Skip to main content
Log in

On the Dynamics of Charged Electromagnetic Particulate Jets

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This work addresses the modeling and simulation of charged particulate jets in the presence of electromagnetic fields. The presentation is broken into two main parts: (1) the dynamics of charged streams of particles and their interaction with electromagnetic fields and (2) the coupled thermal fields that arise within the jet. An overall model is built by assembling submodels of the various coupled physical events to form a system that is solved iteratively. Specifically, an approach is developed whereby the dynamics of charged particles, accounting for their collisions, inter-particle near-fields, interaction with external electromagnetic fields and coupled thermal effects are all computed implicitly in an iterative, modular, manner. A staggered, temporally-adaptive scheme is developed to resolve the multiple fields involved and the drastic changes in the physical configuration of the stream, for example when impacting a solid wall or strong localized electromagnetic field. Qualitative analytical results are provided to describe the effects of the electromagnetic fields and quantitative numerical results are provided for complex cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J (1992) Mechanics of composite materials—a unified micromechanical approach, vol 29. Elsevier, Amsterdam

    Google Scholar 

  2. Aleiferis PG, Taylor AMKP, Whitelaw JH, Ishii K, Urata Y (2000) Cyclic variations of initial flame kernel growth in a Honda Vtec-E lean-burn spark-ignition engine. SAE Paper No 2000-01-1207

  3. Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu X-A, Mehregany M, Wijesundara MBJ, Pisano AP (2007) A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens J 7(4):568–576

    Article  Google Scholar 

  4. Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35:737–766

    Article  MATH  MathSciNet  Google Scholar 

  5. Armero F, Simo JC (1993) A-priori stability estimates and unconditionally stable product formula algorithms for non-linear coupled thermoplasticity. Int J Plast 9:149–182

    Article  Google Scholar 

  6. Armero F, Simo JC (1996) Formulation of a new class of fractional-step methods for the incompressible MHD equations that retains the long-term dissipativity of the continuum dynamical system, integration algorithms for classical mechanics. Fields Inst Commun 10:1–23

    MathSciNet  Google Scholar 

  7. Armero F (1999) Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions. Comput Methods Appl Mech Eng 171:205–241

    Article  MATH  MathSciNet  Google Scholar 

  8. Bathe KJ (1996) Finite element procedures. Prentice-Hall, New York

    Google Scholar 

  9. Becker EB, Carey GF, Oden JT (1980) Finite elements: an introduction. Prentice-Hall, New York

    Google Scholar 

  10. Beduneau JL, Kim B, Zimmer L, Ikeda Y (2003) Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark. Combust Flame 132:653–665

    Article  Google Scholar 

  11. Behringer RP, Baxter GW (1993) Pattern formation, complexity & time-dependence in granular flows. In: Mehta A (ed) Granular matter—an interdisciplinary approach. Springer, New York, pp 85–119

    Google Scholar 

  12. Behringer RP (1993) The dynamics of flowing sand. Nonlinear Sci Today 3:1

    Article  Google Scholar 

  13. Behringer RP, Miller BJ (1997) Stress fluctuations for sheared 3D granular materials. In: Behringer R, Jenkins J (eds) Proceedings, powders & grains 97. Balkema, Rotterdam, pp 333–336

    Google Scholar 

  14. Behringer RP, Howell D, Veje C (1999) Fluctuations in granular flows. Chaos 9:559–572

    Article  MATH  Google Scholar 

  15. Berezin YA, Hutter K, Spodareva LA (1998) Stability properties of shallow granular flows. Int J Nonlinear Mech 33(4):647–658

    Article  MATH  MathSciNet  Google Scholar 

  16. Bogin G, Chen JY, Dibble RW (2008) The effects of intake pressure, fuel concentration, and bias voltage on the detection of ions in a Homogeneous Charge Compression Ignition (HCCI) engine. In: Proc of the combustion institute, vol 32

  17. Chen YL, Lewis JWL (2001) Visualisation of laser-induced breakdown and ignition. Opt Express 9(7):360–372

    Article  Google Scholar 

  18. Dale JD, Smy PR, Clements RM (1978) Laser ignited internal combustion engine—an experimental study. SAE-780329, Detroit

  19. Davis L (1991) Handbook of genetic algorithms. Thompson Computer Press, Washington

    Google Scholar 

  20. Doltsinis ISt (1993) Coupled field problems–solution techniques for sequential & parallel processing. In: Papadrakakis M (ed) Solving large-scale problems in mechanics. Wiley, New York

    Google Scholar 

  21. Doltsinis ISt (1997) Solution of coupled systems by distinct operators. Eng Comput 14:829–868

    Article  MATH  MathSciNet  Google Scholar 

  22. Donev A, Cisse I, Sachs D, Variano EA, Stillinger F, Connelly R, Torquato S, Chaikin P (2004) Improving the density of jammed disordered packings using ellipsoids. Science 13:990–993

    Article  Google Scholar 

  23. Donev A, Stillinger FH, Chaikin PM, Torquato S (2004) Unusually dense crystal ellipsoid packings. Phys Rev Lett 92:255506

    Article  Google Scholar 

  24. Donev A, Torquato S, Stillinger F (2005) Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I. Algorithmic details. J Comput Phys 202:737

    Article  MATH  MathSciNet  Google Scholar 

  25. Donev A, Torquato S, Stillinger F (2005) Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II. Application to ellipses and ellipsoids. J Comput Phys 202:765

    MATH  MathSciNet  Google Scholar 

  26. Donev A, Torquato S, Stillinger FH (2005) Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys Rev E 71:011105

    Article  MathSciNet  Google Scholar 

  27. Duran J (1997) Sands, powders and grains. An introduction to the physics of granular matter. Springer, Berlin

    Google Scholar 

  28. Esakov II, Grachev LP, Khodataev KV, Vinogradov VV, Van Wie DM (2006) Propane-air mixture combustion assisted by MW discharge in a speedy airflow. IEEE Trans Plasma Sci 34(6):2497

    Article  Google Scholar 

  29. Farhat C, Lesoinne M, Maman N (1995) Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int J Numer Methods Fluids 21:807–835

    Article  MATH  MathSciNet  Google Scholar 

  30. Farhat C, Lesoinne M (2000) Two efficient staggered procedures for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–516

    Article  MATH  Google Scholar 

  31. Farhat C, van der Zee G, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195:1973–2001

    Article  MATH  Google Scholar 

  32. Fish J, Chen W (2003) Modeling and simulation of piezocomposites. Comput Methods Appl Mech Eng 192:3211–3232

    Article  MATH  Google Scholar 

  33. Frenklach M, Carmer CS (1999) Molecular dynamics using combined quantum & empirical forces: application to surface reactions. Adv Class Traject Methods 4:27–63

    Google Scholar 

  34. Goldberg DE (1989) Genetic algorithms in search, optimization & machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  35. Goldberg DE, Deb K (2000) Special issue on genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):121–124

    Article  MATH  Google Scholar 

  36. Goldsmith W (2001) Impact: the theory & physical behavior of colliding solids. Dover, New York

    Google Scholar 

  37. Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond A 455:1841–1874

    Article  MATH  MathSciNet  Google Scholar 

  38. Gray JMNT, Hutter K (1997) Pattern formation in granular avalanches. Contin Mech Thermodyn 9:341–345

    Article  Google Scholar 

  39. Gray JMNT (2001) Granular flow in partially filled slowly rotating drums. J Fluid Mech 441:1–29

    Article  MATH  MathSciNet  Google Scholar 

  40. Greve R, Hutter K (1993) Motion of a granular avalanche in a convex & concave curved chute: experiments & theoretical predictions. Philos Trans R Soc Lond A 342:573–600

    Article  Google Scholar 

  41. Haile JM (1992) Molecular dynamics simulations: elementary methods. Wiley, New York

    Google Scholar 

  42. Hase WL (1999) Molecular dynamics of clusters, surfaces, liquids, & interfaces advances in classical trajectory methods, vol 4. JAI Press, London

    Google Scholar 

  43. Hashin Z (1983) Analysis of composite materials: a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  44. Holland JH (1975) Adaptation in natural & artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  45. Hughes TJR (1989) The finite element method. Prentice Hall, New York

    Google Scholar 

  46. Hutter K (1996) Avalanche dynamics. In: Singh VP (ed) Hydrology of disasters. Kluwer Academic, Dordrecht, pp 317–394

    Google Scholar 

  47. Hutter K, Koch T, Plüss C, Savage SB (1995) The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments. Acta Mech 109:127–165

    Article  MathSciNet  Google Scholar 

  48. Hutter K, Rajagopal KR (1994) On flows of granular materials. Contin Mech Thermodyn 6:81–139

    Article  MATH  MathSciNet  Google Scholar 

  49. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two-dimensional spreading of a granular avalanche down an inclined plane. Part I: Theory. Acta Mech 100:37–68

    Article  MATH  MathSciNet  Google Scholar 

  50. Ikeda Y, Nishiyama A, Kaneko M (2009) Microwave enhanced ignition process for fuel mixture at elevated pressure of 1 MPa. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition 5–8 January 2009, Orlando, Florida

  51. Ikeda Y, Nishiyama A, Kawahara N, Tomita E, Nakayama T (2006) Local equivalence ratio measurement of CH4/air and C3H8/air laminar flames by laser-induced breakdown spectroscopy. In: 44th AIAA aerospace sciences meeting and exhibit, 9–12 January 2006, Reno, Nevada, AIAA Paper No 2006-965

  52. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York

    Google Scholar 

  53. Jaeger HM, Nagel SR (1992) La physique de l’etat granulaire. Recherche 249:1380

    Google Scholar 

  54. Jaeger HM, Nagel SR (1992) Physics of the granular state. Science 255:1523

    Article  Google Scholar 

  55. Jaeger HM, Nagel SR (1993) La fisica del estado granular. Mundo Cient 132:108

    Google Scholar 

  56. Jaeger HM, Knight JB, Liu CH, Nagel SR (1994) What is shaking in the sand box? Mat Res Soc Bull 19:25

    Google Scholar 

  57. Jaeger HM, Nagel SR, Behringer RP (1996) The physics of granular materials. Phys Today 4:32

    Article  Google Scholar 

  58. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids & gases. Rev Mod Phys 68:1259

    Article  Google Scholar 

  59. Jaeger HM, Nagel SR (1997) Dynamics of granular material. Am Sci 85:540

    Google Scholar 

  60. Jenkins JT, Strack ODL (1993) Mean-field inelastic behavior of random arrays of identical spheres. Mech Mater 16:25–33

    Article  Google Scholar 

  61. Jenkins JT, La Ragione L (1999) Particle spin in anisotropic granular materials. Int J Solids Struct 38:1063–1069

    Article  Google Scholar 

  62. Jenkins JT, Koenders MA (2004) The incremental response of random aggregates of identical round particles. Eur Phys J E Soft Matter 13:113–123

    Article  Google Scholar 

  63. Jenkins JT, Johnson D, La Ragione L, Makse H (2005) Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J Mech Phys Solids 53:197–225

    Article  MATH  MathSciNet  Google Scholar 

  64. Johnson K (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  65. Johansson B (1996) Cycle to cycle variations in SI engines—the effects of fluid flow and gas composition in the vicinity of the spark plug on early combustion. SAE Paper 962084

  66. Kaneko M, Nishiyama A, Jeong H, Kantano H, Ikeda I (2008) Combustion characteristics of microwave plasma combustion engine. In: Japanese society of automotive engineers, May, pp 7–11

  67. Kansaal A, Torquato S, Stillinger F (2002) Diversity of order and densities in jammed hard-particle packings. Phys Rev E 66:041109

    Article  Google Scholar 

  68. Kawahara K, Ueda K, Ando H (1998) Mixing control strategy for engine performance improvement in a gasoline direct-injection engine. SAE Paper No 980158

  69. Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann, San Mateo

    Google Scholar 

  70. Kim W, Do H, Cappelli M, Mungal M (2007) Plasma assisted methane premixed flame simulation using BOLSIG and OPPDIF. In: 45th AIAA aerospace sciences meeting and exhibit, 8–11 Jan 2007, Reno, Nevada, AIAA Paper No 2007-0379

  71. Kim Y, Ferreri VW, Rosocha LA, Anderson GK, Abbate S, Kim K-T (2006) Effect of plasma chemistry on activated propane/air flames. IEEE Trans Plasma Sci 34(6):2532–2536

    Article  Google Scholar 

  72. Koch T, Greve R, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. II. Experiments & numerical computations. Proc R Soc Lond A 445:415–435

    Article  MATH  Google Scholar 

  73. Kogoma M (2003) Generation of atmospheric-pressure glow and its applications. J Plasma Fusion Res 79(10):1000

    Article  Google Scholar 

  74. Korolev YD, Matveev IB (2006) Nonsteady-state processes in a plasma pilot for ignition and flame control. IEEE Trans Plasma Sci 34(6):2507

    Article  Google Scholar 

  75. Lagaros N, Papadrakakis M, Kokossalakis G (2002) Structural optimization using evolutionary algorithms. Comput Struct 80:571–589

    Article  Google Scholar 

  76. Leipold F, Stark RH, El-Habachi A, Schoenbach KH (2000) Electron density measurements in an atmospheric pressure air plasma by means of IR heterodyne interferometry. J Phys D Appl Phys 33:2268–2273

    Article  Google Scholar 

  77. Lesoinne M, Farhat C (1998) Free staggered algorithm for nonlinear transient aeroelastic problems. AIAA J 36(9):1754–1756

    Article  Google Scholar 

  78. Le Tallec P, Mouro J (2001) Fluid structure interaction with large structural displacements. Comput Methods Appl Mech Eng 190(24–25):3039–3067

    Article  MATH  Google Scholar 

  79. Lewis RW, Schrefler BA (1998) The finite element method in the static & dynamic deformation & consolidation of porous media, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  80. Lewis RW, Schrefler BA, Simoni L (1992) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548

    Article  Google Scholar 

  81. Linkenheil K, Ruoss RO, Heinrich W (2004) Design and evaluation of a novel spark-plug based on a microwave coaxial resonator. In: Microwave conference. 34th European, vol 3(11–15), pp 1561–1564

  82. Linkenheil K, Ruoss HO, Grau T, Seidel J, Heinrich W (2005) A novel spark-plug for improved ignition in engines with gasoline direct injection (GDI). Plasma Sci IEEE Trans 33(5):1696

    Article  Google Scholar 

  83. Liu CH, Jaeger HM, Nagel SR (1991) Finite size effects in a sandpile. Phys Rev A 43:7091

    Article  Google Scholar 

  84. Liu CH, Nagel SR (1993) Sound in a granular material: disorder & nonlinearity. Phys Rev B 48:15646

    Article  Google Scholar 

  85. Luo L, Dornfeld DA (2001) Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans Semicond Manuf 14(2):112–133

    Article  Google Scholar 

  86. Luo L, Dornfeld DA (2003) Effects of abrasive size distribution in chemical-mechanical planarization: modeling and verification. IEEE Trans Semicond Manuf 16:469–476

    Article  Google Scholar 

  87. Luo L, Dornfeld DA (2003) Material removal regions in chemical mechanical planarization for sub-micron integration for sub-micron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Trans Semicond Manuf 16:45–56

    Article  Google Scholar 

  88. Luo L, Dornfeld DA (2004) Integrated modeling of chemical mechanical planarization of sub-micron IC fabrication. Springer, Berlin

    Google Scholar 

  89. Ma JX, Alexander DR, Poulain DE (1998) Laser spark ignition and combustion characteristics of methane-air mixtures. Combust Flame 112:492–506

    Article  Google Scholar 

  90. Ma JX, Ryan TW, Buckingham JP (1998) Nd:YAG laser ignition of natural gas. ASME, 98-ICE-114

  91. Mehresh P, Souder J, Flowers D, Riedel U, Dibble RW (2005) Combustion timing in HCCI engines determined by ion-sensor: experimental and kinetic modeling. Proc Combust Inst 30:2701–2709

    Article  Google Scholar 

  92. Michopoulos G, Farhat C, Fish J (2005) Survey on modeling and simulation of multiphysics systems. J Comput Inf Sci Eng 5(3):198–213

    Article  Google Scholar 

  93. Mintoussov E, Anokhin E, Starikovskii AY (2007) Plasma-assisted combustion and fuel reforming. In: 45th AIAA aerospace sciences meeting and exhibit, Jan 8–11, 2007, Reno, Nevada, AIAA Paper No 2007-1382

  94. Moelwyn-Hughes EA (1961) Physical chemistry. Pergamon, Elmsford

    Google Scholar 

  95. Mohamed AH, Block R, Schoenbach KH (2002) Direct current discharges in atmospheric air. IEEE Trans Plasma Sci 30(1):182

    Article  Google Scholar 

  96. Morsy MH, Ko YS, Chung SH, Cho P (2001) Laser-induced two point ignition of premixture with a single-shot laser. Combust Flame 125:724–727

    Article  Google Scholar 

  97. Morsy MH, Chung SH (2003) Laser induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixtures. Exp Therm Fluid Sci 27:491–497

    Article  Google Scholar 

  98. Mura T (1993) Micromechanics of defects in solids, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  99. Nagel SR (1992) Instabilities in a sandpile. Rev Mod Phys 64:321

    Article  Google Scholar 

  100. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous solids, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  101. Onwubiko C (2000) Introduction to engineering design optimization. Prentice Hall, New York

    Google Scholar 

  102. Ombrello T, Ju Y (2007) Ignition enhancement using magnetic gliding arc. In: 45th AIAA aerospace sciences meeting and exhibit, Jan 8–11, Reno, Nevada, AIAA Paper No 2007-1025

  103. Papadrakakis M, Lagaros N, Thierauf G, Cai J (1998) Advanced solution methods in structural optimisation using evolution strategies. Eng Comput J 15(1):12–34

    Article  MATH  Google Scholar 

  104. Papadrakakis M, Lagaros N, Tsompanakis Y (1998) Structural optimization using evolution strategies and neutral networks. Comput Methods Appl Mech Eng 156(1):309–335

    Article  MATH  Google Scholar 

  105. Papadrakakis M, Lagaros N, Tsompanakis Y (1999) Optimization of large-scale 3D trusses using evolution strategies and neural networks. Int J Space Struct 14(3):211–223

    Article  Google Scholar 

  106. Papadrakakis M, Tsompanakis J, Lagaros N (1999) Structural shape optimisation using evolution strategies. Eng Optim 31:515–540

    Article  Google Scholar 

  107. Papadrakakis M, Lagaros N, Tsompanakis Y, Plevris V (2001) Large scale structural optimization: Computational methods and optimization algorithms. Arch Comput Methods Eng State Art Rev 8(3):239–301

    Article  MATH  MathSciNet  Google Scholar 

  108. Park KC, Felippa CA (1983) Partitioned analysis of coupled systems. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam

    Google Scholar 

  109. Phelps AV (1987) Excitation and ionization coefficients. In: Christophourou LG, Bouldin DW (eds) Gaseous dielectrics V. Pergamon, Elmsford

    Google Scholar 

  110. Piperno S (1997) Explicit/implicit fluid/structure staggered procedures with a structural predictor & fluid subcycling for 2D inviscid aeroelastic simulations. Int J Numer Methods Fluids 25:1207–1226

    Article  MATH  MathSciNet  Google Scholar 

  111. Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems—part I: model problem, theory, and two-dimensional application. Comput Methods Appl Mech Eng 124(1–2):79–112

    Article  MATH  MathSciNet  Google Scholar 

  112. Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems—part II: energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190:3147–3170

    Article  MATH  Google Scholar 

  113. Pöschel T, Schwager T (2004) Computational granular dynamics. Springer, Berlin

    Google Scholar 

  114. Prager J, Riedel U, Warnatz J (2007) Modeling ion chemistry and charged species diffusion in lean methane-oxygen flames. Proc Combust Inst 31(1):1129–1137

    Article  Google Scholar 

  115. Phuoc T (2000) Single-point versus multi-point laser ignition: Experimental measurements of combustion times and pressures. Combust Flame 122:508–510

    Article  Google Scholar 

  116. Phuoc T (2000) Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt Commun 175:419–423

    Article  Google Scholar 

  117. Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Google Scholar 

  118. Rietema K (1991) Dynamics of fine powders. Springer, Berlin

    Google Scholar 

  119. Ronney PD (1994) Laser versus conventional ignition of flames. Opt Eng 33(2):510

    Article  Google Scholar 

  120. Schlick T (2000) Molecular modeling & simulation. An interdisciplinary guide. Springer, New York

    Google Scholar 

  121. Schmidt L (1998) The engineering of chemical reactions. Oxford University Press, London

    Google Scholar 

  122. Schrefler BA (1985) A partitioned solution procedure for geothermal reservoir analysis. Commun Appl Numer Methods 1:53–56

    Article  MATH  Google Scholar 

  123. Schwartz SW, Myers DR, Kramer RK, Choi S, Jordan A, Wijesundara MBJ, Hopcroft MA, Pisano AP (2008) Silicon and silicon carbide survivability in an in-cylinder combustion environment. In: PowerMEMS 2008, Sendai, Japan, Nov 9–12, 2008

  124. Sukop MC, Thorne DT (2006) Lattice-Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin

    Google Scholar 

  125. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  Google Scholar 

  126. Szabo B, Babúska I (1991) Finite element analysis. Wiley Interscience, New York

    MATH  Google Scholar 

  127. Tabor D (1975) Interaction between surfaces: adhesion & friction. In: Blakely O (ed) Surface physics of materials, vol II. Academic Press, New York/San Francisco/London, Chap 10

    Google Scholar 

  128. Tai Y-C, Noelle S, Gray JMNT, Hutter K (2002) Shock capturing & front tracking methods for granular avalanches. J Comput Phys 175:269–301

    Article  MATH  Google Scholar 

  129. Tai Y-C, Gray JMNT, Hutter K, Noelle S (2001) Flow of dense avalanches past obstructions. Ann Glaciology 32:281–284

    Article  Google Scholar 

  130. Tai Y-C, Noelle S, Gray JMNT, Hutter K (2001) An accurate shock-capturing finite-difference method to solve the Savage-Hutter equations in avalanche dynamics. Ann Glaciol 32:263–267

    Article  Google Scholar 

  131. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882

    Article  Google Scholar 

  132. Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    MATH  Google Scholar 

  133. Tursa E, Schrefler BA (1994) On consistency, stability and convergence of staggered solution procedures. Rend Mat Accad Lincei Rome 9(5):265–271

    Google Scholar 

  134. Weinberg FJ, Wilson JR (1971) A preliminary investigation of the use of focused laser beams for minimum ignition energy studies. Proc R Soc Lond A 321:41–52

    Article  Google Scholar 

  135. Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44:3888–3894

    Article  Google Scholar 

  136. Wieland M, Gray JMNT, Hutter K (1999) Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J Fluid Mech 392:73–100

    Article  MATH  Google Scholar 

  137. Wriggers P (2002) Computational contact mechanics. Wiley, New York

    Google Scholar 

  138. Wriggers P (2008) Nonlinear finite element analysis. Springer, Berlin

    Google Scholar 

  139. Zienkiewicz OC (1984) Coupled problems & their numerical solution. In: Lewis RW, Bettes P, Hinton E (eds) Numerical methods in coupled systems. Wiley, New York, pp 35–58

    Google Scholar 

  140. Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26:1039–1055

    Article  MATH  Google Scholar 

  141. Zienkiewicz OC, Taylor RL (1991) The finite element method. Vols I and II. McGraw-Hill, New York

    Google Scholar 

  142. Zohdi TI (2002) An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Int J Numer Methods Eng 53:1511–1532

    Article  MATH  MathSciNet  Google Scholar 

  143. Zohdi TI (2003) Genetic design of solids possessing a random-particulate microstructure. Philos Trans R Soc Math Phys Eng 361(1806):1021–1043

    Article  MATH  MathSciNet  Google Scholar 

  144. Zohdi TI (2003) On the compaction of cohesive hyperelastic granules at finite strains. Proc R Soc 454(2034):1395–1401

    Google Scholar 

  145. Zohdi TI (2003) Computational design of swarms. Int J Numer Methods Eng 57:2205–2219

    Article  MATH  MathSciNet  Google Scholar 

  146. Zohdi TI (2003) Constrained inverse formulations in random material design. Comput Methods Appl Mech Eng 192(28–30):3179–3194

    Article  MATH  Google Scholar 

  147. Zohdi TI (2004) Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193(6–8):679–699

    Article  MATH  Google Scholar 

  148. Zohdi TI (2004) Modeling and direct simulation of near-field granular flows. Int J Solids Struct 42(2):539–564

    Article  Google Scholar 

  149. Zohdi TI (2004) A computational framework for agglomeration in thermo-chemically reacting granular flows. Proc R Soc 460(2052):3421–3445

    Article  MATH  MathSciNet  Google Scholar 

  150. Zohdi TI (2005) Charge-induced clustering in multifield particulate flow. Int J Numer Methods Eng 62(7):870–898

    Article  MATH  MathSciNet  Google Scholar 

  151. Zohdi TI (2006) Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput Methods Appl Mech Eng 195:5813–5830

    Article  MATH  Google Scholar 

  152. Zohdi TI (2007) Computation of strongly coupled multifield interaction in particle-fluid systems. Comput Methods Appl Mech Eng 196:3927–3950

    Article  MATH  MathSciNet  Google Scholar 

  153. Zohdi TI (2007) Particle collision and adhesion under the influence of near-fields. J Mech Mater Struct 2(6):1011–1018

    Article  Google Scholar 

  154. Zohdi TI (2008) On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int J Numer Methods Eng 76:1250–1279

    Article  MathSciNet  Google Scholar 

  155. Zohdi TI (2009) Mechanistic modeling of swarms. Comput Methods Appl Mech Eng 198(21–26):2039–2051

    Article  MathSciNet  Google Scholar 

  156. Zohdi TI (2007) Introduction to the modeling and simulation of particulate flows. SIAM, Philadelphia

    Google Scholar 

  157. Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohdi, T.I. On the Dynamics of Charged Electromagnetic Particulate Jets. Arch Computat Methods Eng 17, 109–135 (2010). https://doi.org/10.1007/s11831-010-9044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-010-9044-3

Keywords

Navigation