichael R (2013) Mean aerodynamic chord of a wing [Online]. http://www.pdas.com/getmac.html

  110. 110.

    Carmichael R (2010) Example 4—wing similar to B-2—page 1 [Online]. http://www.pdas.com/macex13.html

  111. 111.

    Carmichael R (2010) Example 4—wing similar to B-2—page 2 [Online]. Available: http://www.pdas.com/macex14.html

  112. 112.

    Carmichael R (2010) Example 4—wing similar to B-2—page 3 [Online]. http://www.pdas.com/macex15.html

  113. 113.

    Carmichael R (2013) NACA airfoil coordinates [Online]. http://www.pdas.com/naca456.html

  114. 114.

    Carmichael RL (2001) Algorithm for calculating coordinates of cambered Naca airfoils at specified chord locations. In: 1st AIAA, aircraft, technology integration, and operations forum

  115. 115.

    Carmichael R (2010) Computation of NACA airfoil coordinates [Online]. http://www.pdas.com/naca456pdas.html

  116. 116.

    Airfoil tools [Online]. http://airfoiltools.com/. Accessed 12 Dec 2014

  117. 117.

    Carmichael R (2013) Mass properties of a rigid structure [Online]. http://www.pdas.com/massprop.html

  118. 118.

    Hull RA, Gilbert JL, Klich PJ (1978) Computer program for determining mass properties of a rigid structure. NASA technical memorandum 78681

  119. 119.

    Carmichael R (2013) PANAIR: predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method [Online]. http://www.pdas.com/panair.html

  120. 120.

    Saaris GR (1992) A502I user’s manual-PAN AIR technology program for solving problems of potential flow about arbitrary configurations. Cage Code 81205, Document no. D6-54703, Boing

  121. 121.

    Derbyshire T, Sidwell KW (1982) PAN AIR summary document (version 1.0). NASA contractor report 3250

  122. 122.

    Carmichael R (2013) Input pre-processor for PanAir [Online]. http://www.pdas.com/panin.html

  123. 123.

    Carmichael R (2013) Description of digital Datcom [Online]. http://www.pdas.com/datcomDescription.html

  124. 124.

    DATCOM-GUI contributors (2011) datcom-gui: development of a GUI for the DATCOM program [Online]. http://code.google.com/p/datcom-gui/

  125. 125.

    Carmichael R (2013) Digital Datcom [Online]. http://www.pdas.com/datcom.html

  126. 126.

    Williams JE, Vukelich SR (1979) The USAF stability and control digital Datcom: volume I, users manual. USAF technical report AFFDL-TR-79-3032

  127. 127.

    Carmichael R (2013) Program modules of digital Datcom [Online]. http://www.pdas.com/datcomc.html

  128. 128.

    Carmichael R (2013) Addressable configurations in digital Datcom [Online]. http://www.pdas.com/datcomTable1.html

  129. 129.

    Holy Cows, Inc. (2014) Datcom by Holy Cows, Inc. [Online]. http://www.holycows.net/datcom/. Accessed 24 Nov 2014

  130. 130.

    Carmichael R (2013) Aeroelastic analysis for rotorcraft in flight or in a wind tunnel (ROTOR) [Online]. http://www.pdas.com/rotor.html

  131. 131.

    Carmichael R (2013) MakeWgs [Online]. http://www.pdas.com/makewgs.html

  132. 132.

    Carmichael R (2013) Three view program [Online]. http://www.pdas.com/3view.html

  133. 133.

    Gnuplot Contributors (2014) gnuplot homepage [Online]. http://www.gnuplot.info/. Accessed 12 Dec 2014

  134. 134.

    Carmichael R (2013) Hidden line program [Online]. http://www.pdas.com/hlp.html

  135. 135.

    Carmichael R (2013) Conversion to LaWGS [Online]. http://www.pdas.com/2wgs.html

  136. 136.

    Carmichael R (2013) VRML World [Online]. http://www.pdas.com/wgs2wrl.html

  137. 137.

    Kuzmin D (2014) Introduction to computational fluid dynamics [Online]. http://www.mathematik.uni-dortmund.de/~kuzmin/cfdintro/lecture1.pdf. Accessed 19 Dec 2014

  138. 138.

    Byrne J, Cardiff P, Brabazon A, O’Neill M (2014) Evolving parametric aircraft models for design exploration and optimisation. Neurocomputing 142:39–47

    Article  Google Scholar 

  139. 139.

    Economon (TD) (2014) SU2: the open-source CFD code [Online]. https://github.com/su2code/SU2/wiki

  140. 140.

    Palacios F, Colonno MR, Aranake AC, Campos A, Copeland SR, Economon TD, Lonkar AK, Lukaczyk TW, Taylor TWR, Alonso JJ (2013) Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, grapevine (Dallas/Ft. Worth Region), Texas, USA, 7–10 January 2013

  141. 141.

    Economon TD (2014) Quick start [Online]. https://github.com/su2code/SU2/wiki/Quick-Start

  142. 142.

    Economon TD (2014) Optimal shape design of a rotating airfoil [Online]. https://github.com/su2code/SU2/wiki/Optimal-Shape-Design-of-a-Rotating-Airfoil

  143. 143.

    Bijl H (2014) Flow around flapping wings with Open FOAM at aerodynamics. TU Delft [Online]. http://www.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU_Website/TU_Delft_portal/Onderzoek/Kenniscentra/Delft_Research_Centres/Computational_Science/Events/Seminars/previous/doc/Hester_1.pdf. Accessed 22 Dec 2014

  144. 144.

    OpenFOAM Foundation (2014) Features of OpenFOAM [Online]. http://www.openfoam.org/features/

  145. 145.

    Glabeke G (2011) The influence of wind turbine induced turbulence on ultralight aircraft, a CFD analysis. Katholieke Hogeschool VIVES, Oostende, p 99

    Google Scholar 

  146. 146.

    OpenFOAM Foundation (2014) Standard solvers [Online]. http://www.openfoam.org/features/standard-solvers.php

  147. 147.

    OpenFOAM Foundation (2014) ODE system solvers [Online]. http://www.openfoam.org/features/ODE-solvers.php

  148. 148.

    OpenFOAM Foundation (2014) Numerical method [Online]. http://www.openfoam.org/features/numerical-method.php

  149. 149.

    OpenFOAM Foundation (2014) Dynamic meshes [Online]. http://www.openfoam.org/features/mesh-motion.php

  150. 150.

    EDF R&D (2014) Description of Code_Saturne [Online]. http://code-saturne.org/cms/features

  151. 151.

    EDF R&D (2014) Code Saturne documentation: Code Saturne version 3.3.0 practical user’s guide [Online]. http://code-saturne.org/cms/sites/default/files/docs/3.3/user.pdf

  152. 152.

    Fournier Y, Bonelle J, Moulinec C, Shang Z, Sunderland AG, Uribe JC (2011) Optimizing Code_Saturne computations on Petascale systems. Comput Fluids 45(1):103–108

    Article  MATH  Google Scholar 

  153. 153.

    EDF R&D (2014) Numerical method [Online]. http://code-saturne.org/cms/features/numerics

  154. 154.

    EDF R&D (2014) Mesh flexibility [Online]. http://code-saturne.org/cms/features/mesh

  155. 155.

    EDF R&D (2014) Code_Saturne coupling [Online]. http://code-saturne.org/cms/features/modules/coupling

  156. 156.

    HiFiLES Developers (2014) HiFiLES: high fidelity large eddy simulation [Online]. https://hifiles.stanford.edu/

  157. 157.

    Witherden FD, Farrington AM, Vincent PE (2014) PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach. Comput Phys Commun 185(11):3028–3040

    Article  Google Scholar 

  158. 158.

    López-Morales M, Bull J, Crabill J, Economon TD, Manosalvas DE, Romero J, Sheshadri A, Watkins JE, Williams D, Palacios F, Jameson A (2014) Verification and validation of HiFiLES: A high-order LES unstructured solver on multi-GPU platforms. In: 32nd AIAA applied aerodynamics conference, Atlanta, Georgia, USA, 16–20 June 2014

  159. 159.

    Vincent Lab (2015) PyFR: home [Online]. http://www.pyfr.org/

  160. 160.

    Vincent P (2014) PyFR: a GPU-accelerated next-generation computational fluid dynamics python framework [Online]. http://www.techenablement.com/pyfr-a-gpu-accelerated-next-generation-computational-fluid-dynamics-python-framework/

  161. 161.

    de Weck O (2005) Computer aided design (CAD) [Online]. http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-810-engineering-design-and-rapid-prototyping-january-iap-2005/lecture-notes/l4.pdf

  162. 162.

    FreeCAD Contributors (2014) About FreeCAD [Online]. http://www.freecadweb.org/wiki/index.php?title=About_FreeCAD

  163. 163.

    FreeCAD Contributors (2014) Getting started [Online]. http://www.freecadweb.org/wiki/index.php?title=Getting_started

  164. 164.

    Kim JW, Kang K-K, Lee JH (2014) Template-based traditional building component modelling. In: International Conference on Advanced Communication Technology, ICACT, Pyeongchang, Korea (South), 16–19 February 2014, pp 653–656

  165. 165.

    FreeCAD Contributors (2014) Feature list [Online]. http://www.freecadweb.org/wiki/index.php?title=Feature_list

  166. 166.

    FreeCAD Contributors (2013) Aeroplane [Online]. http://www.freecadweb.org/wiki/index.php?title=Aeroplane

  167. 167.

    SALOME Contributors (2015) SALOME [Online]. http://www.salome-platform.org/. Accessed 5 Jan 2015

  168. 168.

    SALOME Contributors (2015) About SALOME [Online]. http://www.salome-platform.org/user-section/about. Accessed 5 Jan 2015

  169. 169.

    BRL-CAD Contributors (2014) About BRL-CAD [Online]. http://brlcad.org/d/about. Accessed 22 Dec 2014

  170. 170.

    BRL-CAD Contributors (2014) Overview [Online]. http://brlcad.org/wiki/Overview. Accessed 22 Dec 2014

  171. 171.

    Keyser J, Culver T, Foskey M, Krishnan S, Manocha D (2004) ESOLID—a system for exact boundary evaluation. CAD Comput Aided Des 36(2):175–193

    Article  Google Scholar 

  172. 172.

    Konokman HE, Kayran A, Kaya M (2014) Analysis of aircraft survivability against fragmenting warhead threat. In: 55th AIAA/ASMe/ASCE/AHS/SC structures, structural dynamics, and materials conference, National Harbor, Maryland, USA, 13–17 January 2014

  173. 173.

    QCAD Contributors (2014) QCAD—2D CAD for Windows, Linux and Mac [Online]. http://www.qcad.org/en/

  174. 174.

    QCAD Contributors (2014) QCAD features [Online]. http://www.qcad.org/en/qcad-documentation/qcad-features

  175. 175.

    QCAD Contributors (2014) The QCAD 3 scripting interface [Online]. http://www.qcad.org/en/qcad-documentation/qcad-scripting

  176. 176.

    OpenVSP Contributors (2012) OpenVSP [Online]. https://github.com/nasa/OpenVSP

  177. 177.

    Böhnke D, Nagel B, Zhang M, Rizzi A (2013) Towards a collaborative and integrated set of open tools for aircraft design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, grapevine (Dallas/Ft. Worth Region), Texas, USA, 7–10 January 2013

  178. 178.

    Gloudemans JR, McDonald R (2010) Improved geometry modeling for high fidelity parametric design. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, USA, 4–7 January 2010

  179. 179.

    OpenVSP Contributors (2014) OpenVSP [Online]. http://openvsp.org/

  180. 180.

    OpenVSP Contributors (2014) VSP Hangar [Online]. http://hangar.openvsp.org/

  181. 181.

    Hepperle M (2007) JavaFoil—analysis of airfoils [Online]. http://www.mh-aerotools.de/airfoils/javafoil.htm

  182. 182.

    Hepperle M (2006) The boundary layer method [Online]. http://www.mh-aerotools.de/airfoils/jf_analysis_boundarylayer.htm

  183. 183.

    Hepperle M (2008) Users manual [Online]. http://www.mh-aerotools.de/airfoils/jf_users_manual.htm

  184. 184.

    Adkins CN, Liebeck RH (1994) Design of optimum propellers. J Propuls Power 10(5):676–682

    Article  Google Scholar 

  185. 185.

    Hepperle M (2003) JavaProp—design and analysis of propellers [Online]. http://www.mh-aerotools.de/airfoils/javaprop.htm

  186. 186.

    Hepperle M (2003) Design of a propeller [Online]. http://www.mh-aerotools.de/airfoils/jp_propeller_design.htm

  187. 187.

    Hepperle M (2006) Analysis of a propeller [Online]. http://www.mh-aerotools.de/airfoils/jp_propeller_analysis.htm

  188. 188.

    Hepperle M (2008) A validation exercise [Online]. http://www.mh-aerotools.de/airfoils/jp_validation.htm

  189. 189.

    Hepperle M (2008) Users manual [Online]. http://www.mh-aerotools.de/airfoils/jp_users_manual.htm

  190. 190.

    Eller D (2015) Larosterna: about [Online]. http://www.larosterna.com/index.html. Accessed 6 Jan 2015

  191. 191.

    Eller D (2015) Larosterna: aircraft modeling and mesh generation [Online]. http://www.larosterna.com/sumo.html. Accessed 6 Jan 2015

  192. 192.

    Eller D (2015) Larosterna: visualization for aeroelasticity [Online]. http://www.larosterna.com/scope.html. Accessed 6 Jan 2015

  193. 193.

    VAMPzero Contributors (2014) VAMPzero—conceptual design for the needs of MDO [Online]. http://code.google.com/p/vampzero/. Accessed 22 Dec 2014

  194. 194.

    Böhnke D, Nagel B, Gollnick V (2014) Explicit modeling of technology improvement over time in conceptual aircraft design. In: 29th Congress of the international council of the aeronautical sciences, ICAS 2014, St. Petersburg, Russia, 7–12 September 2014

  195. 195.

    Rizzi A, Zhang M, Nagel B, Boehnke D, Saquet P (2012) Towards a unified framework using CPACS for geometry management in aircraft design. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, Tennessee, USA, 9–12 January 2012

  196. 196.

    CPACS Contributors (2014) CPACS—a common language for aircraft design [Online]. http://code.google.com/p/cpacs/. Accessed 22 Dec 2014

  197. 197.

    TIGL Contributors (2014) TIGL: A library for generating 3D geometries from parametrized CPACS/XML data sets [Online]. http://code.google.com/p/tigl/. Accessed 22 Dec 2014

  198. 198.

    Frink NT (2006) TetrUSS: CFD software for complex real-world aerodynamics problems [Online]. http://tetruss.larc.nasa.gov/index.html

  199. 199.

    Frink NT, Pirzadeh SZ, Parikh PC, Pandya MJ, Bhat MK (2000) NASA tetrahedral unstructed software system (TetrUSS). Aeronaut J 104(1040):491–499

    Google Scholar 

  200. 200.

    Frink NT (2009) Requesting TetrUSS software [Online]. http://tetruss.larc.nasa.gov/download.html

  201. 201.

    Redhammer Consulting Ltd (2010) TORNADO [Online]. http://www.redhammer.se/tornado/index.html

  202. 202.

    Zagórski P, David C (2013) Aerospace blockset for Xcos [Online]. http://forge.scilab.org/index.php/p/aerospace-blockset/

  203. 203.

    Goppert J (2012) OpenFDM: an open source flight dynamics library for Modelica [Online]. https://github.com/arktools/openfdm

  204. 204.

    Parslew B (2012) Flapping flight simulation v1.1: user manual [Online]. http://www.flappingwings.co.uk/main/wp-content/uploads/2012/06/FlappingFlightSimulationManualV1.1.pdf

  205. 205.

    Parslew B (2014) Downloads [Online]. http://www.flappingwings.co.uk/main/downloads. Accessed 27 Dec 2014

  206. 206.

    Parslew B (2014) Gallery [Online]. http://www.flappingwings.co.uk/main/gallery. Accessed 27 Dec 2014

  207. 207.

    Parslew B (2012) Simulating avian wingbeats and wakes. The University of Manchester, the Faculty of Engineering and Physical Sciences, Manchester

  208. 208.

    CEASIOM Contributors (2014) CEASIOM: computerised environment for aircraft synthesis and integrated optimisation methods [Online]. http://www.ceasiom.com/index.php

  209. 209.

    CEASIOM Contributors (2014) CEASIOM modules [Online]. http://www.ceasiom.com/ceasiom-modules.html

  210. 210.

    CEASIOM Contributors (2014) CEASIOM NEWSLETTER [Online]. http://www.ceasiom.com/newsletter.html

  211. 211.

    Chronister N (2014) FlapDesign—how to use [Online]. http://www.ornithopter.org/flapdesign.info.shtml. Accessed 29 Dec 2014

  212. 212.

    Räbiger H (2014) Calculation tools for ornithopter models [Online]. http://www.ornithopter.de/english/calculation.htm. Accessed 29 Dec 2014

  213. 213.

    Carri J WebOCalc FAQ [Online]. http://flbeagle.rchomepage.com/software/webocalc.html. Accessed 4 Dec 2014

  214. 214.

    Carri J (2014) PowerCalc [Online]. http://flbeagle.rchomepage.com/software/powercalc.html. Accessed 4 Dec 2014

  215. 215.

    Adam One (2014) Welcome to model aircraft: aerodynamics, beginners’ guide and lots of info about R/C model aircraft [Online]. http://adamone.rchomepage.com/index.html. Accessed 30 Dec 2014

  216. 216.

    Adam One (2014) Aircraft center of gravity calculator [Online]. http://adamone.rchomepage.com/cg_calc.htm. Accessed 30 Dec 2014

  217. 217.

    Adam One (2014) Canard center of gravity calculator [Online]. http://adamone.rchomepage.com/cg_canard.htm. Accessed 30 Dec 2014

  218. 218.

    Adam One (2014) Trainer design [Online]. http://adamone.rchomepage.com/design.htm#calculate. Accessed 30 Dec 2014

  219. 219.

    Adam One (2014) Calculate stall speed [Online]. http://adamone.rchomepage.com/calc_stallspeed.htm. Accessed 30 Dec 2014

  220. 220.

    Adam One (2014) Calculate level flight speed [Online]. http://adamone.rchomepage.com/calc_speed.htm. Accessed 30 Dec 2014

  221. 221.

    Adam One (2014) Calculate motor efficiency [Online]. http://adamone.rchomepage.com/calc_efficiency.htm. Accessed 30 Dec 2014

  222. 222.

    Adam One (2014) Estimate propeller’s static thrust [Online]. http://adamone.rchomepage.com/calc_thrust.htm. Accessed 30 Dec 2014

  223. 223.

    Adam One (2014) Estimate electric motor and Prop combo [Online]. http://adamone.rchomepage.com/calc_motor.htm. Accessed 30 Dec 2014

  224. 224.

    Adam One (2014) Beginners’ guide [Online]. http://adamone.rchomepage.com/guide5.htm. Accessed 30 Dec 2014

  225. 225.

    Müller M (2014) eCalc: the most reliable RC calculator on the web [Online]. http://www.ecalc.ch/

  226. 226.

    Filkovic D (2015) Apame—aircraft 3D panel method [Online]. http://www.3dpanelmethod.com/. Accessed 14 Jan 2015

  227. 227.

    Filkovic D (2015) Apame—aircraft 3D panel method: features [Online]. http://www.3dpanelmethod.com/features.html. Accessed 14 Jan 2015

  228. 228.

    Goetzendorf-Grabowski T (2014) PANUKL 2012 [Online]. http://www.meil.pw.edu.pl/add/ADD/Teaching/Software/PANUKL

  229. 229.

    Goetzendorf-Grabowski T (2013) Users manual for PANUKL: version ENGv1 [Online]. http://itlims.meil.pw.edu.pl/zsis/pomoce/PANUKL/2012/PanuklMan_eng.pdf

  230. 230.

    Goetzendorf-Grabowski T, Mieloszyk J, Mieszalski D (2012) MADO—software package for high order multidisciplinary aircraft design and optimization. In: 28th Congress of the international council of the aeronautical sciences, ICAS 2012, Brisbane, Australia, 23–28 September 2012, pp 481–490

  231. 231.

    Goetzendorf-Grabowski T (2012) SDSA—theoretical basics [Online]. http://itlims.meil.pw.edu.pl/zsis/pomoce/SDSA/2015/SDSA_Setup.zip

  232. 232.

    XFLR5 Contributors (2014) XFLR5 [Online]. http://www.xflr5.com/xflr5.htm. Accessed 31 Dec 2014

  233. 233.

    XFLR5 Contributors (2014) XFLR5 [Online]. http://sourceforge.net/projects/xflr5/. Accessed 31 Dec 2014

  234. 234.

    XFLR5 Contributors (2013) XFLR5: analysis of foils and wings operating at low Reynolds numbers [Online]. http://heanet.dl.sourceforge.net/project/xflr5/Guidelines.pdf

  235. 235.

    Morgado J (2014) JBLADE: a propeller design and analysis code [Online]. https://sites.google.com/site/joaomorgado23/Home. Accessed 31 Dec 2014

  236. 236.

    Morgado J (2013) JBLADE v17 tutorial [Online]. https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxqb2FvbW9yZ2FkbzIzfGd4OjFjYzE3ZjhlYmY3YzBlNzE

  237. 237.

    Mason WH (2012) Software for aerodynamics and aircraft design (W.H. Mason, Virginia Tech) [Online]. http://www.dept.aoe.vt.edu/~mason/Mason_f/MRsoft.html#foilgen

  238. 238.

    Geuzaine C, Remacle J-F (2014) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities [Online]. http://geuz.org/gmsh/

  239. 239.

    enGrid Contributors (2015) enGrid—open-source mesh generation [Online]. http://engits.eu/en/engrid. Accessed 5 Jan 2015

  240. 240.

    3DRobotics (2014) Mission planner [Online]. http://planner.ardupilot.com/. Accessed 31 Dec 2014

  241. 241.

    Garcia I, Tougeron W (2015) Read group of faces TUI from GUI [Online]. Available: http://www.salome-platform.org/forum/forum_10/83373997. Accessed 6 Jan 2015

Download references

Acknowledgments

This work was supported by the Internal Grant Agency of Tomas Bata University in Zlín under the projects No. IGA/FAI/2015/001 and IGA/FAI/2014/006.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomáš Vogeltanz.

Additional information

This paper is loosely based on [1].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vogeltanz, T. A Survey of Free Software for the Design, Analysis, Modelling, and Simulation of an Unmanned Aerial Vehicle. Arch Computat Methods Eng 23, 449–514 (2016). https://doi.org/10.1007/s11831-015-9147-y

Download citation

Keywords

  • Global Position System
  • Computational Fluid Dynamics
  • Mach Number
  • Unmanned Aerial Vehicle
  • Configuration File