Archives of Computational Methods in Engineering

, Volume 20, Issue 4, pp 419–431 | Cite as

Tuned Mass Dampers

  • Mariantonieta Gutierrez Soto
  • Hojjat AdeliEmail author


A review of representative research on tuned massed dampers (TMD) reported in journals in recent years is presented. TMDs are divided into four categories: conventional TMDs, pendulum TMDs (PTMDs), bi-directional TMDs (BTMDs), and tuned liquid column dampers (TLCDs).


Ground Motion Wind Turbine Tuned Mass Damper SDOF System Interstory Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adeli H, Kim H (2004) Wavelet-hybrid feedback least mean square algorithm for robust control of structures. J Struct Eng 130(1):128–137 CrossRefGoogle Scholar
  2. 2.
    Adeli H, Saleh A (1997) Optimal control of adaptive/smart bridge structures. J Struct Eng 123(2):218–226 CrossRefGoogle Scholar
  3. 3.
    Adeli H, Saleh A (1999) Control, optimization, and smart structures—high-performance bridges and buildings of the future. Wiley, New York Google Scholar
  4. 4.
    Adeli H, Sarma K (2006) Cost optimization of structures—fuzzy logic, genetic algorithms, and parallel computing. Wiley, West Sussex CrossRefGoogle Scholar
  5. 5.
    Al-Saif KA, Aldakkan KA, Foda MA (2011) Modified liquid column damper for vibration control of structures. Int J Mech Sci 53(7):505–512 CrossRefGoogle Scholar
  6. 6.
    Aldemir U, Yanik A, Bakiogl MU (2012) Control of structural response under earthquake excitation. Comput-Aided Civ Infrastruct Eng 27(8):620–638 CrossRefGoogle Scholar
  7. 7.
    Almazan JL, De la Llera JC, Inaudi JA, Lopez Garcia D, Izquierdo LE (2007) A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations. Eng Struct 29:1548–1560 CrossRefGoogle Scholar
  8. 8.
    Almazan JL, Espinoza G, Aguirre JJ (2012) Torsional balance of asymmetric structures by means of tuned mass dampers. Eng Struct 42:308–328 CrossRefGoogle Scholar
  9. 9.
    Amini F, Khanmohammadi HN, Abdolahi RA (2013) Wavelet PSO-based LQR algorithm for optimal structural control using active tuned mass dampers. Comput-Aided Civ Infrastruct Eng 28(7):542–557 CrossRefGoogle Scholar
  10. 10.
    Baraldi P, Canesi R, Zio E, Seraoui R, Chevalier R (2011) Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components. Integr Comput-Aided Eng 18(3):221–234 Google Scholar
  11. 11.
    Bitaraf M, Hurlebaus S, Barroso LR (2012) Active and semi-active adaptive control for undamaged and damaged building structures under seismic load. Comput-Aided Civ Infrastruct Eng 27(1):48–64 CrossRefGoogle Scholar
  12. 12.
    Chabuk T, Reggia JA, Lohn J, Linden D (2012) Causally-guided evolutionary optimization and its application to antenna array design. Integr Comput-Aided Eng 19(2):111–124 Google Scholar
  13. 13.
    Connor JJ (2003) Introduction to structural motion control. Prentice Hall/Pearson Education, Upper Saddle River Google Scholar
  14. 14.
    El-Khoury O, Adeli H (2013) Recent advances on vibration control of structures under dynamic loading. Arch Comput Methods Eng (accepted) Google Scholar
  15. 15.
    ENR (1977) Tuned mass dampers steady sway of skyscrapers in wind. Eng News-Rec 18:28–29 Google Scholar
  16. 16.
    Fisco NR, Adeli H (2011) Smart structures: part I—active and semi-active control. Sci Iran, Trans A, Civ Eng 18(3):275–284 CrossRefGoogle Scholar
  17. 17.
    Fisco NR, Adeli H (2011) Smart structures: part II—hybrid control systems and control strategies. Sci Iran, Trans A, Civ Eng 18(3):285–295 CrossRefGoogle Scholar
  18. 18.
    Frahm H (1909) Device for damping vibrations of bodies. U.S. Patent 0989958 Google Scholar
  19. 19.
    Gerges RR, Vickery BJ (2005) Optimum design of pendulum-type tuned mass dampers. Struct Des Tall Spec Build 14:353–368 CrossRefGoogle Scholar
  20. 20.
    Ghaemmaghami A, Kianoush R, Yuan XX (2013) Numerical modeling of dynamic behavior of annular tuned liquid dampers for applications in wind towers. Comput-Aided Civ Infrastruct Eng 28(1):38–51 CrossRefGoogle Scholar
  21. 21.
    Ghodrati Amiri G, Abdolahi Rad A, Khorasani M (2012) Generation of near-field artificial ground motions compatible with median predicted spectra using PSO-based neural network and wavelet analysis. Comput-Aided Civ Infrastruct Eng 27(9):711–730 CrossRefGoogle Scholar
  22. 22.
    Holmes JD (1995) Listing of installations. Eng Struct 17(9):608–683 CrossRefGoogle Scholar
  23. 23.
    Hsiao FY, Wang SS, Wang WC, Wen CP, Yu WD (2012) Neuro-fuzzy cost estimation model enhanced by fast messy genetic algorithms for semiconductor hookup construction. Comput-Aided Civ Infrastruct Eng 27(10):764–781 CrossRefGoogle Scholar
  24. 24.
    Huang MF, Tse KT, Chan CM, Lou WJ (2011) Integrated structural optimization and vibration control for improving wind-induced dynamic performance of tall buildings. Int J Struct Stab Dyn 11(6):1139–1161 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jafarkhani R, Masri SF (2011) Finite element model updating using evolutionary strategy for damage detection. Comput-Aided Civ Infrastruct Eng 26(3):207–224 CrossRefGoogle Scholar
  26. 26.
    Jiang X, Ma ZJ, Ren WX (2012) Crack detection from the slope of the mode shape using complex continuous wavelet transform. Comput-Aided Civ Infrastruct Eng 27(3):187–201 CrossRefGoogle Scholar
  27. 27.
    Kareem A, Kline S (1995) Performance of multiple mass dampers under random loading. J Struct Eng 121(2):348–361 CrossRefGoogle Scholar
  28. 28.
    Kim H, Adeli H (2001) Discrete cost optimization of composite floors using a floating point genetic algorithm. Eng Optim 33(4):485–501 CrossRefGoogle Scholar
  29. 29.
    Kim H, Adeli H (2004) Hybrid feedback-least mean square algorithm for structural control. J Struct Eng 130(1):120–127 CrossRefGoogle Scholar
  30. 30.
    Kim H, Adeli H (2005) Hybrid control of smart structures using a novel wavelet-based algorithm. Comput-Aided Civ Infrastruct Eng 20(1):7–22 CrossRefGoogle Scholar
  31. 31.
    Kim H, Adeli H (2005) Hybrid control of irregular steel highrise building structures under seismic excitations. Int J Numer Methods Eng 63(12):1757–1774 CrossRefzbMATHGoogle Scholar
  32. 32.
    Kim H, Adeli H (2005) Wind-induced motion control of 76-story benchmark building using the hybrid damper-tuned liquid column damper system. J Struct Eng 131(12):1794–1802 CrossRefGoogle Scholar
  33. 33.
    Lavan O, Daniel Y (2013) Full resources utilization seismic design of irregular structures using multiple tuned mass dampers. Struct Multidiscip Optim 48(3):517–532 CrossRefGoogle Scholar
  34. 34.
    Lei Y, Wu DT, Lin Y (2012) A decentralized control algorithm for large-scale building structures. Comput-Aided Civ Infrastruct Eng 27(1):2–13 CrossRefGoogle Scholar
  35. 35.
    Lin J-L, Tsai K-C, Yu Y-J (2010) Coupled tuned mass dampers for the seismic control of asymmetric-plan buildings. Earthq Spectra 26(3):749–778 CrossRefGoogle Scholar
  36. 36.
    Lin CM, Ting AB, Hsu CF, Chung CM (2012) Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural network. Int J Neural Syst 22(1):37–50 CrossRefzbMATHGoogle Scholar
  37. 37.
    Love JS, Tait MJ (2013) The influence of tank orientation angle on a 2D structure-tuned liquid damper system. J Vib Acoust 135(1):38–51 CrossRefGoogle Scholar
  38. 38.
    Marano GC, Quaranta G, Monti G (2011) Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Comput-Aided Civ Infrastruct Eng 26(2):92–110 CrossRefGoogle Scholar
  39. 39.
    Matta E, DeStefano A (2009) Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings. Mech Syst Signal Process 23:127–147 CrossRefGoogle Scholar
  40. 40.
    Mohebbi M, Joghataie A (2012) Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms. Struct Des Tall Spec Build 21(1):57–76 CrossRefGoogle Scholar
  41. 41.
    Nagase T (2000) Earthquake records observed in tall buildings with tuned pendulum mass damper. In: Proceedings from the 12th world conference on earthquake engineering, Auckland, New Zealand Google Scholar
  42. 42.
    Nagase T, Hisatoku T (1992) Tuned-pendulum mass damper installed in Crystal Tower. Struct Des Tall Spec Build 1:35–56 CrossRefGoogle Scholar
  43. 43.
    Nigdeli SM, Boduroğlu MH (2013) Active tendon control of torsionally irregular structures under near-fault ground motion excitation. Comput-Aided Civ Infrastruc Eng 28(9):718–736 CrossRefGoogle Scholar
  44. 44.
    Patil VB, Jangid RS (2011) Optimum multiple tuned mass dampers for wind excited benchmark building. J Civ Eng Manag 17(4):540–557 CrossRefGoogle Scholar
  45. 45.
    Plevris V, Papadrakakis M (2011) A hybrid particle swarm—gradient algorithm for global structural optimization. Comput-Aided Civ Infrastruct Eng 26(1):48–68 Google Scholar
  46. 46.
    Putha R, Quadrifoglio L, Zechman E (2012) Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Comput-Aided Civ Infrastruct Eng 27(1):14–28 CrossRefGoogle Scholar
  47. 47.
    Sakai F, Takaeda S, Tamaki T (1989) Tuned liquid column damper—new type device for suppression of building vibrations. In: Proceedings of international conference on high-rise buildings, Nanjing, China, vol 2, pp 926–931 Google Scholar
  48. 48.
    Sarkar A, Gudmestad OT (2013) Pendulum type liquid columns damper (PLCD) for controlling vibrations of a structure—theoretical and experimental study. Eng Struct 49:221–233 CrossRefGoogle Scholar
  49. 49.
    Sarma K, Adeli H (2000) Fuzzy discrete multicriteria cost optimization of steel structures. J Struct Eng 126(11):1339–1347 CrossRefGoogle Scholar
  50. 50.
    Sarma KC, Adeli H (2001) Bi-level parallel genetic algorithms for optimization of large steel structures. Comput-Aided Civ Infrastruct Eng 16(5):295–304 CrossRefGoogle Scholar
  51. 51.
    Sarma KC, Adeli H (2002) Life-cycle cost optimization of steel structures. Int J Numer Methods Eng 55(12):1451–1462 CrossRefzbMATHGoogle Scholar
  52. 52.
    Setareh M, Ritchey JK, Baxter AJ, Murray TM (2006) Pendulum tuned mass dampers for floor vibration control. J Struct Eng 20(1):64–73 Google Scholar
  53. 53.
    Sirca GF Jr., Adeli H (2012) System identification in structural engineering. Sci Iran, Trans A, Civ Eng 19(6):1355–1364 CrossRefGoogle Scholar
  54. 54.
    Tait MJ, Isyumov N, Damatty AA (2008) Performance of tuned liquid dampers. J Eng Mech 134(5):417–427 CrossRefGoogle Scholar
  55. 55.
    Tao H, Zain JM, Ahmed MM, Abdalla AN, Jing W (2012) A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integr Comput-Aided Eng 19(1):81–91 Google Scholar
  56. 56.
    Wong KKF, Harris JL (2012) Seismic damage and fragility analysis of structures with tuned mass dampers based on plastic energy. Struct Des Tall Spec Build 21(4):296–310 CrossRefGoogle Scholar
  57. 57.
    Xiang J, Liang M (2012) Wavelet-based detection of beam cracks using modal shape and frequency measurements. Comput-Aided Civ Infrastruct Eng 27(6):439–454 CrossRefGoogle Scholar
  58. 58.
    Yalla S, Kareem A (2000) Optimum absorber parameters for tuned liquid column dampers. J Struct Eng 126(8):906–915 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2013

Authors and Affiliations

  1. 1.Department of Civil, Environmental, and Geodetic EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations