Skip to main content
Log in

Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This article focuses on the formulation, validation and application of the continuous adjoint method for turbulent flows in aero/hydrodynamic optimization. Though discrete adjoint has been extensively used in the past to compute objective function gradients with respect to (w.r.t.) the design variables under turbulent flow conditions, the development of the continuous adjoint variant for these flows is not widespread in the literature, hindering, to an extend, the computation of exact sensitivity derivatives. The article initially presents a general formulation of the continuous adjoint method for incompressible flows, under the commonly used assumption of “frozen turbulence”. Then, the necessary addenda are presented in order to deal with the differentiation of both low- and high-Reynolds (with wall functions) number turbulence models; the latter requires the introduction of the so-called “adjoint wall functions”. An approach to dealing with distance variations is also presented. The developed methods are initially validated in \(2D\) cases and then applied to industrial shape and topology optimization problems, originating from the automotive and hydraulic turbomachinery industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Notes

  1. “[...]It is important to recall here that neither the Navier-Stokes adjoint equation in Eq. (21) nor the Spalart-Allmaras adjoint equation in Eq. (22) depends on the adjoint distance variable \(\psi _d\) (wn: the \(d_a\) variable in the current notation). This is also the case of the functional sensibility equation (28), since typical objective functionals in aerodynamics do not depend explicitly on the distance to the surface. In this situation, it is therefore not necessary to solve Eq. (23) (wn: the adjoint to the eikonal equation), and the adjoint system simply reduces to Eqs. (21) and (22).[...]” From [29].

  2. Though this is very close to reality in shape optimization problems where \(S_I\) and \(S_O\) are usually far from the controlled shape, in topology optimization this is not always the case. Nevertheless, Eq. 130 gives an interesting relation between the total pressure losses and fluid power dissipation.

References

  1. www.beta-cae.gr/ansa.htm

  2. www.volkswagen.co.uk/about-us/news/282/volkswagen-unveils-the-xl1-super-efficient-vehicle-in-qatar

  3. Aage N, Poulsen T, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip Optim 35:175–180

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdelwahed M, Hassine M, Masmoudi M (2009) Optimal shape design for fluid flow using topological perturbation technique. J Math Anal Appl 356:548–563

    Article  MathSciNet  MATH  Google Scholar 

  5. Alba E, Dorronsoro B (2008) Cellular genetic algorithms. Springer, Berlin

    MATH  Google Scholar 

  6. Alba E, Troya J (2001) Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Gener Comput Syst 17(4):451–465

    Article  MATH  Google Scholar 

  7. Amstutz S, Andra H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216:573–588

    Article  MathSciNet  MATH  Google Scholar 

  8. Andersen C, Sigmund O (2011) Saturated poroelastic actuators generated by topology optimization. Struct Multidiscip Optim 43:693–706

    Article  MathSciNet  MATH  Google Scholar 

  9. Anderson W, Bonhaus D (1997) Aerodynamic design on unstructured grids for turbulent flows. NASA Technical Memorandum 112867

  10. Anderson W, Bonhaus D (1999) Airfoil design on unstructured grids for turbulent flows. AIAA J 37(2):185–191

    Article  Google Scholar 

  11. Anderson W, Venkatakrishnan V (1997) Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper 06(43)

  12. Anderson W, Venkatakrishnan V (1999) Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Comput Fluids 28:443–480

    Article  MATH  Google Scholar 

  13. Andreasen C, Sigmund O (2013) Topology optimization of fluid–structure-interaction problems in poroelasticity. J Comput Methods Appl Mech Eng 258:55–62

    Article  MathSciNet  MATH  Google Scholar 

  14. Asouti V, Giannakoglou K (2009) Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes. Eng Optim 41(3):241–257

    Article  MathSciNet  Google Scholar 

  15. Bäck T (1996) Evolutionary algorithms in theory and practice. Evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    MATH  Google Scholar 

  16. Barr AH (1984) Global and local deformations of solid primitives. SIGGRAPH Comput Graph 18(3):21–30

    Article  Google Scholar 

  17. Bendsoe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. J Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  18. Bendsoe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  19. Bendsoe M, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Beran P, Stanford B, Kurdi M (2010) Sensitivity analysis for optimization of dynamic systems with reduced order modeling. In: 48th AIAA sciences meeting including the new horizons forum and aerospace exposition, Orlando, FL

  21. Bertsekas D (1996) Constrained optimization and lagrange multiplier methods, 1st edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  22. Bertsekas D (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  23. Bischof C, Carle A, Khademi P, Mauer A (1994) The ADIFOR 2.0 system for the automatic differentiation of Fortran 77 programs. Report CRPC-TR94491, Center for Research and Parallel Computation, Rice University

  24. Borrvall T, Petersson J (2001) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190:6201–6229

    Article  MathSciNet  MATH  Google Scholar 

  25. Borvall T, Peterson J (2003) Topology optimization if fluids in stokes flow. Int J Numer Methods Fluids 41:77–107

    Article  Google Scholar 

  26. Brennen C (1995) Cavitation and bubble dynamics. Oxford Engineering Science Series. Oxford University Press, Oxford

    Google Scholar 

  27. Brezillon J, Dwight R (2005) Discrete adjoint of the Navier–Stokes equations for aerodynamic shape optimization. In: Evolutionary and deterministic methods for design, EUROGEN. Munich

  28. Bruns T (2007) Topology optimization of convection-dominated, steady-state heat transfer problems. Heat Mass Transf 50:2859–2873

    Article  MATH  Google Scholar 

  29. Bueno-Orovio A, Castro C, Palacios F, ZuaZua E (2012) Continuous adjoint approach for the Spalart–Allmaras model in aerodynamic optimization. AIAA J 50(3):631–646

    Article  Google Scholar 

  30. Byrd RH, Khalfan HF, Schnabel RB (1996) Analysis of a symmetric rank-one trust region method. SIAM J Optim 6(4):1025–1039

  31. Campobasso M, Duta M, Giles M (2003) Adjoint calculation of sensitivities of turbomachinery objective functions. J Propul Power 19(4):693–703

    Article  Google Scholar 

  32. Campobasso M, Giles M (2004) Stabilization of a linear flow solver for turbomachinery aeroelasticity by means of the recursive projection method. AIAA J 42(9):1765–1774

    Article  Google Scholar 

  33. Campobasso M, Giles M (2006) Stabilizing linear harmonic flow solvers for turbomachinery aeroelasticity with complex iterative algorithms. AIAA J 44(5):1048–1059

    Article  Google Scholar 

  34. Challis V, Guest J (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79:1284–1308

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen B, Kikuchi N (2001) Topology optimization with design-dependent loads. Comput Methods Appl Mech Eng 37:57–70

    MATH  Google Scholar 

  36. Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524

    Article  MathSciNet  MATH  Google Scholar 

  37. Chorin A (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12–26

    Article  MATH  Google Scholar 

  38. Courty F, Dervieux A, Koobus B, Hascoët L (2003) Reverse automatic differentiation for optimum design: from adjoint state assembly to gradient computation. Optim Methods Softw 18(5):615–627

    Article  MathSciNet  MATH  Google Scholar 

  39. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  40. Dede E (2010) Multiphysics optimization, synthesis, and application of jet impingement target surfaces. In: Thermal and thermomechanical phenomena in electronic systems (ITherm), 2010 12th IEEE intersociety conference, pp 1–7

  41. Deng Y, Liu Y, Wu J, Wu Y (2013) Topology optimization of steady Navier–Stokes flow with body force. J Comput Methods Appl Mech Eng 255:306–321

    Article  MathSciNet  MATH  Google Scholar 

  42. Deng Y, Zhang P, Liu Y, Wu Y, Liu Z (2013) Optimization of unsteady incompressible Navier–Stokes flows using variational level set method. Int J Numer Methods Fluids 71(12):1475–1493

    Article  MathSciNet  Google Scholar 

  43. Duan X, Ma Y, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499

    Article  MathSciNet  MATH  Google Scholar 

  44. Duta M, Giles M, Campobasso M (2002) The harmonic adjoint approach to unsteady turbomachinery design. Int J Numer Methods Fluids 40:323–332

    Article  MATH  Google Scholar 

  45. Dwight R, Brezillon J (2006) Effect of approximations of the discrete adjoint on gradient-based optimization. AIAA J 44(12):3022–3031

    Article  Google Scholar 

  46. Dwight R, Brezillon J, Vollmer D (2006) Efficient algorithms for solution of the adjoint compressible Navier–Stokes equations with applications. In: Proceedings of the ONERA-DLR aerospace symposium (ODAS), Toulouse

  47. El-Beltagy M, Nair P, Keane A (1999) Metamodeling techniques for evolutionary optimization of computationally expensive problems: promises and limitations. In: Genetic and evolutionary computation conference—GECCO 1999. Morgan Kaufmann, San Fransisco

  48. Elliot J, Peraire J (1996) Aerodynamic design using unstructured meshes. In: AIAA paper 96-1941, 27th Dynamics conference. New Orleans, USA

  49. Elliot J, Peraire J (1997) Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA J 35(9):1479–1485

    Article  MATH  Google Scholar 

  50. Evgrafov A (2005) The limits of porous materials in the topology optimization of Stokes flows. Appl Math Optim 52:263–277

    Article  MathSciNet  MATH  Google Scholar 

  51. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154

    Article  MathSciNet  MATH  Google Scholar 

  52. Frink N (1996) Assessment of an unstructured-grid method for predicting 3-d turbulent viscous flows. In: AIAA paper 96-0292, 34th Aerospace meeting and exhibit. Reno, USA

  53. Gersborg-Hansen A, Bendse M, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31:251–259

    Article  MathSciNet  MATH  Google Scholar 

  54. Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192

    Article  MathSciNet  MATH  Google Scholar 

  55. Giannakoglou K (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38(1):43–76

    Article  Google Scholar 

  56. Giannakoglou K (2013) Reformulation of the continuous adjoint method on the basis of dicrete adjoint. A novel idea with applications to pseudo-1D aerodynamic optimization problems. NTUA Internal Report, PCOPt-13-2013

  57. Giles M, Duta M, Muller J (2001) Adjoint code developments using the exact discrete approach. In: AIAA paper 2001-2596, 15th Computational fluid dynamicsconference. California, USA

  58. Giles M, Duta M, Muller J, Pierce N (2003) Algorithm developments for discrete adjoint methods. AIAA J 41(2):198–205

  59. Giles M, Pierce N (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415

    Article  MATH  Google Scholar 

  60. Gill P, Murray W, Wright M (1981) Practical optimization. Academic Press, London

    MATH  Google Scholar 

  61. Griewank A (1989) On automatic differentiation. Mathematical programming: recent developments and applications. Kluwer, Dordrecht

    Google Scholar 

  62. Griewank A, Juedes D, Mitev H, Utke J, Vogel O, Walther A (1996) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans Math Softw 22(2):131–167

    Article  MATH  Google Scholar 

  63. Griewank A, Walther A (2000) Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM Trans Math Softw (TOMS) 26(1):19–45

    Article  MATH  Google Scholar 

  64. Grinfield P (2010) Hadamard’s formula inside and out. J Optim Theory Appl 146:654–690

    Article  MathSciNet  MATH  Google Scholar 

  65. Guest J (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37:463–473

    Article  MathSciNet  MATH  Google Scholar 

  66. Guest J, Prévost J (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461–484

    Article  MathSciNet  MATH  Google Scholar 

  67. Hascoët L, Utke J, Naumann U (2008) Cheaper adjoints by reversing address computations. Sci Program 16(1):81–92

    Google Scholar 

  68. He L, Wang D (2010) Concurrent blade aerodynamic-aero-elastic design optimization using adjoint method. J Turbomach 133(1):10

  69. Herrera F, Lozano M, Moraga C (1999) Hierarchical distributed genetic algorithms. Int J Intell Syst 14(9):1099–1121

    Article  MATH  Google Scholar 

  70. Hou G, Maroju V, Taylor A, Korivi V (1995) Transonic turbulent airfoil design optimization with automatic differentiation in incremental iterative form. AIAA Pap 95–1692

  71. Huang H, Ekici K (2014) A discrete adjoint harmonic balance method for turbomachinery shape optimization. Aerosp Sci Technol. doi:10.1016/j.ast.2014.05.015

    Google Scholar 

  72. Jakobsson S, Amoignon O (2007) Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput Fluids 36:1119–1136

    Article  MATH  Google Scholar 

  73. Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3:233–260

    Article  MATH  Google Scholar 

  74. Jameson A (1995) Optimum aerodynamic design using CFD and control theory. In: AIAA paper 95-36580, 12th Computational fluid dynamics conference. San Diego, USA

  75. Jameson A, Alonso J, Reuther J, Martinelli L, Vassberg J (1998) Aerodynamic shape optimization techniques based on control theory. In: AIAA paper 98-2538, 29th Fluid dynamics conference. Albuquerque, USA

  76. Jameson A, Kim S (2003) Reduction of the adjoint gradient formula in the continuous limit. In: AIAA paper 2003–0040, 41th Aerospace sciences meeting and exhibit. Reno, NV

  77. Jameson A, Pierce N, Martinelli L (1997) Optimum aerodynamic design using the Navier–Stokes equations. In: AIAA paper 97–0101, 35th Aerospace sciences meeting and exhibit. Reno, NV

  78. Jameson A, Reuther J (1994) Control theory based airfoil design using the Euler equations. In: AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. Panama City Beach

  79. Jameson A, Shankaran S, Martinelli L (2003) Continuous adjoint method for unstructured grids. In: AIAA paper 2003–3955, 16th CFD conference. Orlando, FL

  80. Jameson A, Shankaran S, Martinelli L (2008) Continuous adjoint method for unstructured grids. AIAA J 46(5):1226–1239

    Article  Google Scholar 

  81. Jones W, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301–314

    Article  Google Scholar 

  82. Kavvadias I, Papoutsis-Kiachagias E, Dimitrakopoulos G, Giannakoglou K (2014) The continuous adjoint approach to the \(k-\omega \) SST turbulence model with applications in shape optimization. Eng Optim. doi:10.1080/0305215X.2014.979816

  83. Keller H (2002) A remedy for instability. In: Estep D, Tavener S (eds) SIAM Proceedings in applied mathematics, vol 109, pp 185–196

  84. Kim C, Kim C, Rho O (2001) Sensitivity analysis for the Navier–Stokes equations with two equations turbulence models. AIAA J 39(5):838–845

    Article  Google Scholar 

  85. Kim C, Kim C, Rho O (2002) Effects of constant eddy viscosity assumption on gradient-based design optimization. AIAA Paper 2002–0262

  86. Kim C, Kim C, Rho O (2003) Feasibility study of the constant eddy-viscosity assumption in gradient-based design optimization. J Aircr 40:1168–1176

    Article  Google Scholar 

  87. Kim S, Alonso J, Jameson A (1999) A gradient accuracy study for the adjoint-based Navier–Stokes design method. In: AIAA paper 99–0299, 37th Aerospace sciences meeting and exhibit. Reno, NV

  88. Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidiscip Optim 45:693–701

    Article  MathSciNet  MATH  Google Scholar 

  89. Kontoleontos E, Asouti V, Giannakoglou K (2012) An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization. Eng Optim 44(2):157–173

    Article  Google Scholar 

  90. Kontoleontos E, Papoutsis-Kiachagias E, Zymaris A, Paradimitriou D, Giannakoglou K (2013) Adjoint-based constrained topology optimization for viscous flows, including heat transfer. Eng Optim 45(8):941–961

    Article  MathSciNet  Google Scholar 

  91. Kreissl S, Maute K (2012) Level set based fluid topology optimization using the extended finite element method. Int J Numer Methods Eng 46:311–326

    MathSciNet  MATH  Google Scholar 

  92. Landau L, Lifshitz E (1987) Fluid mechanics, Volume 6 of course of theoretical physics. Pergamon Press, New York

    Google Scholar 

  93. Launder B, Sharma B (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1(2):131–137

    Google Scholar 

  94. Li Z, Navo I, Hussaini M, Dimet FL (2003) Optimal control of cylinder wakes via suction and blowing. Comput Fluids 32:149–171

    Article  MATH  Google Scholar 

  95. Lim D, Ong Y, Jin Y, Sendhoff B, Lee B (2007) Efficient hierarchical parallel genetic algorithms using grid computing. Future Gener Comput Syst 23(4):658–670

    Article  Google Scholar 

  96. Lions J (1971) Optimal control of systems governed by partial differential equations. Springer, New York

    Book  MATH  Google Scholar 

  97. Lozano C (2012) Discrete surprises in the computation of sensitivities from boundary integrals in the continuous adjoint approach to inviscid aerodynamic shape optimization. Comput Fluids 56:118–127

    Article  MathSciNet  Google Scholar 

  98. Luenberger D (2003) Linear and nonlinear programming, 2nd edn. Kluwer, Dordrecht

    MATH  Google Scholar 

  99. Marta A, Shankaran S (2013) On the handling of turbulence equations in RANS adjoint solvers. Comput Fluids 74:102–113

    Article  MathSciNet  Google Scholar 

  100. Matsumori T, Kawamoto A, Kondoh T (2010) Topology optimization for fluid–thermal interaction problems. In: 6th China–Japan–Korea joint symposium on optimization of structural and mechanical systems, June 22–25, 2010, Kyoto, Japan, pp 1225–1233

  101. Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27:27–42

    Article  Google Scholar 

  102. Mavriplis D. (2007) Discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes. AIAA J 45(4):741–750

  103. Mavriplis D (2006) Multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. AIAA J 44(1):42–50

    Article  MathSciNet  Google Scholar 

  104. Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  105. Mohammadi B, Pironneau O (2001) Applied shape optimization for fluids. Oxford University Press, Oxford

    MATH  Google Scholar 

  106. Nadarajah S, Jameson A (2000) A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In: AIAA paper 2000-0667, 38th Aerospace sciences meeting and exhibit. Reno, USA

  107. Nadarajah S, Jameson A (2001) Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization. AIAA Pap 25(30)

  108. Nadarajah S, Jameson A (2002) Optimal control of unsteady flows using a time accurate method. In: AIAA paper 2002-5436, 9th AIAA/ISSMO symposium onmultidisciplinary analysis and optimization. Atlanta, USA

  109. Nemec N, Zingg D (2001) Towards efficient aerodynamic shape optimization based on the Navier–Stokes equations. AIAA Pap 2001–2532

  110. Newman J, Anderson W, Whitfield D (1998) Multidisciplinary sensitivity derivatives using complex variables. MSSU-COE-ERC-98-08

  111. Nielsen E, Anderson W (1999) Aerodynamic design optimization on unstructured meshes using the Navier–Stokes equations. AIAA J 37(11):185–191

    Article  Google Scholar 

  112. Nielsen E, Kleb W (2005) Efficient construction of discrete adjoint operators on unstructured grids by using complex variables. AIAA Pap 03(24)

  113. Nielsen E, Lu J, Park M, Darmofal D (2003) An exact dual adjoint solution method for turbulent flows on unstructured grids. In: AIAA paper 2003-0272, 41st Aerospace sciences meeting and exhibit. Reno, USA

  114. Nielsen E, Park M (2005) Using an adjoint approach to eliminate mesh sensitivities in aerodynamic design. AIAA J 44(5):948–953

    Article  Google Scholar 

  115. Nocedal J, Wright S (1999) Numerical optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  116. Olesen L, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001

    Article  MathSciNet  MATH  Google Scholar 

  117. Ong Y, Lim M, Zhu N, Wong K (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1):141–152

    Article  Google Scholar 

  118. Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58(8):861–877

    Article  MathSciNet  MATH  Google Scholar 

  119. Othmer C (2014) Adjoint methods for car aerodynamics. J Math Indus 4(6):1–23

  120. Othmer C, Papoutsis-Kiachagias E, Haliskos K (2011) CFD optimization via sensitivity-based shape morphing. In: 4th ANSA & \(\mu \)ETA international conference. Thessaloniki, Greece

  121. Papadimitriou D, Giannakoglou K (2007) A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows. J Comput Fluids 36(2):325–341

    Article  MATH  Google Scholar 

  122. Papadimitriou D, Giannakoglou K (2007) Direct, adjoint and mixed approaches for the computation of Hessian in airfoil design problems. Int J Numer Methods Fluids 56(10):1929–1943

    Article  MathSciNet  MATH  Google Scholar 

  123. Papadimitriou D, Giannakoglou K (2013) Third-order sensitivity analysis for robust aerodynamic design using continuous adjoint. Int J Numer Methods Fluids 71(5):652–670

    Article  MathSciNet  Google Scholar 

  124. Papadimtriou D, Giannakoglou K (2009) The continuous Direct–Adjoint approach for second order sensitivities in viscous aerodynamic inverse design problems. Comput Fluids 38:1528–1538

    Article  Google Scholar 

  125. Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou D, Giannakoglou K (2011) Constrained topology optimization for laminar and turbulent flows, including heat transfer. In: Evolutionary and deterministic methods for design, optimization and control. Capua, Italy

  126. Papoutsis-Kiachagias E, Kyriacou S, Giannakoglou K (2014) The continuous adjoint method for the design of hydraulic turbomachines. Comput Methods Appl Mech Eng 278:621–639

    Article  MathSciNet  Google Scholar 

  127. Papoutsis-Kiachagias E, Zymaris A, Kavvadias I, Papadimitriou D, Giannakoglou K (2014) The continuous adjoint approach to the \(k-\epsilon \) turbulence model for shape optimization and optimal active control of turbulent flows. Eng Optim. doi:10.1080/0305215X.2014.892595

  128. Pascual V, Hascoët L (2008) TAPENADE for C. In: Selected papers from AD2008 Bonn, Lecture Notes in Computational Science and Engineering. Springer, Berlin

  129. Patankar S, Spalding D (1972) Calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806

    Article  MATH  Google Scholar 

  130. Periaux J, Winter G (1995) Genetic algorithms in engineering and computer science. Wiley, New York

    Google Scholar 

  131. Peter J, Dwight R (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput Fluids 39(3):373–391

    Article  MathSciNet  MATH  Google Scholar 

  132. Peter J, Mayeur J (2006) Improving accuracy and robustness of a discrete direct differentiation method and discrete adjoint method for aerodynamic shape optimizatiom. In: Proceedings of ECCOMAS. Egmond ann Zee

  133. Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin

    Book  MATH  Google Scholar 

  134. Pironneau O (1984) Optimal shape design for elliptic systems. Springer, New York

    Book  MATH  Google Scholar 

  135. Reuther J, Alonso J, Rimlinger M, Jameson A (1996) Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers. In: AIAA, NASA and ISSMO, symposium on multidisciplinary analysis and optimization. 6th, Bellevue, WA

  136. Reuther J, Jameson A (1994) Control theory based airfoil design for potential flow and a finite volume discretization. In: AIAA paper 91–499, 32th Aerospace sciences meeting and exhibit. Reno, NV

  137. Reuther J, Jameson A (1995) Aerodynamic shape optimization of wing and wing-body configurations using control theory. In: AIAA paper 95–0213, 33rd Aerospace sciences meeting and exhibit. Reno, NV

  138. Reuther J, Jameson A, Farmer J, Martinelli L, Saunders D (1996) Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation. AIAA Paper 96–0094

  139. Rodi W (1991) Experience with two-layer models combining the \(k-\epsilon \) model with a one-equation model near the wall. In: AIAA paper 91-0216, 29th Aerospace sciences meeting. Reno, USA

  140. Rodi W, Scheuerer G (1986) Scrutinizing the \(k-\epsilon \) model under adverse pressure gradient conditions. J Fluid Eng 108:174–179

    Article  Google Scholar 

  141. Rozvany G (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidiscip Optim 21:90–108

    Article  Google Scholar 

  142. Saad Y, Schultz M (1988) Gmres: a generalized minimum residual algorithm for solving non-symmetric linear systems. SIAM J Sci Stat Comput 7(3):856–859

    Article  MathSciNet  MATH  Google Scholar 

  143. Sagebaum M, Gauger N, Naumann U, Lotz J, Leppkes K (2013) Algorithmic differentiation of a complex C++ code with underlying libraries. Procedia Comput Sci 18:208–217

    Article  Google Scholar 

  144. Schmidt S, Schulz V (2008) Pareto-curve continuation in multi-objective optimization. Pac J Optim 4(2):243–257

    MathSciNet  MATH  Google Scholar 

  145. Schroff G, Keller H (1993) Stabilization of unstable procedures: the recursive projection method. SIAM J Numer Anal 30(4):1099–1120

    Article  MathSciNet  MATH  Google Scholar 

  146. Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MathSciNet  MATH  Google Scholar 

  147. Seung-Hyun H, Seonho C (2005) Topological shape optimization of heat conduction problems using level set approach. Numer Heat Transf Part B Fundam 48:67–88

    Article  Google Scholar 

  148. Sigmund O, Clausen P (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889

    Article  MathSciNet  MATH  Google Scholar 

  149. Sondak D, Pletcher R (1995) Application of wall function to generalized nonorthogonal curvilinear coordinate systems. AIAA J 33(1):33–41

  150. Spalart P (2000) Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow 21(3):252–263

    Article  Google Scholar 

  151. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: AIAA paper 92-0439, 30th Aerospace sciences meeting and exhibit. Reno, USA

  152. Spalart P, Jou W, Stretlets M, Allmaras S (1997) Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Proceedings of the first AFOSR international conference on DNS/LES

  153. Stanford B, Ifju P (2009) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38:301–316

    Article  Google Scholar 

  154. Stück A, Rung T (2013) Adjoint complement to viscous finite-volume pressure-correction methods. J Comput Phys 248:402–419

    Article  MathSciNet  Google Scholar 

  155. Thévenin D, Janiga G (2008) Optimization and computational fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  156. Tucker P (2003) Differential equation-based wall distance computation for DES and RANS. J Comput Phys 190:229–248

    Article  MATH  Google Scholar 

  157. Tucker P, Rumsey C, Bartels R, Biedron R (2003) Transport equation based wall distance computations aimed at flows with time-dependent geometry. NASA Report 212680

  158. Tucker P, Rumsey C, Spalart P, Bartels R, Biedron R (2005) Computations of wall distances based on differential equations. AIAA J 43(3):539–549

  159. Turgeon E, Pelletier D, Borggaard J, Etienne S (2007) Application of a sensitivity equation method to the \(k-\epsilon \) model of turbulence. Optim Eng 8:341–372

    Article  MathSciNet  MATH  Google Scholar 

  160. Utke J, Naumann U. OpenAD/F: User Manual. Technical Report, Argonne National Laboratory. http://www.mcs.anl.gov/OpenAD/openad

  161. Vezyris C, Kavvadias I, Papoutsis-Kiachagias E, Giannakoglou K (2014) Unsteady continuous adjoint method using POD for jet-based flow control. In: 11th World congress on computational mechanics, ECCOMAS. Barcelona, Spain

  162. Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  163. Wang Q, Moin P, Iaccarino G (2009) Minimal repetition dynamic check-pointing algorithm for unsteady adjoint calculation. SIAM J Sci Comput 31(4):2549–2567

    Article  MathSciNet  MATH  Google Scholar 

  164. White F (1974) Viscous fluid flow. McGraw-Hill Inc, New York

    MATH  Google Scholar 

  165. Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69:1371–1404

    Article  MathSciNet  MATH  Google Scholar 

  166. Xia H, Tucker P (2010) Finite volume distance field and its application to medial axis transforms. Int J Numer Methods Eng 82:114–130

    MathSciNet  MATH  Google Scholar 

  167. Xu J, Yan C, Fan J (2011) Computation of wall distances by solving a transport equation. Appl Math Mech 32(2):141–150

    Article  MathSciNet  MATH  Google Scholar 

  168. Yaji K, Yamada T, Yoshino M, Matsumoto T, Izui K, Nishiwaki S (2014) Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. J Comput Phys 274:158–181

    Article  MathSciNet  Google Scholar 

  169. Yoon G (2010) Topological design of heat dissipating structure with forced convective heat transfer. J Mech Sci Technol 24(6):1225–1233

    Article  Google Scholar 

  170. Yoon G, Jensen J, Sigmund O (2007) Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation. Int J Numer Methods Eng 70:1049–1075

    Article  MathSciNet  MATH  Google Scholar 

  171. Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195

    Article  MathSciNet  MATH  Google Scholar 

  172. Zhuang C, Xiong Z, Ding H (2007) A level set method for topology optimization of heat conduction problem under multiple load cases. Comput Methods Appl Mech Eng 196:1074–1084

    Article  MathSciNet  MATH  Google Scholar 

  173. Zymaris A, Papadimitriou D, Giannakoglou K, Othmer C (2009) Continuous adjoint approach to the Spalart–Allmaras turbulence model for incompressible flows. Comput Fluids 38(8):1528–1538

    Article  MATH  Google Scholar 

  174. Zymaris A, Papadimitriou D, Giannakoglou K, Othmer C (2010) Adjoint wall functions: a new concept for use in aerodynamic shape optimization. J Comput Phys 229(13):5228–5245

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Parts of the research related to the exact differentiation of the turbulence models were funded by Volkswagen AG (Group Research, K-EFFG/V, Wolfsburg, Germany). In particular, the authors would like to acknowledge Dr. Carsten Othmer, Volkswagen AG (Group Research, K-EFFG/V), for his support, some interesting discussions on the continuous adjoint method and his contributions in several parts of this work. Research related to topology optimization was partially supported by a Basic Research Project funded by the National Technical University of Athens. The authors would like to thank the partners of the “RBF4AERO” project for their permission to publish results on the glider geometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Giannakoglou.

Discussion on the Total Pressure Losses and Fluid Power Dissipation as Objective Functions

Discussion on the Total Pressure Losses and Fluid Power Dissipation as Objective Functions

In Sect. 7, the volume-averaged total pressure losses and the fluid power dissipation are used as the objective functions for problems related to internal aerodynamics.

The relation between Eqs. 78 and 113 for topology optimization problems is scrutinized in this “Appendix”. If term \(\alpha v_i^2\) is neglected from Eq. 113 (along with the porous friction term, \(T_{a,v}\), in Eq. 101b) the proof that follows holds for shape optimization problems as well.

The total kinetic energy of an incompressible fluid is

$$\begin{aligned} E_{kin} = \frac{1}{2}\int _{\Omega } v_i^2 d{\Omega } \end{aligned}$$
(120)

while its time derivative reads

$$\begin{aligned} \frac{\partial E_{kin}}{\partial t} = \int _{\Omega } v_i \frac{\partial v_i}{\partial t} d\Omega \end{aligned}$$
(121)

Using the momentum equations in which the porosity dependent term \(\alpha v_i\) has been added, the integrand on the r.h.s. of Eq. 121 is written as

$$\begin{aligned} v_i \frac{\partial v_i}{\partial t}&= \underbrace{v_i v_j \frac{\partial v_i}{\partial x_j}}_{term 1} + \underbrace{v_i \frac{\partial p}{\partial x_i}}_{term 2} - \underbrace{v_i \frac{\partial }{\partial x_j} \left[ \left( \nu + \nu _t\right) s_{ij}\right] }_{term 3} + \alpha v_i^2 \end{aligned}$$
(122)

where the strain tensor, \(s_{ij}\), is given by

$$\begin{aligned} s_{ij}&= \left( \frac{\partial v_i}{\partial x_j}+ \frac{\partial v_j}{\partial x_i}\right) \end{aligned}$$
(123)

By taking into account the continuity equation, the development of the terms appearing on the r.h.s. of Eq. 122 yields

$$\begin{aligned} term1&:~ v_i v_j \frac{\partial v_i}{\partial x_j} = v_j \frac{1}{2}\frac{\partial (v_i^2)}{\partial x_j}= \frac{1}{2} \frac{\partial (v_j v_i^2) }{\partial x_j} \end{aligned}$$
(124)
$$\begin{aligned} term2&:~ v_j \frac{\partial p}{\partial x_j} = \frac{\partial \left( v_j p\right) }{\partial x_j} \end{aligned}$$
(125)
$$\begin{aligned} term3&:~ v_i \frac{\partial }{\partial x_j} \left[ \left( \nu + \nu _t\right) s_{ij} \right] = \frac{\partial }{\partial x_j} \left[ \left( \nu + \nu _t\right) v_i s_{ij}\right] \nonumber \\&\quad \qquad \qquad \qquad \qquad \qquad \qquad - \left( \nu + \nu _t\right) s_{ij} \frac{\partial v_i}{\partial x_j} \end{aligned}$$
(126)

After substituting Eqs. 124126 into Eq. 122, we get

$$\begin{aligned} v_i \frac{\partial v_i}{\partial t}&= \frac{\partial }{\partial x_j} \left[ v_j \left( \frac{1}{2} v^2 +p\right) \right] -\frac{\partial }{\partial x_j} \left[ \left( \nu + \nu _t\right) v_i s_{ij} \right] \nonumber \\&\quad + \left( \nu + \nu _t\right) s_{ij} \frac{\partial v_{i}}{\partial x_j} + \alpha v_i^2 \end{aligned}$$
(127)

The Frobenius inner product of the strain tensor with the velocity gradient can be written as

$$\begin{aligned} \frac{\partial v_i}{\partial x_{j}} s_{ij}&= \frac{\partial v_i}{\partial x_{j}} \left( \frac{\partial v_i}{\partial x_{j}} + \frac{\partial v_j}{\partial x_{i}} \right) \nonumber \\&= \frac{1}{2}\frac{\partial v_i}{\partial x_{j}} \frac{\partial v_i}{\partial x_{j}} + \frac{1}{2}\frac{\partial v_j}{\partial x_{i}} \frac{\partial v_j}{\partial x_{i}} + \frac{\partial v_i}{\partial x_{j}}\frac{\partial v_j}{\partial x_{i}}\nonumber \\&= \frac{1}{2} \left( \frac{\partial v_i}{\partial x_{j}} + \frac{\partial v_j}{\partial x_{i}} \right) ^2 = \frac{1}{2} s_{ij}^2 \end{aligned}$$
(128)

Substituting Eq. 128 into Eq. 127, we get

$$\begin{aligned} v_i \frac{\partial v_i}{\partial t}&= \frac{\partial }{\partial x_j} \left[ v_j \left( p + \frac{1}{2} v_i^2 \right) \right] -\frac{\partial }{\partial x_j} \left[ \left( \nu + \nu _t\right) v_i s_{ij} \right] \nonumber \\&\quad + \frac{\left( \nu + \nu _t\right) }{2} s_{ij}^2 + \alpha v_i^2 \end{aligned}$$
(129)

For a steady state problem, the time derivative on the l.h.s. of Eq. 129 is zero. Taking this into consideration and using the Green–Gauss theorem for the conservative terms, the integration of Eq. 129 over \(\Omega \) yields

$$\begin{aligned} -\int _{S} \left[ \left( p + \frac{1}{2} v_i^2 \right) \right] v_j n_j dS&= \int _{\Omega } \left[ \frac{\left( \nu \!+\!\nu _t \right) }{2} s_{ij}^2 + \alpha v_i^2 \right] d\Omega \nonumber \\&\quad - \int _{S} \left( \nu + \nu _t\right) v_i s_{ij} n_j dS \end{aligned}$$
(130)

The boundary integrals in Eq. 130 are zero along \(S_W\) due to the no-slip velocity boundary condition. Thus, Eq. 130 becomes

$$\begin{aligned}&-\int _{S_{I,O}} \left[ \left( p + \frac{1}{2} v_i^2 \right) \right] v_j n_j dS\nonumber \\&\quad = \int _{\Omega } \left[ \frac{\left( \nu +\nu _t \right) }{2} s_{ij}^2 + \alpha v_i^2 \right] d\Omega - \int _{S_{I,O}}\!\! \left( \nu + \nu _t\right) v_i s_{ij} n_j dS \end{aligned}$$
(131)

If the flow at \(S_I\) and \(S_O\) is sufficiently free from intense flow gradients, it can be assumed that last integral on the r.h.s. of Eq. 130 is negligible.Footnote 2 Under this assumption and after taking into consideration Eq. 123, we get

$$\begin{aligned} - \int _{S_{IO}} \left[ \left( p + \frac{1}{2}v^2 \right) v_in_i\right] dS&\approx \int _{\Omega } \left[ \frac{\left( \nu + \nu _t\right) }{2} s_{ij}^2 +\alpha v^2_i \right] d\Omega \end{aligned}$$
(132)

or

$$\begin{aligned} F_{p_t} \approx F_{PL} \end{aligned}$$
(133)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papoutsis-Kiachagias, E.M., Giannakoglou, K.C. Continuous Adjoint Methods for Turbulent Flows, Applied to Shape and Topology Optimization: Industrial Applications. Arch Computat Methods Eng 23, 255–299 (2016). https://doi.org/10.1007/s11831-014-9141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9141-9

Navigation