Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2013) Performance of different integration schemes in facing discontinuities in the finite cell method. Int J Comput Methods 10(3):1–24
Google Scholar
Abedian A, Parvizian J, Düster A, Rank E (2013) The finite cell method for the J\(_2\) flow theory of plasticity. Finite Elem Anal Des 69:37–47
Google Scholar
Agoston MK (2005) Computer graphics and geometric modeling, vol 2. Springer, Berlin
Google Scholar
Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393
MATH
MathSciNet
Google Scholar
Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54
MathSciNet
Google Scholar
Apostolatos A, Schmidt R, Wüchner R, Bletzinger K-U (2014) A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int J Numer Methods Eng 97(7):473–504
Google Scholar
McNeel & Associates (2013) Rhinoceros-accurate freeform modeling for Windows. http://www.rhino3d.com
Babuška I, Banerjee U, Osborn JE (2003) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Springer, Berlin, pp 1–20
Babuška I (1972) The finite element method with penalty. Math Comput 27(122):221–228
Google Scholar
Baiges J, Codina R (2010) The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int J Numer Methods Eng 81:1529–1557
MATH
MathSciNet
Google Scholar
Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirchlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90:636–658
MATH
MathSciNet
Google Scholar
Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46:559–632
Google Scholar
Bastian P, Engwer C (2009) An unfitted finite element method using discontinuous Galerkin. Int J Numer Methods Eng 79:1557–1576
MATH
MathSciNet
Google Scholar
Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs
Google Scholar
Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263
MATH
MathSciNet
Google Scholar
Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41
MathSciNet
Google Scholar
Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26
MATH
MathSciNet
Google Scholar
Bazilevs Y, Michler CM, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790
MATH
MathSciNet
Google Scholar
Beirão da Veiga L, Buffa A, Cho D, Sangalli G (2012) Analysis-suitable T-splines are dual-compatible. Comput Methods Appl Mech Eng 249:42–51
Google Scholar
Belytschko T, Liu WK, Moran B (2006) Nonlinear finite elements for continua and structures. Wiley, NewYork
Google Scholar
Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56(4):609–635
MATH
Google Scholar
Bindick S, Stiebler M, Krafczyk M (2011) Fast kd-tree-based hierarchical radiosity for radiative heat transport problems. Int J Numer Methods Eng 86(9):1082–1100
MATH
Google Scholar
Bishop J (2003) Rapid stress analysis of geometrically complex domains using implicit meshing. Comput Mech 30:460–478
MATH
Google Scholar
Bonet J, Wood R (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge
MATH
Google Scholar
Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Methods Eng 87:15–47
MATH
MathSciNet
Google Scholar
Bornemann B, Cirak F (2013) A subdivision-based implementation of the hierarchical b-spline finite element method. Comput Methods Appl Mech Eng 253:584–598
MATH
MathSciNet
Google Scholar
Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numer 13(1):147–269
MathSciNet
Google Scholar
Bungartz H-J, Griebel M, Zenger C (2004) Introduction to computer graphics. Charles River Media Inc, Prague
Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: a stabilized lagrange multiplier method. Comput Methods Appl Mech Eng 62(4):2680–2686
MathSciNet
Google Scholar
Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: a stabilized Nitsche method. Appl Numer Math 62(4):328–341
MATH
MathSciNet
Google Scholar
Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin
Google Scholar
Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods: evolution to complex geometries and applications to fluid dynamics. Springer, Berlin
Google Scholar
Chapman B, Jost G, Van Der Pas R (2008) Using OpenMP: portable shared memory parallel programming. The MIT Press, Cambridge
Google Scholar
Chilton L, Suri M (1997) On the selection of a locking-free hp element for elasticity problems. Int J Numer Methods Eng 40(11):2045–2062
MATH
MathSciNet
Google Scholar
Cohen E, Martin T, Kirby RM, Lyche T, Riesenfeld RF (2010) Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput Methods Appl Mech Eng 199:334–356
MATH
MathSciNet
Google Scholar
Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: towards integration of CAD and FEA. Wiley, New York
Google Scholar
de Souza Neto EA, Perić D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, New York
Google Scholar
Dede’ L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465
MathSciNet
Google Scholar
Del Pino S, Pironneau O (2003) A fictitious domain based general PDE solver. In: Kuznetsov Y, Neittanmaki P, Pironneau O (eds) Numerical methods for scientific computing: variational problems and applications. CIMNE, Barcelona
Google Scholar
Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007) Computing with Hp-adaptive finite elements, vol 2: frontiers three-dimensional elliptic and Maxwell problems with applications. Chapman & Hall/CRC, London.
Demkowicz LF (2006) Computing with Hp-adaptive finite elements, vol 1: one and two dimensional elliptic and Maxwell problems. Chapman & Hall/CRC, London.
Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(21):331–356
MATH
MathSciNet
Google Scholar
Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78:229–252
MATH
MathSciNet
Google Scholar
Dong S, Yosibash Z (2009) A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput Struct 87(1):59–72
Google Scholar
Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. Dissertation, Technische Universität München.
Düster A, Bröker H, Rank E (2001) The \(p\)-version of the finite element method for three-dimensional curved thin walled structures. Int J Numer Methods Eng 52:673–703
MATH
Google Scholar
Düster A, Hartmann S, Rank E (2003) p-fem applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192(47):5147–5166
MATH
Google Scholar
Düster A, Niggl A, Rank E (2007) Applying the hp-d version of the fem to locally enhance dimensionally reduced models. Comput Methods Appl Mech Eng 196(37):3524–3533
MATH
Google Scholar
Düster A, Parvizian J, Yang Z, Rank E (2010) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782
Google Scholar
Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197:2732–2762
MATH
Google Scholar
Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83:877–898
MATH
MathSciNet
Google Scholar
Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21–26):1726–1741
MATH
Google Scholar
Evans JA, Hughes TJR (2013) Isogeometric divergence-conforming B-splines for the steady Navier-Stokes equations. Math Models Methods Appl Sci 23:1421
MATH
MathSciNet
Google Scholar
Farin G (2002) Curves and surfaces for computer aided geometric design. Morgan Kaufmann Publishers, Los Altos
Google Scholar
Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275
MATH
Google Scholar
Flemisch B, Wohlmuth BI (2007) Stable lagrange multipliers for quadrilateral meshes of curved interfaces in 3d. Comput Methods Appl Mech Eng 196(8):1589–1602
MATH
MathSciNet
Google Scholar
Franke D, Düster A, Nübel V, Rank E (2010) A comparison of the h-, p-, hp-, and rp-version of the FEM for the solution of the 2d Hertzian contact problem. Comput Mech 45(5):513–522
MATH
Google Scholar
Gerstenberger A, Wall WA (2008) Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. Int J Numer Methods Fluids 57:1227–1248
MATH
MathSciNet
Google Scholar
Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82:537–563
MATH
MathSciNet
Google Scholar
Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the truncated basis for hierarchical splines. Comput Aided Geom Des 29(7):485–498
MATH
Google Scholar
Glowinski R, Kuznetsov Y (2007) Distributed lagrange multipliers based on fictitious domain method for second order elliptic problems. Comput Methods Appl Mech Eng 196:1498– 1506
Griebel M, Schweitzer MA (2004) A particle-partition of unity method. Part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542
Google Scholar
Grossmann D, Jüttler B, Schlusnus H, Barner J, Vuong AH (2012) Isogeometric simulation of turbine blades for aircraft engines. Comput Aided Geom Des 29(7):519–531
MATH
Google Scholar
Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng 191:537–552
Google Scholar
Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM Mitteilungen 28(2):183–206
MATH
MathSciNet
Google Scholar
Harari I, Dolbow J (2010) Analysis of an efficient finite element method for embedded interface problems. Comput Mech 46:205–211
MATH
MathSciNet
Google Scholar
Harari I, Shavelzon E (2012) Embedded kinematic boundary conditions for thin plate bending by Nitsche’s approach. Int J Numer Methods Eng 92(1):99–114
MathSciNet
Google Scholar
Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47:1474–1499
MATH
MathSciNet
Google Scholar
Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of Dirichlet boundary conditions on embedded surfaces. Int J Numer Methods Eng 90:40–64
MATH
MathSciNet
Google Scholar
Heisserer U, Hartmann S, Düster A, Yosibash Z (2008) On volumetric locking-free behaviour of p-version finite elements under finite deformations. Commun Numer Methods Eng 24(11):1019–1032
MATH
Google Scholar
Hesthaven JS, Gottlieb S, Gottlieb D (2007) Spectral methods for time-dependent problems. Cambridge University Press, Cambridge
MATH
Google Scholar
Höllig K (2003) Finite element methods with B-Splines. Society for Industrial and Applied Mathematics, Philadelphia
MATH
Google Scholar
Höllig K, Hörner J, Hoffacker A (2012) Finite element analysis with b-splines: weighted and isogeometric methods. Curves and surfaces, vol 6920, Lecture Notes in Computer ScienceSpringer, Berlin, pp 330–350.
Höllig K, Reif U, Wipper J (2001) Weighted extended b-spline approximation of Dirichlet problems. SIAM J Numer Anal 39:442–462
MATH
MathSciNet
Google Scholar
Holzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering, Wiley, New York
MATH
Google Scholar
Hsu MC, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511
MATH
MathSciNet
Google Scholar
Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York
Google Scholar
Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195
MATH
MathSciNet
Google Scholar
Hughes TJR, Evans JA, Reali A (2013) Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. ICES REPORT 13–24, The Institute for Computational Engineering and Sciences, The University of Texas at Austin.
Ibrahimbegović A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, Berlin
Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514
MATH
MathSciNet
Google Scholar
Joulaian M, Düster A (2013) Local enrichment of the finite cell method for problems with material interfaces. Comput Mech 52:741–762
MATH
Google Scholar
Juntunen J, Stenberg R (2009) Nitsche’s method for general boundary conditions. Math Comput 78:1353–1374
MATH
MathSciNet
Google Scholar
Kagan P, Fischer A (2000) Integrated mechanically based CAE system using B-spline finite elements. Comput Aided Des 32(8–9):539–552
MATH
Google Scholar
Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25(9):781–787
Google Scholar
Kim H-J, Seo Y-D, Youn S-K (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198:2982–2995
MATH
Google Scholar
Kim H-J, Seo Y-D, Youn S-K (2010) Isogeometric analysis with trimming technique for problems of arbitrary complex topology. Comput Methods Appl Mech Eng 199:45–48
Google Scholar
Kopriva DA (2009) Implementing spectral methods for partial differential equations. Springer, Berlin
MATH
Google Scholar
Krause R, Rank E (2003) Multiscale computations with a combination of the h-and p-versions of the finite element method. Comput Methods Appl Mech Eng 192(35):3959–3983
MATH
Google Scholar
Kreikemeier J (2012) Modelling of phase boundaries via the GAUSS-Point Method. Technische Mechanik 32(6):658–666
Google Scholar
Krysl P, Grinspun E, Schröder P (2003) Natural hierarchical refinement for finite element methods. Int J Numer Methods Eng 56:1109–1124
MATH
Google Scholar
Kudela L (2013) Highly Accurate Subcell Integration in the Context of The Finite Cell Method. Master Thesis, Technische Universität München.
Legay A, Wang HW, Belytschko T (2005) Strong and weak arbitrary discontinuities in spectral finite elements. Int J Numer Methods Eng 64:991–1008
MATH
MathSciNet
Google Scholar
Legrain G (2013) A NURBS enhanced extended finite element approach for unfitted CAD analysis. Comput Mech 1:34
Google Scholar
Legrain G, Cartraud P, Perreard I, Moës N (2011) An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934
MATH
Google Scholar
Legrain G, Chevaugeon N, Dréau K (2012) High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput Methods Appl Mech Eng 241:172–189
Google Scholar
Lew AJ, Buscaglia GC (2008) A discontinuous Galerkin-based immersed boundary method. Int J Numer Methods Eng 76:427–454
MATH
MathSciNet
Google Scholar
Lew AJ, Negri M (2011) Optimal convergence of a discontinuous-galerkin-based immersed boundary method. ESAIM Math Model Numer Anal 45(04):651–674
MATH
MathSciNet
Google Scholar
Li Z, Ito K (2006) The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Society for Industrial and Applied Mathematics, Philadelphia
Google Scholar
Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199(5):357–373
MATH
Google Scholar
Intact Solutions LLC (2009) Scan&solve\(^{TM}\): Fea without meshing (white paper). http://www.intact-solutions.com/Scan&Solve.pdf
Löhner R, Cebral RJ, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197
MATH
Google Scholar
Lui SH (2009) Spectral domain embedding for elliptic PDEs in complex domains. J Comput Appl Math 225(2):541–557
MATH
MathSciNet
Google Scholar
Mergheim J, Steinmann P (2006) A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities. Comput Methods Appl Mech Eng 195(37):5037–5052
MATH
MathSciNet
Google Scholar
Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261
MathSciNet
Google Scholar
Moës N, Cloirec M, Cartraud P, Remacle J-F (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177
MATH
Google Scholar
Moumnassi M, Belouettar S, Béchet E, Bordas SPA, Quoirin D, Potier-Ferry M (2011) Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. Comput Methods Appl Mech Eng 200(5):774–796
MATH
Google Scholar
Mousavi SE, Sukumar N (2010) Generalized gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method. Comput Methods Appl Mech Eng 199(49):3237–3249
MATH
MathSciNet
Google Scholar
Mousavi SE, Sukumar N (2011) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput Mech 47(5):535–554
MATH
MathSciNet
Google Scholar
Nagy A, Benson DJ (2014) On the numerical integration of trimmed isogeometric elements. Preprint.
Neittaanmäki P, Tiba D (1995) An embedding domains approach in free boundary problems and optimal design. SIAM J Control Optim 33(5):1587–1602
MATH
MathSciNet
Google Scholar
Netz T, Düster A, Hartmann S (2013) High-order finite elements compared to low-order mixed element formulations. ZAMM J Appl Math Mech 93(2–3):163–176
MATH
Google Scholar
Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200(47):3410–3424
MATH
Google Scholar
Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21):1892–1908
MATH
MathSciNet
Google Scholar
Nitsche JA (1970) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36:9– 15
MathSciNet
Google Scholar
Noel AT, Szabó BA (1997) Formulation of geometrically non-linear problems in the spatial reference frame. Int J Numer Methods Eng 40(7):1263–1280
MATH
Google Scholar
Nübel V, Düster A, Rank E (2007) An rp-adaptive finite element method for the deformation theory of plasticity. Comput Mech 39(5):557–574
MATH
Google Scholar
Parussini L, Pediroda V (2009) Fictitious domain approach with hp-finite element approximation for incompressible fluid flow. J Comput Phys 228(10):3891–3910
MATH
MathSciNet
Google Scholar
Parvizian J, Düster A, Rank E (2007) Finite cell method: h- and p- extension for embedded domain methods in solid mechanics. Comput Mech 41:122–133
Google Scholar
Parvizian J, Düster A, Rank E (2012) Toplogy optimization using the finite cell method. Optim Eng 13:57–78
MATH
MathSciNet
Google Scholar
Peskin C (2002) The immersed boundary method. Acta Numer 11:479–517
MATH
MathSciNet
Google Scholar
Pham DL, Xu C, Prince JL (2000) A survey of current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337
Google Scholar
Piegl L, Tiller W (1997) The NURBS book. Springer, Berlin
Google Scholar
Ramière I, Angot P, Belliard M (2007) A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J Comput Phys 225:1347–1387
MATH
MathSciNet
Google Scholar
Ramière I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196:766–781
MATH
Google Scholar
Rangarajan R, Lew AJ, Buscaglia GC (2009) A discontinuous-galerkin-based immersed boundary method with non-homogeneous boundary conditions and its application to elasticity. Comput Methods Appl Mech Eng 198(17):1513–1534
MATH
MathSciNet
Google Scholar
Ranjbar M, Mashayekhi M, Parvizian J, Düster A, Rank E (2014) Using the finite cell method to predict crack initiation in ductile materials. Comput Mater Sci 82:427–434
Google Scholar
Rank E (1992) Adaptive remeshing and h-p domain decomposition. Comput Methods Appl Mech Eng 101:299–313
MATH
Google Scholar
Rank E (1993) A zooming-technique using a hierarchical hp-version of the finite element method. In: Whiteman J (ed) The mathematics of finite elements and applications. John Wiley & Sons, Chichester.
Rank E, Düster A, Nübel V, Preusch K, Bruhns OT (2005) High order finite elements for shells. Comput Methods Appl Mech Eng 194:2494–2512
MATH
Google Scholar
Rank E, Kollmannsberger S, Sorger C, Düster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45):3200–3209
MATH
Google Scholar
Rank E, Krause R (1997) A multiscale finite element method. Comput Struct 64(1):139–144
MATH
Google Scholar
Rank E, Ruess M, Kollmannsberger S, Schillinger D, Düster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–250: 104–115
Richter T, Wick T (2010) Finite elements for fluid-structure interaction in ale and fully eulerian coordinates. Comput Methods Appl Mech Eng 199:2633–2642
MATH
MathSciNet
Google Scholar
Rogers DF (2001) An introduction to NURBS with historical perspective. Morgan Kaufmann Publishers, Los Altos
Google Scholar
Rueberg T, Cirak F (2012) Subdivision-stabilised immersed B-spline finite elements for moving boundary flows. Comput Methods Appl Mech Eng 209–212:266–283
Google Scholar
Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846
MathSciNet
Google Scholar
Ruess M, Schillinger D, Özcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71
MATH
Google Scholar
Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11(3):425–437
Google Scholar
Ruess M, Varduhn V, Yosibash Z, Rank E (2012) A parallel high-order fictitious domain approach for biomechanical applications. In: Parallel and distributed computing, international symposium, pp 279–285.
Rvachev VL, Sheiko TL, Shapiro V, Tsukanov I (2000) On completeness of rfm solution structures. Comput Mech 25:305–316
MATH
MathSciNet
Google Scholar
Rvachev VL, Sheiko TL, Shapiro V, Tsukanov I (2001) Transfinite interpolation over implicitly defined sets. Comput Aided Geom Des 18(3):195–220
MATH
MathSciNet
Google Scholar
Sadd MH (2009) Elasticity, theory, applications, and numerics. Academic Press, London
Google Scholar
Samet H (1990) The design and analysis of spatial data structures, vol 199. Addison-Wesley, Reading.
Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann Publishers, Los Altos
MATH
Google Scholar
Sanches R, Bornemann P, Cirak F (2011) Immersed B-spline (i-spline) finite element method for geometrically complex domains. Comput Methods Appl Mech Eng 200:1432–1445
MATH
MathSciNet
Google Scholar
Sanders JD, Laursen TA, Puso MA (2012) A Nitsche embedded mesh method. Comput Mech 49(2):243–257
MATH
MathSciNet
Google Scholar
Sauerland H, Fries TP (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230:3369–3390
MATH
MathSciNet
Google Scholar
Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Baleani M, Viceconti M (2008) An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 41(11):2483–2491
Google Scholar
Schillinger D (2012) The \(p\)- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis. Dissertation, Technische Universität München, http://d-nb.info/103009943X/34
Schillinger D, Cai Q, Mundani R-P, Rank E (2013) Nonlinear structural analysis of complex CAD and image based geometric models with the finite cell method. In: Bader M (ed) Lecture notes in computational science and engineering, vol 93. Springer, Berlin
Schillinger D, Dede’ L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–250:116– 150
MathSciNet
Google Scholar
Schillinger D, Düster A, Rank E (2012) The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng 89:1171–1202
Schillinger D, Evans JA, Frischmann F, Hiemstra RR, Hsu M-C, Hughes TJR (2014) Collocation on standard hp finite element meshes: reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics. ICES REPORT 14–01, The University of Texas at Austin
Schillinger D, Evans JA, Reali A, Scott MA, Hughes TJR (2013) Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput Methods Appl Mech Eng 267:170–232
MATH
MathSciNet
Google Scholar
Schillinger D, Hossain SJ, Hughes TJR (2014) Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput Methods Appl Mech Eng 277:1–45
Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The finite cell method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170
Google Scholar
Schillinger D, Rank E (2011) An unfitted \(hp\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput Methods Appl Mech Eng 200(47–48):3358–3380
MATH
MathSciNet
Google Scholar
Schillinger D, Ruess M, Düster A, Rank E (2011) The Finite Cell Method for large deformation analysis. PAMM 11(1):271–272
Google Scholar
Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the \(p\)- and B-spline versions of the finite cell method. Comput Mech 50(4):445–478
MATH
MathSciNet
Google Scholar
Schmidt R, Kiendl J, Bletzinger KU, Wüchner R (2010) Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput Vis Sci 13(7):315–330
MATH
Google Scholar
Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222
MathSciNet
Google Scholar
Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221
MATH
MathSciNet
Google Scholar
Scott MA, Thomas DC, Evans EJ (2014) Isogeometric spline forests. Comput Methods Appl Mech Eng 269:222–264
MATH
MathSciNet
Google Scholar
Sehlhorst H-G, Jänicke J, Düster A, Rank E, Steeb H, Diebels S (2009) Numerical investigations of foam-like materials by nested high-order finite element methods. Comput Mech 45:45–59
MATH
Google Scholar
Seo Y-D, Kim H-J, Youn S-K (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296
MATH
MathSciNet
Google Scholar
Shahmiri S, Gerstenberger A, Wall WA (2011) An xfem-based embedding mesh technique for incompressible viscous flows. Int J Numer Methods Fluids 65:166–190
MATH
MathSciNet
Google Scholar
Shepherd JF, Johnson CR (2008) Hexahedral mesh generation constraints. Eng Comput 24(3):195–213
Google Scholar
Simpson RN, Scott MA, Taus M, Thomas DC, Lian H (2014) Acoustic isogeometric boundary element analysis. Comput Methods Appl Mech Eng 269:265–290
MATH
MathSciNet
Google Scholar
Stavrev A (2012) The role of higher-order geometry approximation and accurate quadrature in NURBS based immersed boundary methods. Master Thesis, Technische Universität München.
Stenberg R (1998) Mortaring by a method of J.A. Nitsche. In: Idelshon SR, Oñate E, Dvorkin EN (eds) Computational mechanics: new trends and applications. CIMNE, Barcelona, Spain, pp 47–83
Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200
MATH
Google Scholar
Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge
MATH
Google Scholar
Suri M (1996) Analytical and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133(3–4):347–371
MATH
MathSciNet
Google Scholar
Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York
MATH
Google Scholar
Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, and Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1, chapter 5. Wiley, New York, pp 119–139.
Taddei F, Pani M, Zovatto L, Tonti E, Viceconti M (2008) A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy. Clin Biomech 23(9):1192–1199
Google Scholar
Trabelsi N, Yosibash Z, Milgrom C (2009) Validation of subject-specific automated p-fe analysis of the proximal femur. J Biomech 42(3):234–241
Google Scholar
Tsukanov I, Shapiro V (2005) Meshfree modeling and analysis of physical fields in heterogeneous media. Adv Comput Math 23:95–124
MATH
MathSciNet
Google Scholar
Ventura G (2002) An augmented Lagrangian approach to essential boundary conditions in meshless methods. Int J Numer Methods Eng 53(4):825–842
Google Scholar
Vinci C (2009) Application of Dirichlet boundary conditions in the finite cell method. Master Thesis, Technische Universität München.
Šolín P, Segeth K, Doležel I (2004) Higher-order finite element methods. Chapman & Hall/CRC, London
MATH
Google Scholar
Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200(49–52):3554–3567
MATH
Google Scholar
Wall WA, Gamnitzer P, Gerstenberger A (2008) Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn 22:411–427
MATH
MathSciNet
Google Scholar
Wang W, Zhang Y, Scott MA, Hughes TJR (2011) Converting an unstructured quadrilateral mesh to a standard T-spline surface. Comput Mech 48(4):477–498
MATH
MathSciNet
Google Scholar
Wick T (2013) Fully Eulerian fluid-structure interaction for time-dependent problems. Comput Methods Appl Mech Eng 255:14–26
Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin
MATH
Google Scholar
Yang Z, Kollmannsberger S, Düster A, Ruess M, Garcia EG, Burgkart E, Rank E (2012) Non-standard bone simulation: interactive numerical analysis by computational steering. Comput Vis Sci 14:207–216
Google Scholar
Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based finite cell method. Int J Numer Methods Eng 91:457–471
Google Scholar
Yosibash Z, Padan R, Joskowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J Biomech Eng 129:297
Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40(16):3688–3699
Google Scholar
Yserantant H (1986) On the multi-level splitting of finite element spaces. Numer Math 49:379–412
MathSciNet
Google Scholar
Zander N (2011) The finite cell method for linear thermoelasticity. Master Thesis, Technische Universität München.
Zander N, Bog T, Elhaddad M, Espinoza R, Hu H, Joly AF, Wu C, Zerbe P, Düster A, Kollmannsberger S, Parvizian J, Ruess M, Schillinger D, Rank E (2014) FCMLab: a finite cell research toolbox for MATLAB. Advances in engineering software, submitted.
Zander N, Kollmannsberger S, Ruess M, Yosibash Z, Rank E (2012) The finite cell method for linear thermoelasticity. Comput Math Appl 64(11):3527–3541
MATH
MathSciNet
Google Scholar
Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067
MATH
MathSciNet
Google Scholar
Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249–252:185–197
Zhang Y, Wang W, Hughes TJR (2013) Conformal solid T-spline construction from boundary T-spline representations. Comput Mech 51:1051–1059
MATH
MathSciNet
Google Scholar
Zhu T, Atluri SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222
MATH
MathSciNet
Google Scholar
Zienkiewicz OC, Taylor RL (2005) The finite element method-solid mechanics, vol 2, 6th edn. Butterworth-Heinemann, London
Zienkiewicz OC, Taylor RL (2005) The finite element method-the basis, vol 1, 6th edn. Butterworth-Heinemann, London
Zohdi TI, Wriggers P (2001) Aspects of the computational testing of the mechanical properties of microheterogeneous material samples. Int J Numer Methods Eng 50(11):2573–2599
MATH
Google Scholar
Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, Berlin
MATH
Google Scholar
Zorin D, Schröder P, DeRose T, Kobbelt L, Levin A, Sweldens W (2000) Subdivision for modeling and animation. Tech rep.