Adaptive Boundary Element Methods

A Posteriori Error Estimators, Adaptivity, Convergence, and Implementation
  • Michael Feischl
  • Thomas Führer
  • Norbert Heuer
  • Michael Karkulik
  • Dirk Praetorius
Article

Abstract

This paper reviews the state of the art and discusses very recent mathematical developments in the field of adaptive boundary element methods. This includes an overview of available a posteriori error estimates as well as a state-of-the-art formulation of convergence and quasi-optimality of adaptive mesh-refining algorithms.

Mathematics Subject Classification

65N30 65N38 65N50 65R20 41A25 

References

  1. 1.
    Adams RA (1975) Sobolev spaces. Pure and applied mathematics, vol 65. Academic Press, New YorkGoogle Scholar
  2. 2.
    Ainsworth M, McLean W, Tran T (1999) The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J Numer Anal 36(6):1901–1932MATHMathSciNetGoogle Scholar
  3. 3.
    Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Pure and Applied Mathematics. Wiley, New YorkGoogle Scholar
  4. 4.
    Aurada M, Ebner M, Feischl M, Ferraz-Leite S, Führer T, Goldenits P, Karkulik M, Praetorius D (2013) HILBERT—a MATLAB implementation of adaptive 2D-BEM. Numer. Algorithms. doi:10.1007/s11075-013-9771-2
  5. 5.
    Aurada M, Feischl M, Führer T, Karkulik M, Melenk JM, Praetorius D (2012) Inverse estimates for elliptic boundary integral operators and their application to the adaptive coupling of FEM and BEM. ASC Report 07/2012. Institute for Analysis and Scientific Computing, TU, WienGoogle Scholar
  6. 6.
    Aurada M, Feischl M, Führer T, Karkulik M, Melenk JM, Praetorius D (2013) Classical FEM–BEM coupling methods: nonlinearities, well-posedness, and adaptivity. Comput Mech 51(4):399–419MATHMathSciNetGoogle Scholar
  7. 7.
    Aurada M, Feischl M, Führer T, Karkulik M, Praetorius D (2013) Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. Comput Methods Appl Math 13(3):305–332MATHMathSciNetGoogle Scholar
  8. 8.
    Aurada M, Feischl M, Kemetmüller J, Page M, Praetorius D (2013) Each \(H^{1/2}\)-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \({\mathbb{R}}^d\). ESAIM Math Model Numer Anal 47:1207–1235MATHMathSciNetGoogle Scholar
  9. 9.
    Aurada M, Feischl M, Praetorius D (2012) Convergence of some adaptive FEM–BEM coupling for elliptic but possibly nonlinear interface problems. ESAIM Math Model Numer Anal 46(5):1147–1173MATHMathSciNetGoogle Scholar
  10. 10.
    Aurada M, Ferraz-Leite S, Goldenits P, Karkulik M, Mayr M, Praetorius D (2012) Convergence of adaptive BEM for some mixed boundary value problem. Appl Numer Math 62(4):226–245MATHMathSciNetGoogle Scholar
  11. 11.
    Aurada M, Ferraz-Leite S, Praetorius D (2012) Estimator reduction and convergence of adaptive BEM. Appl Numer Math 62(6):787–801MATHMathSciNetGoogle Scholar
  12. 12.
    Aurada M, Führer T, Feischl M, Karkulik M, Praetorius D (2013) Energy norm based error estimators for adaptive BEM for hypersingular integral equations. ASC Report 22/2013. Institute for Analysis and Scientific Computing, TU WienGoogle Scholar
  13. 13.
    Babuška I, Griebel M, Pitkäranta J (1989) The problem of selecting the shape functions for a \(p\)-type finite element. Int J Numer Methods Eng 28(8):1891–1908MATHGoogle Scholar
  14. 14.
    Babuška I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 15(4):736–754MATHMathSciNetGoogle Scholar
  15. 15.
    Babuška I, Vogelius M (1984) Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer Math 44(1):75–102MATHMathSciNetGoogle Scholar
  16. 16.
    Bank RE, Smith RK (1993) A posteriori error estimates based on hierarchical bases. SIAM J Numer Anal 30(4):921–935MATHMathSciNetGoogle Scholar
  17. 17.
    Bank RE, Yserentant H (2014) On the \(H^1\)-stability of the \(L_2\)-projection onto finite element spaces. Numer Math 126(2):361–381MATHMathSciNetGoogle Scholar
  18. 18.
    Bartels S, Carstensen C (2002) Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order. Math Comput 71(239):971–994 (electronic)MATHMathSciNetGoogle Scholar
  19. 19.
    Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86(4):565–589MATHMathSciNetGoogle Scholar
  20. 20.
    Bebendorf M, Grzhibovskis R (2006) Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29(14):1721–1747MATHMathSciNetGoogle Scholar
  21. 21.
    Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70(1):1–24MATHMathSciNetGoogle Scholar
  22. 22.
    Bespalov A, Heuer N (2005) The \(p\)-version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer Math 100(2):185–209MATHMathSciNetGoogle Scholar
  23. 23.
    Bespalov A, Heuer N (2007) The \(p\)-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer Math 106(1):69–97MATHMathSciNetGoogle Scholar
  24. 24.
    Bespalov A, Heuer N (2008) The \(hp\)-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM Math Model Numer Anal 42(5):821–849MATHMathSciNetGoogle Scholar
  25. 25.
    Bespalov A, Heuer N (2010) The \(hp\)-version of the boundary element method with quasi-uniform meshes for weakly singular operators on surfaces. IMA J Numer Anal 30(2):377– 400Google Scholar
  26. 26.
    Binev P, Dahmen W, DeVore R (2004) Adaptive finite element methods with convergence rates. Numer Math 97(2):219– 268Google Scholar
  27. 27.
    Bonito A, Nochetto RH (2010) Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J Numer Anal 48(2):734–771MATHMathSciNetGoogle Scholar
  28. 28.
    Bramble JH, Pasciak JE, Steinbach O (2002) On the stability of the \(L^2\) projection in \(H^1\Omega \). Math Comput 71(237):147–156MATHMathSciNetGoogle Scholar
  29. 29.
    Bramble JH, Xu J (1991) Some estimates for a weighted \(L^2\) projection. Math Comput 56(194):463–476MATHMathSciNetGoogle Scholar
  30. 30.
    Carstensen C (2004) All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math Comput 73(247):1153–1165 (electronic)MATHMathSciNetGoogle Scholar
  31. 31.
    Carstensen C (1996) Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes. Math Comput 65(213):69–84MATHMathSciNetGoogle Scholar
  32. 32.
    Carstensen C (1997) An a posteriori error estimate for a first-kind integral equation. Math Comput 66(217):139–155MATHMathSciNetGoogle Scholar
  33. 33.
    Carstensen C (2002) Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces. Math Comput 71(237):157–163MATHMathSciNetGoogle Scholar
  34. 34.
    Carstensen C (2004) An adaptive mesh-refining algorithm allowing for an \(H^1\) stable \(L^2\) projection onto Courant finite element spaces. Constr Approx 20(4):549–564MATHMathSciNetGoogle Scholar
  35. 35.
    Carstensen C, Bartels S (2002) Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math Comput 71(239):945–969 (electronic)MATHMathSciNetGoogle Scholar
  36. 36.
    Carstensen C, Faermann B (2001) Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind. Eng Anal Bound Elem 25(7):497–509MATHGoogle Scholar
  37. 37.
    Carstensen C, Feischl M, Page M, Praetorius D (2014) Axioms of adaptivity. Comput Math Appl 67:1195–1253MathSciNetGoogle Scholar
  38. 38.
    Carstensen C, Maischak M, Praetorius D, Stephan EP (2004) Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer Math 97(3):397–425MATHMathSciNetGoogle Scholar
  39. 39.
    Carstensen C, Maischak M, Stephan EP (2001) A posteriori error estimate and \(h\)-adaptive algorithm on surfaces for Symm’s integral equation. Numer Math 90(2):197–213MATHMathSciNetGoogle Scholar
  40. 40.
    Carstensen C, Praetorius D (2006) Averaging techniques for the effective numerical solution of Symm’s integral equation of the first kind. SIAM J Sci Comput 27(4):1226–1260MATHMathSciNetGoogle Scholar
  41. 41.
    Carstensen C, Praetorius D (2007) Averaging techniques for a posteriori error control in finite element and boundary element analysis. Boundary element analysis, Lecture Notes in Applied and Computational Mechanics. Springer, Berlin, pp 29–59Google Scholar
  42. 42.
    Carstensen C, Praetorius D (2007) Averaging techniques for the a posteriori BEM error control for a hypersingular integral equation in two dimensions. SIAM J Sci Comput 29(2):782–810MATHMathSciNetGoogle Scholar
  43. 43.
    Carstensen C, Praetorius D (2012) Convergence of adaptive boundary element methods. J Integral Equ Appl 24(1):1–23MATHMathSciNetGoogle Scholar
  44. 44.
    Carstensen C, Stephan EP (1995) A posteriori error estimates for boundary element methods. Math Comput 64(210):483–500MATHMathSciNetGoogle Scholar
  45. 45.
    Carstensen C, Stephan EP (1996) Adaptive boundary element methods for some first kind integral equations. SIAM J Numer Anal 33(6):2166–2183MATHMathSciNetGoogle Scholar
  46. 46.
    Cascon JM, Kreuzer C, Nochetto RH, Siebert KG (2008) Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal 46(5):2524–2550MATHMathSciNetGoogle Scholar
  47. 47.
    Chandler-Wilde SN, Graham IG, Langdon S, Spence EA (2012) Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer 21:89–305MATHMathSciNetGoogle Scholar
  48. 48.
    Chernov A, von Petersdorff T, Schwab C (2011) Exponential convergence of hp quadrature for integral operators with gevrey kernels. ESAIM Math Model Numer Anal 45(3):387–422MATHMathSciNetGoogle Scholar
  49. 49.
    Costabel M (1988) Boundary integral operators on Lipschitz domains: elementary results. SIAM J Math Anal 19:613–626MATHMathSciNetGoogle Scholar
  50. 50.
    Costabel M, Stephan EP (1985) Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations. In: Fiszdon W, Wilmanski K (eds) Mathematical models and methods in mechanics, vol 15. Banach Centre Publication, Warsaw, pp 175–251Google Scholar
  51. 51.
    Crouzeix M, Thomée V (1987) The stability in \(L_p\) and \(W^1_p\) of the \(L_2\)-projection onto finite element function spaces. Math Comput 48(178):521–532MATHGoogle Scholar
  52. 52.
    Dahmen W, Harbrecht H, Schneider R (2007) Adaptive methods for boundary integral equations: complexity and convergence estimates. Math Comput 76(259):1243–1274MATHMathSciNetGoogle Scholar
  53. 53.
    Dauge M (1988) Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol 1341. Springer, BerlinGoogle Scholar
  54. 54.
    Demlow A, Stevenson R (2011) Convergence and quasi-optimality of an adaptive finite element method for controlling \(L_2\) errors. Numer Math 117(2):185–218MATHMathSciNetGoogle Scholar
  55. 55.
    Domínguez C, Heuer N (2014) A posteriori error analysis for a boundary element method with non-conforming domain decomposition. Numer Methods Partial Differ Equ 30(3):947–963.Google Scholar
  56. 56.
    Dörfler W (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J Numer Anal 33(3):1106–1124MATHMathSciNetGoogle Scholar
  57. 57.
    Dupont T, Scott R (1980) Polynomial approximation of functions in Sobolev spaces. Math Comput 34(150):441–463MATHMathSciNetGoogle Scholar
  58. 58.
    Erath C, Ferraz-Leite S, Funken S, Praetorius D (2009) Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl Numer Math 59(11):2713–2734MATHMathSciNetGoogle Scholar
  59. 59.
    Erath C, Funken S, Goldenits P, Praetorius D (2013) Simple error estimators for the Galerkin BEM for some hypersingular integral equation in 2D. Appl Anal 92:1194–1216MATHMathSciNetGoogle Scholar
  60. 60.
    Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems. II. Optimal error estimates in \(L_\infty L_2\) and \(L_\infty L_\infty \). SIAM J Numer Anal 32(3):706–740MATHMathSciNetGoogle Scholar
  61. 61.
    Ervin VJ, Heuer N (2006) An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J Numer Anal 26(2):297–325MATHMathSciNetGoogle Scholar
  62. 62.
    Faermann B (1998) Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations. Numer Math 79(1):43–76MATHMathSciNetGoogle Scholar
  63. 63.
    Faermann B (2000) Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case. IMA J Numer Anal 20(2):203–234MATHMathSciNetGoogle Scholar
  64. 64.
    Faermann B (2002) Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case. Numer Math 92(3):467–499MATHMathSciNetGoogle Scholar
  65. 65.
    Feischl M, Führer T, Karkulik M, Melenk JM, Praetorius D (2013) Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: weakly-singular integral equation. Calcolo. doi:10.1007/s10092-013-0100-x
  66. 66.
    Feischl M, Führer T, Karkulik M, Melenk JM, Praetorius D (2013) Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part II: hyper-singular integral equation. ASC Report 30/2013. Institute for Analysis and Scientific Computing, TU, WienGoogle Scholar
  67. 67.
    Feischl M, Führer T, Karkulik M, Praetorius D (2014) ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve. Eng Anal Bound Elem 38:49–60MATHMathSciNetGoogle Scholar
  68. 68.
    Feischl M, Führer T, Praetorius D (2013) Adaptive FEM, BEM, and FEM-BEM coupling with optimal rates for strongly non-symmetric problems. ASC Report 39/2013. Institute for Analysis and Scientific Computing, TU, WienGoogle Scholar
  69. 69.
    Feischl M, Führer T, Praetorius D (2014) Adaptive FEM with optimal convergence rates for a certain class of non-symmetric and possibly non-linear problems. SIAM J Numer Anal 52:601–625MATHMathSciNetGoogle Scholar
  70. 70.
    Feischl M, Karkulik M, Melenk JM, Praetorius D (2013) Quasi-optimal convergence rate for an adaptive boundary element method. SIAM J Numer Anal 51(2):1327–1348MATHMathSciNetGoogle Scholar
  71. 71.
    Feischl M, Page M, Praetorius D (2014) Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. J Comput Appl Math 255:481–501MATHMathSciNetGoogle Scholar
  72. 72.
    Feistauer M, Hsiao GC, Kleinman RE (1996) Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations. SIAM J Numer Anal 33(2):666– 685Google Scholar
  73. 73.
    Ferraz-Leite S, Ortner C, Praetorius D (2010) Convergence of simple adaptive Galerkin schemes based on \(h-h/2\) error estimators. Numer Math 116(2):291–316MATHMathSciNetGoogle Scholar
  74. 74.
    Ferraz-Leite S, Praetorius D (2008) Simple a posteriori error estimators for the \(h\)-version of the boundary element method. Computing 83(4):135–162MATHMathSciNetGoogle Scholar
  75. 75.
    Gantumur T (2008) An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems. J Comput Appl Math 211(1):90–102MATHMathSciNetGoogle Scholar
  76. 76.
    Gantumur T (2013) Adaptive boundary element methods with convergence rates. Numer Math 124(3):471–516MATHMathSciNetGoogle Scholar
  77. 77.
    Gantumur T, Harbrecht H, Stevenson R (2007) An optimal adaptive wavelet method without coarsening of the iterands. Math Comput 76(258):615–629MATHMathSciNetGoogle Scholar
  78. 78.
    Graham IG, Hackbusch W, Sauter SA (2005) Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J Numer Anal 25(2):379–407MATHMathSciNetGoogle Scholar
  79. 79.
    Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348MATHMathSciNetGoogle Scholar
  80. 80.
    Grisvard P (1985) Elliptic problems in nonsmooth domains. Monographs and studies in mathematics, vol 24. Pitman (Advanced Publishing Program), BostonGoogle Scholar
  81. 81.
    Guo B, Heuer N (2004) The optimal rate of convergence of the \(p\)-version of the boundary element method in two dimensions. Numer Math 98(3):499–538MATHMathSciNetGoogle Scholar
  82. 82.
    Guo B, Heuer N (2006) The optimal convergence of the \(h\)-\(p\) version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv Comput Math 24(1–4):353–374MATHMathSciNetGoogle Scholar
  83. 83.
    Hackbusch W (1999) A sparse matrix arithmetic based on \(\fancyscript {H}\)-matrices. I. Introduction to \(\fancyscript {H}\)-matrices. Computing 62(2):89–108MATHMathSciNetGoogle Scholar
  84. 84.
    Hackbusch W (2009) Hierarchische Matrizen: Algorithmen und Analysis. Springer, BerlinGoogle Scholar
  85. 85.
    Hackbusch W, Nowak ZP (1989) On the fast matrix multiplication in the boundary element method by panel clustering. Numer Math 54(4):463–491MATHMathSciNetGoogle Scholar
  86. 86.
    Heuer N (1992) hp-Versionen der Randelementmethode. PhD thesis, Universität Hannover, HannoverGoogle Scholar
  87. 87.
    Heuer N (1998) An iterative substructuring method for the \(p\)-version of the boundary element method for hypersingular integral operators in three dimensions. Numer Math 79(3):371– 396Google Scholar
  88. 88.
    Heuer N (2001) Erratum: “An iterative substructuring method for the \(p\)-version of the boundary element method for hypersingular integral operators in three dimensions” [Numer. Math. 79(3), 1998, pp. 371–396; MR1626320 (99f:65184)]. Numer Math 87(4):793–794MathSciNetGoogle Scholar
  89. 89.
    Heuer N (2002) An \(hp\)-adaptive refinement strategy for hypersingular operators on surfaces. Numer Methods Partial Differ Equ 18(3):396–419MATHMathSciNetGoogle Scholar
  90. 90.
    Heuer N, Karkulik M (2013) Adaptive Crouzeix–Raviart boundary elements. Facultád de Matemáticas, Pontificia Universidad Católica de Chile. http://arXiv.org/abs/1312.0484
  91. 91.
    Heuer N, Maischak M, Stephan EP (1999) Exponential convergence of the \(hp\)-version for the boundary element method on open surfaces. Numer Math 83(4):641–666MATHMathSciNetGoogle Scholar
  92. 92.
    Heuer N, Mellado ME, Stephan EP (2001) \(hp\)-adaptive two-level methods for boundary integral equations on curves. Computing 67(4):305–334MATHMathSciNetGoogle Scholar
  93. 93.
    Heuer N, Mellado ME, Stephan EP (2002) A \(p\)-adaptive algorithm for the BEM with the hypersingular operator on the plane screen. Int J Numer Methods Eng 53(1):85–104 (\(p\) and \(hp\) finite element methods: mathematics and engineering practice (St. MO, Louis, 2000))MATHMathSciNetGoogle Scholar
  94. 94.
    Heuer N, Stephan EP (1996) The hp-version of the boundary element method on polygons. J Integral Equ Appl 8(2):173– 212Google Scholar
  95. 95.
    Heuer N, Stephan EP (1998) Boundary integral operators in countably normed spaces. Math Nachr 191:123–151MATHMathSciNetGoogle Scholar
  96. 96.
    Heuer N, Stephan EP (2000) The Poincaré-Steklov operator within countably normed spaces. In: Bonnet M, Sändig A-M, Wendland WL (eds) Mathematical aspects of boundary element methods, Research notes in mathematics series, vol 414. Chapman & Hall/CRC, Boca Raton, pp 152–164Google Scholar
  97. 97.
    Hsiao GC, Wendland WL (1977) A finite element method for some integral equations of the first kind. J Math Anal Appl 58(3):449–481MATHMathSciNetGoogle Scholar
  98. 98.
    Hsiao GC, Wendland WL (2008) Boundary integral equations. Applied mathematical sciences, vol 164. Springer, BerlinGoogle Scholar
  99. 99.
    Jou J, Liu J-L (1999) A posteriori boundary element error estimation. J Comput Appl Math 106(1):1–19MATHMathSciNetGoogle Scholar
  100. 100.
    Karkulik M, Of G, Praetorius D (2013) Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement. Numer Methods Partial Differ Equ 29(6):2081–2106MATHMathSciNetGoogle Scholar
  101. 101.
    Karkulik M, Pavlicek D, Praetorius D (2013) On 2D newest vertex bisection: optimality of mesh-closure and \(H^1\)-stability of \(L_2\)-projection. Constr Approx 38(2):213–234MATHMathSciNetGoogle Scholar
  102. 102.
    Karkulik M, Pfeiler CM, Praetorius D (2013) \(L_2\)-Orthogonal projections onto lowest-order finite elements in \({\mathbb{R}}^d\) are \(H^1\)-stable. ASC Report 21/2013. Institute for Analysis and Scientific Computing, TU, WienGoogle Scholar
  103. 103.
    Kestler S, Urban K (2012) Adaptive wavelet methods on unbounded domains. J Sci Comput 53(2):342–376MATHMathSciNetGoogle Scholar
  104. 104.
    Kondratiev VA (1967) Boundary problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16:227–313Google Scholar
  105. 105.
    Kossaczký I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55(3):275– 288Google Scholar
  106. 106.
    Maischak M (2013) Personal communication, December 2013Google Scholar
  107. 107.
    Maischak M, Mund P, Stephan EP (1997) Adaptive multilevel BEM for acoustic scattering. Symposium on advances in computational mechanics, vol. 2 (Austin, TX, 1997). Comput Methods Appl Mech Eng 150(1–4):351–367Google Scholar
  108. 108.
    McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  109. 109.
    Mitchell WF (1991) Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J Comput Appl Math 36(1):65–78MATHMathSciNetGoogle Scholar
  110. 110.
    Morin P, Nochetto RH, Siebert KG (2000) Data oscillation and convergence of adaptive FEM. SIAM J Numer Anal 38(2):466–488MATHMathSciNetGoogle Scholar
  111. 111.
    Morin P, Siebert KG, Veeser A (2008) A basic convergence result for conforming adaptive finite elements. Math Models Methods Appl Sci 18(5):707–737MATHMathSciNetGoogle Scholar
  112. 112.
    Mund P, Stephan EP (1999) An adaptive two-level method for the coupling of nonlinear FEM–BEM equations. SIAM J Numer Anal 36(4):1001–1021MATHMathSciNetGoogle Scholar
  113. 113.
    Mund P, Stephan EP, Weiße J (1998) Two-level methods for the single layer potential in \({ R}^3\). Computing 60(3):243–266MATHMathSciNetGoogle Scholar
  114. 114.
    Nédélec J-C (2001) Acoustic and electromagnetic equations. Applied mathematical sciences, vol 144. Springer, New YorkGoogle Scholar
  115. 115.
    Nédélec J-C, Planchard J (1973) Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans \(R^{3}\). RAIRO 7(R–3):105–129Google Scholar
  116. 116.
    Nochetto RH, Siebert KG, Veeser A (2009) Theory of adaptive finite element methods: an introduction. Multiscale, nonlinear and adaptive approximation. Springer, Berlin, pp 409–542Google Scholar
  117. 117.
    Of G, Steinbach O, Wendland WL (2006) The fast multipole method for the symmetric boundary integral formulation. IMA J Numer Anal 26(2):272–296MATHMathSciNetGoogle Scholar
  118. 118.
    Oswald P (1998) Multilevel norms for \(H^{-1/2}\). Computing 61(3):235–255MATHMathSciNetGoogle Scholar
  119. 119.
    Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Numerical mathematics and scientific computation. The Clarendon Press Oxford University Press, New YorkGoogle Scholar
  120. 120.
    Rank E (1986) Adaptivity and accuracy estimation for finite element and boundary integral element methods. Accuracy estimates and adaptive refinements in finite element computations (Lisbon, 1984), Wiley series in numerical methods in engineering. Wiley, Chichester, pp 79–84Google Scholar
  121. 121.
    Rjasanow S, Steinbach O (2007) The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New YorkGoogle Scholar
  122. 122.
    Rodríguez R (1994) Some remarks on Zienkiewicz-Zhu estimator. Numer Methods Partial Differ Equ 10(5):625–635MATHGoogle Scholar
  123. 123.
    Sauter SA, Schwab C (2011) Boundary element methods., Springer series in computational mathematics. Springer, Berlin (Translated and expanded from the 2004 German original)Google Scholar
  124. 124.
    Schulz H, Steinbach O (2000) A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem. Calcolo 37(2):79–96MATHMathSciNetGoogle Scholar
  125. 125.
    Schulz H, Steinbach O (2000) A new a posteriori error estimator in adaptive direct boundary element methods. The Neumann problem. Multifield problems. Springer, Berlin, pp 201–208Google Scholar
  126. 126.
    Schwab C (1994) Variable order composite quadrature of singular and nearly singular integrals. Computing 53(2):173–194MATHMathSciNetGoogle Scholar
  127. 127.
    Schwab C, Suri M (1996) The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J Numer Anal 33:729–759MATHMathSciNetGoogle Scholar
  128. 128.
    Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54(190):483–493MATHMathSciNetGoogle Scholar
  129. 129.
    Sewell EG (1972) Automatic generation of triangulations for piecewise polynomial approximation. PhD thesis, Purdue UniversityGoogle Scholar
  130. 130.
    Smith BF, Bjørstad PE, Gropp WD (1996) Domain decomposition: parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  131. 131.
    Steinbach Olaf (2000) Adaptive boundary element methods based on computational schemes for Sobolev norms. SIAM J Sci Comput 22(2):604–616MATHMathSciNetGoogle Scholar
  132. 132.
    Steinbach O (2001) On the stability of the \(L_2\) projection in fractional Sobolev spaces. Numer Math 88(2):367–379MATHMathSciNetGoogle Scholar
  133. 133.
    Steinbach O (2002) On a generalized \(L_2\) projection and some related stability estimates in Sobolev spaces. Numer Math 90(4):775–786MATHMathSciNetGoogle Scholar
  134. 134.
    Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York (Translated from the 2003 German original)Google Scholar
  135. 135.
    Steinbach O, Wendland WL (2001) On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J Math Anal Appl 262(2):733–748MATHMathSciNetGoogle Scholar
  136. 136.
    Stephan EP, Suri M (1989) On the convergence of the \(p\)-version of the boundary element Galerkin method. Math Comput 52(185):31–48MATHMathSciNetGoogle Scholar
  137. 137.
    Stephan EP, Suri M (1991) The \(h\)-\(p\) version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Model Math Anal Numer 25(6):783–807MATHMathSciNetGoogle Scholar
  138. 138.
    Stevenson R (2007) Optimality of a standard adaptive finite element method. Found Comput Math 7(2):245–269MATHMathSciNetGoogle Scholar
  139. 139.
    Stevenson R (2008) The completion of locally refined simplicial partitions created by bisection. Math Comput 77(261):227–241MATHMathSciNetGoogle Scholar
  140. 140.
    Stroud AH (1971) Approximate calculation of multiple integrals, Prentice-Hall series in automatic computation. Prentice-Hall Inc., Englewood CliffsGoogle Scholar
  141. 141.
    Tartar L (2007) An introduction to Sobolev spaces and interpolation spaces, Lecture notes of the unione matematica italiana, vol 3. Springer, BerlinGoogle Scholar
  142. 142.
    Toselli A, Widlund O (2005) Domain decomposition methods–algorithms and theory, Springer series in computational mathematics, vol 34. Springer, Berlin Google Scholar
  143. 143.
    Verchota G (1984) Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal 59(3):572–611MATHMathSciNetGoogle Scholar
  144. 144.
    Verfürth R (2013) A posteriori error estimation techniques for finite element methods. Numerical mathematics and scientific computation. Oxford University Press, OxfordGoogle Scholar
  145. 145.
    von Petersdorff T(1989) Randwertprobleme der Elastizitätstheorie für Polyeder-Singularitäten und Approximation mit Randelementmethoden. PhD thesis, Technische Hochschule DarmstadtGoogle Scholar
  146. 146.
    von Petersdorff T, Stephan EP (1990) Decompositions in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron. Math Nachr 149:71–104MathSciNetGoogle Scholar
  147. 147.
    von Petersdorff T, Stephan EP (1990) Regularity of mixed boundary value problems in \({\mathbb{R}}^3\) and boundary element methods on graded meshes. Math Methods Appl Sci 12:229–249MATHMathSciNetGoogle Scholar
  148. 148.
    Wendland WL, Yu D-H (1988) Adaptive boundary element methods for strongly elliptic integral equations. Numer Math 53(5):539–558MATHMathSciNetGoogle Scholar
  149. 149.
    Yu D-H (1987) A-posteriori error estimates and adaptive approaches for some boundary element methods. In: Brebbia CA, Wendland WL, Kuhn G (eds) Bound Elem Methods IX, vol 1. Springer, BerlinGoogle Scholar
  150. 150.
    Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357MATHMathSciNetGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2014

Authors and Affiliations

  • Michael Feischl
    • 1
  • Thomas Führer
    • 1
  • Norbert Heuer
    • 2
  • Michael Karkulik
    • 2
  • Dirk Praetorius
    • 1
  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations