Skip to main content

Advertisement

Log in

Complementary-Energy Methods for Geometrically Non-linear Structural Models: An Overview and Recent Developments in the Analysis of Frames

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Boundary-value problems in solid mechanics are often addressed, from both theoretical and numerical points of view, by resorting to displacement/rotation-based variational formulations. For conservative problems, such formulations may be constructed on the basis of the Principle of Stationary Total Potential Energy. Small deformation problems have a unique solution and, as a consequence, their corresponding total potential energies are globally convex. In this case, under the so-called Legendre transform, the total potential energy can be transformed into a globally concave total complementary energy only expressed in terms of stress variables. However, large deformation problems have, in general, for the same boundary conditions, multiple solutions. As a result, their associated total potential energies are globally non-convex. Notwithstanding, the Principle of Stationary Total Potential Energy can still be regarded as a minimum principle, only involving displacement/rotation fields. The existence of a maximum complementary energy principle defined in a truly dual form has been subject of discussion since the first contribution made by Hellinger in 1914. This paper provides a survey of the complementary energy principles and also accounts for the evolution of the complementary-energy based finite element models for geometrically non-linear solid/structural models proposed in the literature over the last 60 years, giving special emphasis to the complementary-energy based methods developed within the framework of the geometrically exact Reissner-Simo beam theory for the analysis of structural frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S (1974) Kirchhoff’s problem for nonlinearly elastic rods. Q Appl Math 32:221–240

    MathSciNet  MATH  Google Scholar 

  2. Argyris J, Dunne P, Malejannakis G, Scharpf D (1978) On large displacement-small strain analysis of structures with rotational degrees of freedom. Comput Methods Appl Mech Eng 15(1):99–135

    MATH  Google Scholar 

  3. Argyris J, Balmer H, Doltsinis J, Dunne P, Haase M, Kleiber M, Malejannakis G, Mlejnek H, Muller M, Scharpf D (1979) Finite element method—the natural approach. Comput Methods Appl Mech Eng 17–18(1):1–106

    Google Scholar 

  4. Atluri S (1973) On the hybrid stress finite element model in incremental analysis of large deflection problems. Int J Solids Struct 9:1188–1191

    Google Scholar 

  5. Atluri S, Murakawa H (1977) Finite elements in nonlinear mechanics, vol 1. Tapir Press, Trondheim, Ch On hybrid finite element models in nonlinear solid mechanics, pp 3–41

    Google Scholar 

  6. Atluri S, Iura M, Vasudevan S (2001) A consistent theory of finite stretches and finite rotations, in space curved beams of arbitrary cross-section. Comput Mech 27:271–281

    MATH  Google Scholar 

  7. Babuska I (1973) The finite element method with Lagrangian multipliers. Numer Math 20:179–192

    MathSciNet  MATH  Google Scholar 

  8. Backlund J (1976) Large deflection analysis of elasto-plastic beams and frames. Int J Mech Sci 18:269–277

    Google Scholar 

  9. Bathe K, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14:961–986

    MATH  Google Scholar 

  10. Berdichevsky V, Misiura V (1979) On a dual variational principle in geometrically nonlinear elasticity theory. J Appl Math Mech 43(2):343–352

    Google Scholar 

  11. Betsch P, Steinmann P (2002) Frame-indifferent beam finite element based upon the geometrically exact beam theory. Int J Numer Methods Eng 54:1775–1788

    MathSciNet  MATH  Google Scholar 

  12. Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155:273–305

    MathSciNet  MATH  Google Scholar 

  13. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Ser Rouge 8:129–151

    MathSciNet  Google Scholar 

  14. Bufler H (1986) Finite rotations and complementary extremum principles. In: Pietraszkiewicz W (ed) Finite rotations in structural mechanics. Springer, Berlin, pp 82–100

    Google Scholar 

  15. Campos LD, Oden J (1985) On the principle of stationary complementary energy in finite elastostatics. Int J Eng Sci 23(1):57–63

    MathSciNet  MATH  Google Scholar 

  16. Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438

    MathSciNet  MATH  Google Scholar 

  17. Carol I, Murcia J (1989) Nonlinear time-dependent analysis of planar frames using an ‘exact' formulation-I: Theory. Comput Struct 33:79–87

    MATH  Google Scholar 

  18. Chien W (1987) Variational principles in elasticity with nonlinear strain-stress relation. Appl Math Mech 8(7):589–601

    MathSciNet  MATH  Google Scholar 

  19. Chien W (1988) Variational principles and generalized variational principles for non-linear elasticity with finite displacement. Appl Math Mech 9(1):1–12

    MathSciNet  MATH  Google Scholar 

  20. Crisfield M (1990) A consistent co-rotational formulation for non-linear three-dimensional beam elements. Comput Methods Appl Mech Eng 81:131–150

    MATH  Google Scholar 

  21. Crisfield M, Jelenic G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc 455:1125–1147

    MathSciNet  MATH  Google Scholar 

  22. de Veubeke B (1964) Upper and lower bounds in matrix structural analysis. In: AGARDograph 72: Matrix methods of structural analysis. Pergamon, London

    Google Scholar 

  23. de Veubeke B (1965) Stress analysis. Wiley, New York, Ch Displacement and equilibrium models in the finite element method, pp 145–197

    Google Scholar 

  24. de Veubeke B (1972) A new variational principle for finite elastic displacements. Int J Eng Sci 10:745–763

    MATH  Google Scholar 

  25. Debongnie J, Zhong H, Beckers P (1995) Dual analysis with general boundary conditions. Comput Methods Appl Mech Eng 122:183–192

    MathSciNet  MATH  Google Scholar 

  26. Dill E (1977) The complementary energy principle in nonlinear elasticity. Lett Appl Eng Sci 5:95–106

    Google Scholar 

  27. Erkmen R, Mohareb M (2008) Buckling analysis of thin-walled open members—a complementary energy variational principle. Thin-Walled Struct 46:602–617

    Google Scholar 

  28. Erkmen R, Mohareb M (2008) Buckling analysis of thin-walled open members—a finite element formulation. Thin-Walled Struct 46:618–636

    Google Scholar 

  29. Gałka A, Telega J (1992) The complementary energy principle as a dual problem for a specific model of geometrically non-linear elastic shells with an independent rotation vector: general results. Eur J Mech A, Solids 11:245–270

    MATH  Google Scholar 

  30. Gao D (1997) Dual extremum principles in finite deformation theory with applications to post-buckling analysis of extended nonlinear beam model. Appl Mech Rev 50(11):S64–S71

    Google Scholar 

  31. Gao D (1999) Pure complementary energy principle and triality theory in finite elasticity. Mech Res Commun 26(1):31–37

    MATH  Google Scholar 

  32. Gao D (2000) Finite deformation beam models and triality theory in dynamical post-buckling analysis. Int J Non-Linear Mech 35:103–131

    MATH  Google Scholar 

  33. Gao D, Cheung YK (1990) On the extremum complementary energy principles for nonlinear elastic shells. Int J Solids Struct 26:683–693

    MathSciNet  MATH  Google Scholar 

  34. Gao D, Strang G (1989) Geometric nonlinearity: potential energy, complementary energy and the gap function. Q Appl Math XLVII(3):487–504

    MathSciNet  Google Scholar 

  35. Géradin M, Cardona A (2001) Flexible multibody dynamics: A finite element approach. Wiley, Chichester

    Google Scholar 

  36. Ghosh S, Roy D (2008) Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput Methods Appl Mech Eng 198:555–571

    MathSciNet  Google Scholar 

  37. Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118

    MATH  Google Scholar 

  38. Gruttmann F, Sauer R, Wagner W (2000) Theory and numerics of three-dimensional beams with elastoplastic material behaviour. Int J Numer Methods Eng 48:1675–1702

    MATH  Google Scholar 

  39. Haddow J, Favre L, Ogden R (2000) Application of variational principles to the axial extension of a circular cylindrical nonlinearly elastic membrane. J Eng Math 37:65–84

    MathSciNet  MATH  Google Scholar 

  40. Hellinger E (1914) Die allgemeine ansätze der mechanik der kontinua. Encyklopädie der Mathematischen Wissenschaften IV (4), 602–694

    Google Scholar 

  41. Hermann L (1965) Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J 3(10):1896–1900

    MathSciNet  Google Scholar 

  42. Horne M (1963) Elastic-plastic failure loads of plane frames. Proc R Soc A

  43. Ibrahimbegovic A (1995) On finite element implementation of geometrically nonlinear Reissner’s beam theory: Three-dimensional curved beam elements. Comput Methods Appl Mech Eng 122:11–26

    MATH  Google Scholar 

  44. Ibrahimbegovic A, Frey F (1993) Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams. Int J Numer Methods Eng 36:3239–3258

    MathSciNet  MATH  Google Scholar 

  45. Ibrahimbegovic A, Frey F (1995) Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity. Int J Numer Methods Eng 38:1885–1900

    MathSciNet  MATH  Google Scholar 

  46. Ibrahimbegovic A, Knopf-Lenoir C (2003) Shape optimization of elastic structural systems undergoing large rotations: Simultaneous solution procedure. Comput Model Eng Sci 4:337–344

    MATH  Google Scholar 

  47. Ibrahimbegovic A, Mikdad M (2000) Quadratically convergent direct calculation of critical points for 3D structures undergoing finite rotations. Comput Methods Appl Mech Eng 189:107–120

    MATH  Google Scholar 

  48. Ibrahimbegovic A, Taylor R (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191:5159–5176

    MathSciNet  MATH  Google Scholar 

  49. Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38:3653–3673

    MathSciNet  MATH  Google Scholar 

  50. Ibrahimbegovic A, Shakourzadeh H, Batoz JL, Al Mikdad M, Guo Y-Q (1996) On the role of geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structures. Comput Struct 61(6), 1101–1114

    MATH  Google Scholar 

  51. Ibrahimbegovic A, Mamouri S, Taylor R, Chen A (2000) Finite element method in dynamics of flexible multibody systems modeling of holonomic constraints and energy-conserving integration schemes. Multibody Syst Dyn 4:195–223

    MathSciNet  MATH  Google Scholar 

  52. Iura M, Atluri S (1988) Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams. Comput Struct 29(5):875–889

    MATH  Google Scholar 

  53. Iura M, Atluri S (1989) On a consistent theory and variational formulation of finitely stretched and rotated 3-d space-curved beams. Comput Mech 4(3):73–88

    Google Scholar 

  54. Jelenic G, Crisfield M (1999) Geometrically exact 3d beam theory: Implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171

    MathSciNet  MATH  Google Scholar 

  55. Jelenic G, Saje M (1994) Finite element formulation of hyperelastic plane frames subjected to nonconservative loads. Comput Struct 50(2):177–189

    MATH  Google Scholar 

  56. Jennings A (1968) Frame analysis including change in geometry. ASCE J Struct Div 94:627–644

    Google Scholar 

  57. Jennings A, Levinson M, Charlton T (1965) Discussions of complementary energy method for finite deformations. ASCE J Eng Mech Div 91(EM4):203–209

    Google Scholar 

  58. Kapania R, Li J (2003) A formulation and implementation of geometrically exact curved beam elements incorporating finite strains and finite rotations. Comput Mech 30:444–459

    MATH  Google Scholar 

  59. Kapania R, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30:428–443

    MATH  Google Scholar 

  60. Koiter W (1973) On the principle of stationary complementary energy in the nonlinear theory of elasticity. SIAM J Appl Math 25(3):424–434

    MathSciNet  MATH  Google Scholar 

  61. Koiter W (1975) Trends in applications of pure mathematics to mechanics. Pitman, London, Ch On the complementary energy theorem in non-linear elasticity theory, pp 207–232

    Google Scholar 

  62. Koiter W (1976) Complementary energy, neutral equilibrium and buckling. Proc K Ned Akad Wet, Ser B Phys Sci 79(3):183–200

    MATH  Google Scholar 

  63. Kondoh K, Atluri S (1986) A simplified finite element method for large deformation, post-buckling analyses of large frame structures, using explicitly derived tangent stiffness matrices. Int J Numer Methods Eng 23:69–90

    MathSciNet  MATH  Google Scholar 

  64. Langhaar H (1953) The principle of complementary energy in nonlinear elasticity theory. J Franklin Inst 256(3):255–264

    MathSciNet  Google Scholar 

  65. Lanzo A (2004) On elastic beam models for stability analysis of multilayered rubber bearings. Int J Solids Struct 41:5733–5757

    MATH  Google Scholar 

  66. Levinson M (1964) Variational principles and applications in finite elastic strain theory. PhD thesis, California Institute of Technology

  67. Levinson M (1965) The complementary energy theorem in finite elasticity. Trans ASME J Appl Mech 32(4):826–828

    MathSciNet  Google Scholar 

  68. Libove C (1964) Complementary energy method for finite deformations. ASCE J Eng Mech Div 90(EM6):49–71

    Google Scholar 

  69. Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70:1009–1048

    MathSciNet  Google Scholar 

  70. Masur E, Popelar C (1976) On the use of the complementary energy in the solution of buckling problems. Int J Solids Struct 12:203–216

    MathSciNet  MATH  Google Scholar 

  71. Mata P, Oller S, Barbat A (2007) Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput Methods Appl Mech Eng 196:4458–4478

    MathSciNet  MATH  Google Scholar 

  72. Mikkola M (1989) Complementary energy theorem in geometrically non-linear structural problems. Int J Non-Linear Mech 24:499–508

    MATH  Google Scholar 

  73. Murakawa H, Atluri S (1977) On hybrid finite-element models in nonlinear solid mechanics. In: International conference on finite elements in nonlinear solid and structural mechanics

    Google Scholar 

  74. Murakawa H, Atluri S (1978) Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. ASME J Appl Mech 45(3):539–547

    MATH  Google Scholar 

  75. Murakawa H, Atluri S (1979) Finite elasticity solutions using hybrid finite elements based on a complementary energy principle—Part II: Incompressible materials. ASME J Appl Mech 46:71–78

    MATH  Google Scholar 

  76. Murakawa H, Reed K, Atluri S, Rubenstein R (1981) Stability analysis of structures via a new complementary energy method. Comput Struct 13:11–18

    MathSciNet  MATH  Google Scholar 

  77. Neuenhofer A, Filippou F (1998) Geometrically nonlinear flexibility-based frame finite element. ASCE J Struct Eng 124:704–711

    Google Scholar 

  78. Novozhilov V (1961) Theory of elasticity. Pergamon, Oxford

    MATH  Google Scholar 

  79. Nukala P, White D (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Methods Appl Mech Eng 193:2507–2545

    MATH  Google Scholar 

  80. Ogden R (1977) Inequalities associated with the inversion of elastic stress-deformation relations and their implication. Math Proc Camb Philos Soc 81:313–324

    MathSciNet  MATH  Google Scholar 

  81. Oran C (1967) Complementary energy concept for large deformations. ASCE J Struct Div 93(ST1):471–494

    Google Scholar 

  82. Oran C (1967) Complementary energy method for buckling. ASCE J Eng Mech Div 93(EM1):57–75

    Google Scholar 

  83. Papadrakakis M (1981) Post-buckling analysis of spatial structures by vector iteration methods. Comput Struct 14:393–402

    MATH  Google Scholar 

  84. Petrov E, Géradin M (1998) Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids—Part 1: Beam concept and geometrically exact nonlinear formulation. Comput Methods Appl Mech Eng 165:43–92

    MATH  Google Scholar 

  85. Pian T (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336

    Google Scholar 

  86. Pian T (1978) A historical note about hybrid elements. Int J Numer Methods Eng 12:891–892

    Google Scholar 

  87. Pian T, Chen D (1982) Alternative ways for formulation of hybrid stress elements. Int J Numer Methods Eng 18:1679–1684

    MATH  Google Scholar 

  88. Pian T, Chen D (1983) On the suppression of zero-energy deformation modes. Int J Numer Methods Eng 19:1741–1753

    MATH  Google Scholar 

  89. Pian T, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20:1685–1695

    MATH  Google Scholar 

  90. Pian T, Tong P (1969) Basis of finite element methods for solid continua. Int J Numer Methods Eng 1:3–28

    MATH  Google Scholar 

  91. Pian T, Wu C (1988) A rational approach for choosing stress terms for hybrid finite element formulations. Int J Numer Methods Eng 26:2331–2343

    MathSciNet  MATH  Google Scholar 

  92. Pian T, Wu C (2006) Hybrid and incompatible finite element methods. Chapman and Hall/CRC, Boca Raton, Ch Numerical stability: Zero energy mode analysis, pp 143–158

    MATH  Google Scholar 

  93. Pimenta PM (1996) Geometrically exact analysis of initially curved rods. Ch Advances in computational techniques for structural engineering, pp 99–108

    Google Scholar 

  94. Pimenta P, Campello E (2003) A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Lat Am J Solids Struct 1:119–140

    Google Scholar 

  95. Pimenta P, Yojo T (1993) Geometrically exact analysis of spatial frames. Appl Mech Rev 46(11):S118–S128

    Google Scholar 

  96. Pipes L (1953) The principle of complementary energy in nonlinear elasticity. J Franklin Inst 274(3):198–226

    Google Scholar 

  97. Popelar C (1974) Assured upper bounds via complementary energy. ASCE J Eng Mech Div 100(4):623–633

    Google Scholar 

  98. Popelar C (1974) Lower bounds for the buckling loads and the fundamental frequencies of elastic bodies. J Appl Mech 41(1):151–154

    MATH  Google Scholar 

  99. Prathap G, Bhashyam G (1982) Reduced integration and the shear flexible beam element. Int J Numer Methods Eng 18:195–210

    MATH  Google Scholar 

  100. Punch E, Atluri S (1984) Development and testing of stable, invariant, isoparametric curvilinear 2- and 3-d hybrid stress elements. Comput Methods Appl Mech Eng 47:331–356

    MATH  Google Scholar 

  101. Quadrelli B, Atluri S (1996) Primal and mixed variational principles for dynamics of spatial beams. AIAA J 34(11):2395–2401

    MATH  Google Scholar 

  102. Quadrelli B, Atluri S (1998) Analysis of flexible multibody systems with spatial beams using mixed variational principles. Int J Numer Methods Eng 42:1071–1090

    MathSciNet  MATH  Google Scholar 

  103. Reed K, Atluri S (1983) Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm. Comput Methods Appl Mech Eng 39:245–295

    MathSciNet  MATH  Google Scholar 

  104. Reissner E (1950) On a variational theorem in elasticity. J Math Phys 29:90–95

    MathSciNet  MATH  Google Scholar 

  105. Reissner E (1953) On a variational theorem for finite elastic deformations. J Appl Math Phys 32:129–153

    MathSciNet  MATH  Google Scholar 

  106. Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 11:87–95

    Google Scholar 

  107. Reissner E (1981) On finite deformations of space-curved beams. J Appl Math Phys 32:734–744

    MATH  Google Scholar 

  108. Reissner E (1984) Formulation of variational theorems in geometrically nonlinear elasticity. ASCE J Eng Mech Div 110:1377–1390

    Google Scholar 

  109. Reissner E (1987) Finite element handbook. McGraw-Hill, New York, Ch Variational principles in elasticity, pp 2.1–2.19

    Google Scholar 

  110. Ritto-Corrêa M, Camotim D (2003) Work-conjugacy between rotation-dependent moments and finite rotations. Int J Solids Struct 40:2851–2873

    MATH  Google Scholar 

  111. Romero I, Armero F (2002) An objective finite element formulation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54:1683–1716

    MathSciNet  MATH  Google Scholar 

  112. Rubenstein R, Punch E, Atluri S (1983) An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields. Comput Methods Appl Mech Eng 38:63–92

    Google Scholar 

  113. Saje M (1990) A variational principle for finite planar deformation of straight slender elastic beams. Int J Solids Struct 26(8):887–900

    MATH  Google Scholar 

  114. Saje M (1991) Finite element formulation of finite planar deformation of curved elastic beams. Comput Struct 39:327–337

    MATH  Google Scholar 

  115. Saje M, Turk G, Kalagasidu A, Vratanar B (1998) A kinematically exact finite element formulation of elastic-plastic curved beams. Comput Struct 67:197–214

    MATH  Google Scholar 

  116. Sander G, Carnoy E (1978) Finite elements in nonlinear mechanics, vol 1. Trondheim, Ch Equilibrium and mixed formulations in stability analysis, pp 87–108

  117. Santos H (2009) Duality in the geometrically exact analysis of frame structures. PhD thesis, Technical University of Lisbon

  118. Santos H (2010) A dual energy criterion for the stability analysis of geometrically exact three-dimensional frames. In: Topping B, Adam J, Pallarés F, Bru R, Romero M (eds) Proceedings of the tenth international conference on computational structures technology, Valencia

    Google Scholar 

  119. Santos H (2011) Variationally consistent force-based finite element method for the geometrically non-linear analysis of Euler-Bernoulli framed structures, submitted

  120. Santos H, de Almeida JM (2010) Equilibrium-based finite element formulation for the geometrically exact analysis of planar framed structures. J Eng Mech 136(12):1474–1490

    Google Scholar 

  121. Santos H, de Almeida JM (2011) Dual extremum principles for geometrically exact finite strain beams. Int J Non-Linear Mech 46:151–158

    Google Scholar 

  122. Santos H, Paulo CA (2011) On a pure complementary energy principle and a force-based finite element formulation for non-linear elastic cables. Int J Non-Linear Mech 46:395–406

    Google Scholar 

  123. Santos H, Pimenta P, de Almeida JM (2010) Hybrid and multi-field variational principles for geometrically exact three-dimensional beams. Int J Non-Linear Mech 45(8):809–820

    Google Scholar 

  124. Santos HAFA, Pimenta PM, Moitinho de Almeida JP (2011) A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures. Comput Mech. doi:10.1007/s00466-011-0608-3

    Google Scholar 

  125. Schmidt R, Pietraszkiewicz W (1981) Variational principles in the geometrically non-linear theory of shells undergoing moderate rotations. Arch Appl Mech 50(3):187–201

    MathSciNet  MATH  Google Scholar 

  126. Schreyer H, Shih P (1973) Lower bounds to column buckling loads. ASCE J Eng Mech Div 99(5):1011–1022

    Google Scholar 

  127. Seki W, Atluri S (1995) On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems. Finite Elem Anal Des 21:75–110

    MathSciNet  MATH  Google Scholar 

  128. Simo J (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49:55–70

    MATH  Google Scholar 

  129. Simo J, Vu-Quoc L (1986) On the dynamics of flexible beams under large overall motions-the plane case: Part I. J Appl Mech 53:849–863

    MATH  Google Scholar 

  130. Simo J, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput Methods Appl Mech Eng 58:79–116

    MATH  Google Scholar 

  131. Simo J, Vu-Quoc L (1991) A geometrically exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct 27:371–393

    MathSciNet  MATH  Google Scholar 

  132. Simo J, Tarnow N, Doblare M (1995) Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38(9):1431–1473

    MathSciNet  MATH  Google Scholar 

  133. Stumpf H (1976) The principle of complementary energy in nonlinear plate theory. J Elast 6(1):95–104

    MathSciNet  MATH  Google Scholar 

  134. Stumpf H (1978) Dual extremum principles and error bounds in nonlinear elasticity. J Elast 8(4):425–438

    MathSciNet  MATH  Google Scholar 

  135. Stumpf H (1979) The derivation of dual extremum and complementary stationary principles in geometrical non-linear shell theory. Arch Appl Mech 48:221–237

    MATH  Google Scholar 

  136. Tabarrok B, Yuexi X (1989) Application of a new variational formulation for stability analysis of columns subjected to distributed loads. Z Angew Math Mech 69(12):435–440

    MATH  Google Scholar 

  137. Telega J, Bielski W, Galka A (1989) The complementary energy principle and duality for geometrically nonlinear elastic shells II: Moderate rotation theory. Bull Pol Acad Sci 36:427–439

    Google Scholar 

  138. Timoshenko S, Gere J (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  139. Truesdell C, Noll W (1965) Encyclopedia of physics. In: Antman S (ed) The non-linear field theories, vol III/3. Springer, Berlin

    Google Scholar 

  140. Truesdell C, Toupin R (1960) Encyclopedia of physics, vol III. Springer, Berlin, Ch The classical field theories, pp 226–793

    MATH  Google Scholar 

  141. Valid R (1992) The nonlinear principles of complementary energy in shell theory, statics and dynamics. I. Statics. Eur J Mech A, Solids 11:625–651

    MathSciNet  MATH  Google Scholar 

  142. Valid R (1992) The nonlinear principles of complementary energy in shell theory, statics and dynamics. II. Dynamics. Eur J Mech A, Solids 11:791–834

    MathSciNet  MATH  Google Scholar 

  143. Valid R (1999) Duality in nonlinear theory of shells. Int J Eng Sci 37:1521–1547

    MathSciNet  MATH  Google Scholar 

  144. Washizu K (1982) Variational methods in elasticity and plasticity, 3rd edn. Pergamon, Oxford

    MATH  Google Scholar 

  145. Westergaard H (1942) On the method of complementary energy and its applications to structures stressed beyond the proportional limit, to buckling and vibrations, and to suspension bridges. Trans ASCE 107:765–793

    Google Scholar 

  146. Williams F (1964) An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections. Q J Mech Appl Math 17:451–469

    MATH  Google Scholar 

  147. Wood R, Zienkiewicz O (1977) Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. Comput Struct 7:725–735

    MathSciNet  MATH  Google Scholar 

  148. Xue W, Karlovitz L, Atluri S (1985) On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle. Int J Solids Struct 21(1):97–116

    MathSciNet  MATH  Google Scholar 

  149. Yuchen G (2006) Complementary energy principle for large elastic deformation. Sci China Ser G. Phys Mech Astron 49(3):341–356

    MATH  Google Scholar 

  150. Ziegler H (1968) Principles of structural stability. Blaisdell, Boston

    Google Scholar 

  151. Zienkiewicz O, Taylor R (1989) The finite element method, vol 1: Basic formulation and linear problems, 4th edn. McGraw-Hill, London

    Google Scholar 

  152. Zubov L (1970) The stationary principle of complementary work in non-linear theory of elasticity, Engl Transl. Prikl Mat Meh 34(2):228–232

  153. Zupan D, Saje M (2003) Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput Methods Appl Mech Eng 192:5209–5248

    MathSciNet  Google Scholar 

  154. Zupan D, Saje M (2003) The three-dimensional beam theory: Finite element formulation based on curvature. Comput Struct 81:1875–1888

    Google Scholar 

  155. Zupan D, Saje M (2004) Rotational invariants in finite element formulation of three-dimensional beam theories. Comput Struct 82:2027–2040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. F. A. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, H.A.F.A. Complementary-Energy Methods for Geometrically Non-linear Structural Models: An Overview and Recent Developments in the Analysis of Frames. Arch Computat Methods Eng 18, 405–440 (2011). https://doi.org/10.1007/s11831-011-9065-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9065-6

Keywords

Navigation