Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments

  • M. B. LiuEmail author
  • G. R. Liu


Smoothed particle hydrodynamics (SPH) is a meshfree particle method based on Lagrangian formulation, and has been widely applied to different areas in engineering and science. This paper presents an overview on the SPH method and its recent developments, including (1) the need for meshfree particle methods, and advantages of SPH, (2) approximation schemes of the conventional SPH method and numerical techniques for deriving SPH formulations for partial differential equations such as the Navier-Stokes (N-S) equations, (3) the role of the smoothing kernel functions and a general approach to construct smoothing kernel functions, (4) kernel and particle consistency for the SPH method, and approaches for restoring particle consistency, (5) several important numerical aspects, and (6) some recent applications of SPH. The paper ends with some concluding remarks.


Smooth Particle Hydrodynamic Smooth Particle Hydrodynamic Smoothing Function Dissipative Particle Dynamic Smooth Particle Hydrodynamic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge CrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson JD (2002) Computational fluid dynamics: the basics with applications. McGraw Hill, New York Google Scholar
  3. 3.
    Zienkiewicz OC, Taylor RL (2000) The finite element method. Butterworth-Heinemann, Stonham zbMATHGoogle Scholar
  4. 4.
    Liu GR (2002) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton Google Scholar
  5. 5.
    Hirsch C (1988) Numerical computation of internal & external flows: fundamentals of numerical discretization. Wiley, New York zbMATHGoogle Scholar
  6. 6.
    Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore zbMATHGoogle Scholar
  7. 7.
    Liu GR, Gu YT (2005) An Introduction to meshfree methods and their programming. Springer, Dordrecht, p 479 Google Scholar
  8. 8.
    Zhang SZ (1976) Detonation and its applications. Press of National Defense Industry, Beijing Google Scholar
  9. 9.
    Zukas JA (1990) High velocity impact dynamics. Wiley, New York Google Scholar
  10. 10.
    Hockney RW, Eastwood JW (1988) Computer simulation using particles. Institute of Physics Publishing, Bristol CrossRefzbMATHGoogle Scholar
  11. 11.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford zbMATHGoogle Scholar
  12. 12.
    Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34 CrossRefGoogle Scholar
  13. 13.
    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1–4):3–47 CrossRefzbMATHGoogle Scholar
  14. 14.
    Idelsohn SR, Onate E (2006) To mesh or not to mesh? That is the question. Comput Methods Appl Mech Eng 195(37–40):4681–4696 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu GR (2008) A generalized Gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. Int J Comput Methods 5(2):199–236 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu GR (2009) A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods, part I: theory. Int J Numer Methods Eng. doi: 10.1002/nme.2719 Google Scholar
  18. 18.
    Liu GR (2009) A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods, part II: applications to solid mechanics problems. Int J Numer Methods Eng. doi: 10.1002/nme.2720 Google Scholar
  19. 19.
    Liu GR (2009) On the G space theory. Int J Comput Methods 6(2):257–289 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu GR, Nguyen-Thoi T, H. N-X, Lam KY (2008) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87:14–26 CrossRefGoogle Scholar
  21. 21.
    Liu GR, Zhang GY (2008) Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). Int J Numer Methods Eng 74:1128–1161 CrossRefzbMATHGoogle Scholar
  22. 22.
    Liu GR, Nguyen-Thoi T, Lam KY (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses in solids. J Sound Vib 320:1100–1130 CrossRefGoogle Scholar
  23. 23.
    Zhang GY, Liu GR, Nguyen TT, Song CX, Han X, Zhong ZH, Li GY (2007) The upper bound property for solid mechanics of the linearly conforming radial point interpolation method (LC-RPIM). Int J Comput Methods 4(3):521–541 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu GR, Zhang GY (2009) A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method. Int J Comput Methods 6(1):147–179 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu GR, Zhang GY (2008) Edge-based Smoothed Point Interpolation Methods. Int J Comput Methods 5(4):621–646 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu GY, Zhang GY (2009) A novel scheme of strain-constructed point interpolation method for static and dynamic mechanics problems. Int J Appl Mech 1(1):233–258 CrossRefGoogle Scholar
  27. 27.
    Liu GR, Xu X, Zhang GY, Nguyen-Thoi T (2009) A superconvergent point interpolation method (SC-PIM) with piecewise linear strain field using triangular mesh. Int J Numer Methods Eng 77:1439–1467 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu GR, Xu X, Zhang GY, Gu YT (2009) An extended Galerkin weak form and a point interpolation method with continuous strain field and superconvergence using triangular mesh. Comput Mech 43:651–673 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78:324–353 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu GR, Nguyen-Thoi T, Lam KY (2008) A novel Alpha finite element method (FEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Comput Methods Appl Mech Eng 197:3883–3897 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Liu GR, Nguyen-Xuan H, Nguyen TT, Xu X (2009) A novel weak form and a superconvergent alpha finite element method for mechanics problems using triangular meshes. J Comput Phys 228(11):3911–4302 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu GR, Zhang J, Lam KY (2008) A gradient smoothing method (GSM) with directional correction for solid mechanics problems. Comput Mech 41:457–472 CrossRefzbMATHGoogle Scholar
  33. 33.
    Liu GR, Xu XG (2008) A gradient smoothing method (GSM) for fluid dynamics problems. Int J Numer Methods Fluids 58:1101–1133 CrossRefzbMATHGoogle Scholar
  34. 34.
    Xu XG, Liu GR (2008) An adaptive gradient smoothing method (GSM) for fluid dynamics problems. Int J Numer Methods Fluids doi: 10.1002/fld.2032 Google Scholar
  35. 35.
    Xu XG, Liu GR, Lee KH (2009) Application of gradient smoothing method (GSM) for steady and unsteady incompressible flow problems using irregular triangles. Int J Numer Methods Fluids (submitted) Google Scholar
  36. 36.
    Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024 CrossRefGoogle Scholar
  37. 37.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389 zbMATHGoogle Scholar
  38. 38.
    Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155(2):263–284 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Fulk DA, Quinn DW (1996) An analysis of 1-D smoothed particle hydrodynamics kernels. J Comput Phys 126(1):165–180 CrossRefzbMATHGoogle Scholar
  40. 40.
    Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications. Academic Press, New York Google Scholar
  41. 41.
    Hoogerbrugge PJ, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155 CrossRefGoogle Scholar
  42. 42.
    Groot RD (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423 CrossRefGoogle Scholar
  43. 43.
    Gingold RA, Monaghan JJ (1982) Kernel estimates as a basis for general particle method in hydrodynamics. J Comput Phys 46:429–453 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hu XY, Adams NA (2006) Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys Fluids 18:101702 CrossRefGoogle Scholar
  45. 45.
    Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134 MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Morris JP (1996) Analysis of Smoothed Particle Hydrodynamics with Applications. Monash University Google Scholar
  47. 47.
    Monaghan JJ (1982) Why particle methods work. SIAM J Sci Stat Comput 3(4):422–433 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Monaghan JJ (1985) Particle methods for hydrodynamics. Comput Phys Rep 3:71–124 CrossRefGoogle Scholar
  49. 49.
    Monaghan JJ (1992) Smooth particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574 CrossRefGoogle Scholar
  50. 50.
    Johnson GR (1996) Artificial viscosity effects for SPH impact computations. Int J Impact Eng 18(5):477–488 CrossRefGoogle Scholar
  51. 51.
    Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations. Int J Numer Methods Eng 39(16):2725–2741 CrossRefzbMATHGoogle Scholar
  52. 52.
    Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252 CrossRefzbMATHGoogle Scholar
  54. 54.
    Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190:225–239 CrossRefzbMATHGoogle Scholar
  55. 55.
    Liu MB, Liu GR, Lam KY (2003) A one-dimensional meshfree particle formulation for simulating shock waves. Shock Waves 13(3):201–211 CrossRefGoogle Scholar
  56. 56.
    Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56(1):19–36 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270 CrossRefzbMATHGoogle Scholar
  58. 58.
    Batra RC, Zhang GM (2004) Analysis of adiabatic shear bands in elasto-thermo-viscoplastic materials by modified smoothed-particle hydrodynamics (MSPH) method. J Comput Phys 201(1):172–190 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Fang JN, Owens RG, Tacher L, Parriaux A (2006) A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J Non-Newton Fluid 139(1–2):68–84 CrossRefGoogle Scholar
  60. 60.
    Fang JN, Parriaux A (2008) A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J Comput Phys 227(20):8894–8908 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Fang JN, Parriaux A, Rentschler M, Ancey C (2009) Improved SPH methods for simulating free surface flows of viscous fluids. Appl Numer Math 59(2):251–271 MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Dyka CT, Ingel RP (1995) An approach for tension instability in smoothed particle hydrodynamics (SPH). Comput Struct 57(4):573–580 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Dyka CT, Randles PW, Ingel RP (1997) Stress points for tension instability in SPH. Int J Numer Methods Eng 40(13):2325–2341 CrossRefzbMATHGoogle Scholar
  64. 64.
    Randles PW, Libersky LD, (2000) Normalized SPH with stress points. Int J Numer Methods Eng 48(10):1445–1462 CrossRefzbMATHGoogle Scholar
  65. 65.
    Vignjevic R, Campbell J, Libersky L (2000) A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput Methods Appl Mech Eng 184(1):67–85 MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Dilts GA (1999) Moving-Least-Squares-particle hydrodynamics. I: Consistency and stability. Int J Numer Methods Eng 44:1115–1155 MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Dilts GA (2000) Moving least square particle hydrodynamics ii: conservation and boundaries. Int J Numer Methods Eng 48:1503–1524 MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214 CrossRefzbMATHGoogle Scholar
  69. 69.
    Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227 MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80 MathSciNetCrossRefGoogle Scholar
  71. 71.
    Rabczuk T, Belvtschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193(12):1035–1063 CrossRefzbMATHGoogle Scholar
  72. 72.
    Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completeness of the meshfree particle methods. Int J Numer Methods Eng 43(5):785–819 MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Zhang GM, Batra RC (2004) Modified smoothed particle hydrodynamics method and its application to transient problems. Comput Mech 34(2):137–146 CrossRefzbMATHGoogle Scholar
  74. 74.
    Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400 MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Fulk DA (1994) A numerical analysis of smoothed particle hydrodynamics. Air Force Institute of Technology Google Scholar
  76. 76.
    Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759 MathSciNetCrossRefGoogle Scholar
  77. 77.
    Hernquist L (1993) Some cautionary remarks about smoothed particle hydrodynamics. Astrophys J 404(2):717–722 CrossRefGoogle Scholar
  78. 78.
    Century Dynamics Incorporated (1997) AUTODYN release notes version 3.1. AUTODYN™ interactive non-linear dynamic analysis software Google Scholar
  79. 79.
    Benz W (1990) Smooth particle hydrodynamics: a review. The numerical modelling of nonlinear stellar pulsations, problems and prospects. Kluwer Academic, Boston Google Scholar
  80. 80.
    Morris JP (1996) A study of the stability properties of smooth particle hydrodynamics. Publ Astron Soc Aust 13(1):97–102 Google Scholar
  81. 81.
    Omang M, Borve S, Trulsen J (2005) Alternative kernel functions for smoothed particle hydrodynamics in cylindrical symmetry. Shock Waves 14(4):293–298 CrossRefzbMATHGoogle Scholar
  82. 82.
    Jin HB, Ding X (2005) On criterions for smoothed particle hydrodynamics kernels in stable field. J Comput Phys 202(2):699–709 CrossRefzbMATHGoogle Scholar
  83. 83.
    Capuzzo-Dolcetta R, Di Lisio R (2000) A criterion for the choice of the interpolation kernel in smoothed particle hydrodynamics. Appl Numer Math 34(4):363–371 MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Cabezon RM, Garcia-Senz D, Relano A (2008) A one-parameter family of interpolating kernels for smoothed particle hydrodynamics studies. J Comput Phys 227(19):8523–8540 CrossRefzbMATHGoogle Scholar
  85. 85.
    Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149(1):135–143 zbMATHGoogle Scholar
  86. 86.
    Johnson GR, Stryk RA, Beissel SR (1996) SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139(1–4):347–373 CrossRefzbMATHGoogle Scholar
  87. 87.
    Swegle JW, Attaway SW, Heinstein MW, Mello FJ Hicks DL (1994) An analysis of smoothed particle hydrodynamics. Sandia National Labs., Albuquerque Google Scholar
  88. 88.
    Liu GR, Quek SS (2003) The finite element method: a practical course. Butterworth-Heinemann, Bristol zbMATHGoogle Scholar
  89. 89.
    Chen JK, Beraun JE, Jih CJ (1999) An improvement for tensile instability in smoothed particle hydrodynamics. Comput Mech 23(4):279–287 CrossRefzbMATHGoogle Scholar
  90. 90.
    Chen JK, Beraun JE, Jih CJ (1999) Completeness of corrective smoothed particle method for linear elastodynamics. Comput Mech 24(4):273–285 CrossRefzbMATHGoogle Scholar
  91. 91.
    Hernquist L, Katz N (1989) TREESPH—a unification of SPH with the hierarchical tree method. Astrophys J Suppl Ser 70(2):419–446 CrossRefGoogle Scholar
  92. 92.
    Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27:1–31 MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Fletcher CAJ (1991) Computational techniques for fluid dynamics, 1: fundamental and general techniques. Springer, Berlin zbMATHGoogle Scholar
  94. 94.
    Agertz O, Moore B, Stadel J, Potter D, Miniati F, Read J, Mayer L, Gawryszczak A, Kravtosov A, Nordlund A, Pearce F, Quilis V, Rudd D, Springel V, Stone J, Tasker E, Teyssier R, Wadsley J, Walder R (2007) Fundamental differences between SPH and grid methods. Mon Not R Astron Soc 380:963–978 CrossRefGoogle Scholar
  95. 95.
    Schussler M, Schmitt D (1981) Comments on smoothed particle hydrodynamics. Astron Astrophys 97(2):373–379 Google Scholar
  96. 96.
    Espanol P (1998) Fluid particle model. Phys Rev E 57(3):2930–2948 CrossRefGoogle Scholar
  97. 97.
    Wang L, Ge W, Li J (2006) A new wall boundary condition in particle methods. Comput Phys Commun 174(5):386–390 MathSciNetCrossRefGoogle Scholar
  98. 98.
    Revenga M, Zuniga I, Espanol P (1998) Boundary models in DPD. Int J Mod Phys C 9(8):1319–1328 CrossRefGoogle Scholar
  99. 99.
    Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore-scale flow. Water Resour Res 43:W04411. doi: 10.1029/2006WR004856 CrossRefGoogle Scholar
  100. 100.
    Revenga M, Zuniga I, Espanol P (1998) Boundary models in DPD. Int J Mod Phys C 9(8):1319–1328 CrossRefGoogle Scholar
  101. 101.
    Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 121(122):309–311 CrossRefGoogle Scholar
  102. 102.
    Willemsen SM, Hoefsloot HCJ, Iedema PD (2000) No-slip boundary condition in dissipative particle dynamics. Int J Mod Phys C 11(5):881–890 CrossRefGoogle Scholar
  103. 103.
    Duong-Hong D, Phan-Thien N, Fan X (2004) An implementation of no-slip boundary conditions in DPD. Comput Mech 35(1):24–29 CrossRefzbMATHGoogle Scholar
  104. 104.
    Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Continua 5(3):173–184 MathSciNetzbMATHGoogle Scholar
  105. 105.
    Gong K, Liu H (2007). A new boundary treatment for smoothed particle hydrodynamics. In: Asian and Pacific coasts 2007, Nanjing, China Google Scholar
  106. 106.
    Hieber SE, Koumoutsakos P (2008) An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers. J Comput Phys 227(19):8636–8654 MathSciNetCrossRefzbMATHGoogle Scholar
  107. 107.
    Klessen R (1997) GRAPESPH with fully periodic boundary conditions: fragmentation of molecular clouds. Mon Not R Astron Soc 292(1):11–18 Google Scholar
  108. 108.
    Randles PW, Libersky LD (2005) Boundary conditions for a dual particle method. Comput Struct 83(17–18):1476–1486 CrossRefGoogle Scholar
  109. 109.
    Yildiz M, Rook RA, Suleman A (2009) SPH with the multiple boundary tangent method. Int J Numer Methods Eng 77(10):1416–1438 MathSciNetCrossRefzbMATHGoogle Scholar
  110. 110.
    Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theor Phys 92(5):939–960 CrossRefGoogle Scholar
  111. 111.
    Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226 CrossRefzbMATHGoogle Scholar
  112. 112.
    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406 CrossRefzbMATHGoogle Scholar
  113. 113.
    Campbell PM (1989) Some new algorithms for boundary value problems in smooth particle hydrodynamics. Technical Report, Mission Research Corp, Albuquerque, NM Google Scholar
  114. 114.
    Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75 CrossRefzbMATHGoogle Scholar
  115. 115.
    Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  116. 116.
    Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction. J Comput Phys 222(1):110–130 CrossRefzbMATHGoogle Scholar
  117. 117.
    Tartakovsky AM, Meakin P (2005) Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics. Vadose Zone J 4(3):848–855 CrossRefGoogle Scholar
  118. 118.
    Liu MB, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids 19(3):033302 CrossRefGoogle Scholar
  119. 119.
    Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475 CrossRefzbMATHGoogle Scholar
  120. 120.
    Owen JM, Villumsen JV, Shapiro PR, Martel H (1998) Adaptive smoothed particle hydrodynamics: methodology, II. Astrophys J Suppl Ser 116(2):155–209 CrossRefGoogle Scholar
  121. 121.
    Shapiro PR, Martel H, Villumsen JV, Owen JM (1996) Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys J Suppl Ser 103(2):269–330 CrossRefGoogle Scholar
  122. 122.
    Fulbright MS, Benz W, Davies MB (1995) A method of smoothed particle hydrodynamics using spheroidal kernels. Astrophys J 440(1):254–262 CrossRefGoogle Scholar
  123. 123.
    Liu MB, Liu GR (2005) Meshfree particle simulation of micro channel flows with surface tension. Comput Mech 35(5):332–341 CrossRefzbMATHGoogle Scholar
  124. 124.
    Liu MB, Liu GR, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15(1):21–29 MathSciNetCrossRefGoogle Scholar
  125. 125.
    Swegle JW, Attaway SW (1995) On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech 17(3):151–168 CrossRefzbMATHGoogle Scholar
  126. 126.
    Attaway SW, Hendrickson BA, Plimpton SJ, Gardner DR, Vaughan CT, Brown KH, Heinstein MW (1998) A parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D. Comput Mech 22(2):143–159 CrossRefzbMATHGoogle Scholar
  127. 127.
    Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 184(1):49–65 MathSciNetCrossRefzbMATHGoogle Scholar
  128. 128.
    Drumm C, Tiwari S, Kuhnert J, Bart HJ (2008) Finite pointset method for simulation of the liquid-liquid flow field in an extractor. Comput Chem Eng 32(12):2946–2957 CrossRefGoogle Scholar
  129. 129.
    Huang H, Dyka CT, Saigal S (2004) Hybrid particle methods in frictionless impact-contact problems. Int J Numer Methods Eng 61:2250–2272 CrossRefzbMATHGoogle Scholar
  130. 130.
    Li Y, Liu GR, Luan MT, Ky Dai, Zhong ZH, Li GY, Han X (2007) Contact analysis for solids based on linearly conforming radial point interpolation method. Comput Mech 39(4):537–554 CrossRefzbMATHGoogle Scholar
  131. 131.
    Limido J, Espinosa C, Salauen M, Lacome JL (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908 CrossRefGoogle Scholar
  132. 132.
    Mehra V, Chaturvedi S (2006) High velocity impact of metal sphere on thin metallic plates: a comparative smooth particle hydrodynamics study. J Comput Phys 212(1):318–337 CrossRefzbMATHGoogle Scholar
  133. 133.
    Parshikov AN, Medin SA (2002) Smoothed particle hydrodynamics using interparticle contact algorithms. J Comput Phys 180(1):358–382 CrossRefzbMATHGoogle Scholar
  134. 134.
    Parshikov AN, Medin SA, Loukashenko II, Milekhin VA (2000) Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int J Impact Eng 24(8):779–796 CrossRefGoogle Scholar
  135. 135.
    Plimpton S, Attaway S, Hendrickson B, Swegle J, Vaughan C, Gardner D (1998) Parallel transient dynamics simulations: algorithms for contact detection and smoothed particle hydrodynamics. J Parallel Distrib Comput 50(1–2):104–122 CrossRefzbMATHGoogle Scholar
  136. 136.
    Prochazka PP, Kravtsov AN, Peskova S (2008) Blast impact on structures of underground parking. Undergr Spaces Des Eng Environ Asp 102:11–19 Google Scholar
  137. 137.
    Sauer RA, Li SF (2008) An atomistically enriched continuum model for nanoscale contact mechanics and Its application to contact scaling. J Nanosci Nanotechnol 8(7):3757–3773 Google Scholar
  138. 138.
    Schieback C, Burzle F, Franzrahe K, Neder J, Henseler P, Mutter D, Schwierz N, Nielaba P (2009) Computer simulations of complex many-body systems. In: High performance computing in science and engineering ’08, Stuttgart, Germany Google Scholar
  139. 139.
    Seo S, Min O, Lee J (2008) Application of an improved contact algorithm for penetration analysis in SPH. Int J Impact Eng 35(6):578–588 CrossRefGoogle Scholar
  140. 140.
    Vignjevic R, Campbell J (1999) A penalty approach for contact in smoothed particle hydrodynamics. Int J Impact Eng 23(1):945–956 CrossRefGoogle Scholar
  141. 141.
    Vignjevic R, De Vuyst T, Campbell JC, Source C (2006) A frictionless contact algorithm for meshless methods. Comput Model Eng 13(1):35 MathSciNetGoogle Scholar
  142. 142.
    Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31(3):547–572 CrossRefzbMATHGoogle Scholar
  143. 143.
    Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30(2):106–118 CrossRefzbMATHGoogle Scholar
  144. 144.
    Liu MB, Liu GR, Lam KY, Zong Z (2001) A new technique to treat material interfaces for smoothed particle hydrodynamics. In: Computational mechanics—new frontiers for new millennium. Elsevier Science, Amsterdam Google Scholar
  145. 145.
    Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311 CrossRefzbMATHGoogle Scholar
  146. 146.
    Vignjevic R, De Vuyst T, Campbell J (2002) The use of a homogeneous repulsive force for contact treatment in sph. In: WCCM V, Vienna, Austria Google Scholar
  147. 147.
    Balsara DS (1995) von Neumann stability analysis of smoothed particle hydrodynamics suggestions for optimal algorithms. J Comput Phys 121(2):357–372 CrossRefzbMATHGoogle Scholar
  148. 148.
    Belytschko T, Xiao S (2002) Stability analysis of particle methods with corrected derivatives. Comput Math Appl 43(3–5):329–350 MathSciNetCrossRefzbMATHGoogle Scholar
  149. 149.
    Bonet J, Kulasegaram S (2001) Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods. Int J Numer Methods Eng 52:1203–1220 CrossRefzbMATHGoogle Scholar
  150. 150.
    Lanson N, Vila JP (2007) Renormalized meshfree schemes, I: consistency, stability, and hybrid methods for conservation laws. SIAM J Numer Anal 46(4):1912–1934 MathSciNetCrossRefGoogle Scholar
  151. 151.
    Randles PW, Petschek AG, Libersky LD, Dyka CT (2003) Stability of DPD and SPH. In: Meshfree methods for partial differential equations. Springer, Berlin Google Scholar
  152. 152.
    Sigalotti LDG, Lopez H (2008) Adaptive kernel estimation and SPH tensile instability. Comput Math Appl 55(1):23–50 MathSciNetCrossRefzbMATHGoogle Scholar
  153. 153.
    Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662 CrossRefzbMATHGoogle Scholar
  154. 154.
    Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139(1–4):49–74 MathSciNetCrossRefzbMATHGoogle Scholar
  155. 155.
    Melean Y, Sigalotti LDG, Hasmy A (2004) On the SPH tensile instability in forming viscous liquid drops. Comput Phys Commun 157(3):191–200 CrossRefGoogle Scholar
  156. 156.
    Benz W (1988) Applications of smooth particle hydrodynamics (SPH) to astrophysical problems. Comput Phys Commun 48(1):97–105 CrossRefGoogle Scholar
  157. 157.
    Frederic AR, James CL (1999) Smoothed particle hydrodynamics calculations of stellar interactions. J Comput Appl Math 109:213–230 CrossRefzbMATHGoogle Scholar
  158. 158.
    Hultman J, Pharayn A (1999) Hierarchical, dissipative formation of elliptical galaxies: is thermal instability the key mechanism? Hydrodynamic simulations including supernova feedback multi-phase gas and metal enrichment in cdm: structure and dynamics of elliptical galaxies. Astron Astrophys 347:769–798 Google Scholar
  159. 159.
    Thacker RJ, Couchman HMP (2001) Star formation, supernova feedback, and the angular momentum problem in numerical cold dark matter cosmogony: halfway there. Astrophys J 555(1):L17–L20 CrossRefGoogle Scholar
  160. 160.
    Monaghan JJ, Lattanzio JC (1991) A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophys J 375(1):177–189 CrossRefGoogle Scholar
  161. 161.
    Berczik P (2000) Modeling the star formation in galaxies using the chemo-dynamical SPH code. Astrophys Space Sci 271(2):103–126 CrossRefzbMATHGoogle Scholar
  162. 162.
    Lee WH, Kluzniak W (1999) Newtonian hydrodynamics of the coalescence of black holes with neutron stars, II: tidally locked binaries with a soft equation of state. Mon Not R Astron Soc 308(3):780–794 CrossRefGoogle Scholar
  163. 163.
    Lee WH (2000) Newtonian hydrodynamics of the coalescence of black holes with neutron stars, III: irrotational binaries with a stiff equation of state. Mon Not R Astron Soc 318(2):606–624 CrossRefGoogle Scholar
  164. 164.
    Senz DG, Bravo E, Woosley SE (1999) Single and multiple detonations in white dwarfs. Astron Astrophys 349:177–188 Google Scholar
  165. 165.
    Monaghan JJ (1990) Modelling the universe. Astron Soc Aust Proc 8(3):233–237 Google Scholar
  166. 166.
    Hong JM, Lee HY, Yoon JC, Kim CH (2008) Bubbles alive. ACM Trans Graph 27(3) Google Scholar
  167. 167.
    Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235 CrossRefzbMATHGoogle Scholar
  168. 168.
    Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861 MathSciNetCrossRefzbMATHGoogle Scholar
  169. 169.
    Garg R, Narayanan C, Lakehal D, Subramaniam S (2007) Accurate numerical estimation of interphase momentum transfer in Lagrangian-Eulerian simulations of dispersed two-phase flows. Int J Multiph Flow 33(12):1337–1364 CrossRefGoogle Scholar
  170. 170.
    Liu J, Koshizuka S, Oka Y (2005) A hybrid particle-mesh method for viscous, incompressible, multiphase flows. J Comput Phys 202(1):65–93 CrossRefzbMATHGoogle Scholar
  171. 171.
    Password F (2003) Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Mon Not R Astron Soc 339(2):289–311 CrossRefGoogle Scholar
  172. 172.
    Ritchie BW, Pa Thomas (2001) Multiphase smoothed-particle hydrodynamics. Mon Not R Astron Soc 323(3):743–756 CrossRefGoogle Scholar
  173. 173.
    Hu XY, Adams NA (2009) A constant-density approach for incompressible multi-phase SPH. J Comput Phys 228(6):2082–2091 MathSciNetCrossRefzbMATHGoogle Scholar
  174. 174.
    Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278 CrossRefzbMATHGoogle Scholar
  175. 175.
    Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2–3):141–147 CrossRefGoogle Scholar
  176. 176.
    Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2007) 3D SPH simulation of large waves mitigation with a dike. J Hydraul Res 45(5):631–642 CrossRefGoogle Scholar
  177. 177.
    Shao SD, Gotoh H (2004) Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model. Coast Eng J 46(2):171–202 CrossRefGoogle Scholar
  178. 178.
    Gotoh H, Shao SD, Memita T (2004) SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater. Coast Eng 46(1):39–63 CrossRefGoogle Scholar
  179. 179.
    Shao SD (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int J Numer Methods Fluids 50(5):597–621 CrossRefzbMATHGoogle Scholar
  180. 180.
    Gomez-Gesteira M, Dalrymple RA (2004) Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J Waterw Port C 130(2):63–69 CrossRefGoogle Scholar
  181. 181.
    Crespo AJC, Gomez-Gesteira M, Carracedo P, Dalrymple RA (2008) Hybridation of generation propagation models and SPH model to study severe sea states in Galician Coast. J Mar Syst 72(1–4):135–144 CrossRefGoogle Scholar
  182. 182.
    Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2008) Modeling dam break behavior over a wet bed by a SPH technique. J Waterw Port C 134(6):313–320 CrossRefGoogle Scholar
  183. 183.
    Gotoh H, Sakai T (2006) Key issues in the particle method for computation of wave breaking. Coast Eng 53(2–3):171–179 CrossRefGoogle Scholar
  184. 184.
    Issa R, Violeau D (2008) Modelling a plunging breaking solitary wave with eddy-viscosity turbulent SPH models. Comput Mater Continua 8(3):151–164 Google Scholar
  185. 185.
    Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55(3):236–250 CrossRefGoogle Scholar
  186. 186.
    Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port C 129(6):250–259 CrossRefGoogle Scholar
  187. 187.
    Panizzo A (2005). SPH modelling of underwater landslide generated waves. In: Proceedings of the 29th international conference on coastal engineering 2004, Lisbon, Portugal Google Scholar
  188. 188.
    Qiu LC (2008) Two-dimensional SPH simulations of landslide-generated water waves. J Hydraul Eng ASCE 134(5):668–671 CrossRefGoogle Scholar
  189. 189.
    Rogers BD, Dalrymple RA (2005) SPH modeling of breaking waves. In: Proceedings of the 29th international conference on coastal engineering 2004, Lisbon, Portugal Google Scholar
  190. 190.
    Shao SD (2009) Incompressible SPH simulation of water entry of a free-falling object. Int J Numer Methods Fluids 59(1):91–115 CrossRefzbMATHGoogle Scholar
  191. 191.
    Shao SD, Ji CM, Graham DI, Reeve DE, James PW, Chadwick AJ (2006) Simulation of wave overtopping by an incompressible SPH model. Coast Eng 53(9):723–735 CrossRefGoogle Scholar
  192. 192.
    Violeau D, Buvat C, Abed-Meraim K, de Nanteuil E (2007) Numerical modelling of boom and oil spill with SPH. Coast Eng 54(12):895–913 CrossRefGoogle Scholar
  193. 193.
    Yim SC, Yuk D, Panizzo A, Di Risio M, Liu PLF (2008) Numerical simulations of wave generation by a vertical plunger using RANS and SPH models. J Waterw Port C 134(3):143–159 CrossRefGoogle Scholar
  194. 194.
    Zou S, Dalrymple RA (2005) Sediment suspension modeling by smoothed particle hydrodynamics. In: Proceedings of the 29th international conference on coastal engineering 2004, Lisbon, Portugal Google Scholar
  195. 195.
    Bulgarelli UP (2005) The application of numerical methods for the solution of some problems in free-surface hydrodynamics. J Ship Res 49(4):288–301 Google Scholar
  196. 196.
    Iglesias AS, Rojas LP, Rodriguez RZ (2004) Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics. Ocean Eng 31(8–9):1169–1192 CrossRefGoogle Scholar
  197. 197.
    Kim Y (2007) Experimental and numerical analyses of sloshing flows. J Eng Math 58(1–4):191–210 CrossRefzbMATHGoogle Scholar
  198. 198.
    Lohner R, Yang C, Onate E (2006) On the simulation of flows with violent free surface motion. Comput Methods Appl Mech Eng 195(41–43):5597–5620 MathSciNetCrossRefGoogle Scholar
  199. 199.
    Rhee SH, Engineer L (2005) Unstructured grid based Reynolds-averaged Navier-Stokes method for liquid tank sloshing. J Fluid Eng 127:572 CrossRefGoogle Scholar
  200. 200.
    Souto-Iglesias A, Delorme L, Perez-Rojas L, Abril-Perez S (2006) Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng 33(11–12):1462–1484 CrossRefGoogle Scholar
  201. 201.
    Bursik M, Martinez-Hackert B, Delgado H, Gonzalez-Huesca A (2003) A smoothed-particle hydrodynamic automaton of landform degradation by overland flow. Geomorphology 53(1–2):25–44 CrossRefGoogle Scholar
  202. 202.
    Zhu Y, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Methods 23(9):881–904 CrossRefzbMATHGoogle Scholar
  203. 203.
    Zhu Y, Fox PJ (2002) Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics. J Comput Phys 182(2):622–645 CrossRefzbMATHGoogle Scholar
  204. 204.
    Tartakovsky AM, Meakin P (2006) Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour 29(10):1464–1478 CrossRefGoogle Scholar
  205. 205.
    Cleary PW, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans R Soc A 362(1822):2003–2030 MathSciNetCrossRefGoogle Scholar
  206. 206.
    Ghazali JN, Kamsin A (2008) A real time simulation and modeling of flood hazard. In: 12th WSEAS international conference on systems, Heraklion, Greece Google Scholar
  207. 207.
    Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Graphics interface 2006, Quebec, Canada Google Scholar
  208. 208.
    Bui HH, Fukagawa R, Sako K (2006) Smoothed particle hydrodynamics for soil mechanics. Taylor & Francis, London Google Scholar
  209. 209.
    Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods 32(12):1537–1570 CrossRefGoogle Scholar
  210. 210.
    Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil-water interaction using smoothed particle hydrodynamics (SPH) method. J Terramech 44(5):339–346 CrossRefGoogle Scholar
  211. 211.
    Gallati M, Braschi G, Falappi S (2005) SPH simulations of the waves produced by a falling mass into a reservoir. Nuovo Cimento C 28(2):129–140 Google Scholar
  212. 212.
    Herrera PA, Massabo M, Beckie RD (2009) A meshless method to simulate solute transport in heterogeneous porous media. Adv Water Resour 32(3):413–429 CrossRefGoogle Scholar
  213. 213.
    Hui HH, Fukagawa R, Sako K (2006) Smoothed particle hydrodynamics for soil mechanics. Terramechanics 26:49–53 Google Scholar
  214. 214.
    Laigle D, Lachamp P, Naaim M (2007) SPH-based numerical investigation of mudflow and other complex fluid flow interactions with structures. Comput Geosci 11(4):297–306 CrossRefzbMATHGoogle Scholar
  215. 215.
    Maeda K, Sakai H (2007) Seepage failure analysis with evolution of air bubbles by SPH. In: New frontiers in Chinese and Japanese geotechniques, proceedings of the 3rd Sino-Japan geotechnical symposium, Chongqing, China Google Scholar
  216. 216.
    McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097 CrossRefGoogle Scholar
  217. 217.
    McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448 CrossRefGoogle Scholar
  218. 218.
    Moresi L, Muhlhous H, Dufour F (2001) An overview of numerical methods for Earth simulations Google Scholar
  219. 219.
    Morris JP, Zhu Y, Fox PJ (1999) Parallel simulations of pore-scale flow through porous media. Comput Geotech 25(4):227–246 CrossRefGoogle Scholar
  220. 220.
    Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods 33(2) Google Scholar
  221. 221.
    Sakai H, Maeda K (2006) Seepage failure of granular ground accounting for soil-water-gas interaction. In: Geomechanics and geotechnics of particulate media, proceedings of the international symposium on geomechanics and geotechnics of particulate media, Ube, Yamaguchi, Japan Google Scholar
  222. 222.
    Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Model 22(12):981–993 CrossRefGoogle Scholar
  223. 223.
    Jeong JH, Jhon MS, Halow JS, Van Osdol J (2003) Smoothed particle hydrodynamics: applications to heat conduction. Comput Phys Commun 153(1):71–84 CrossRefGoogle Scholar
  224. 224.
    Jiang F, Sousa ACM (2006) SPH numerical modeling for ballistic-diffusive heat conduction. Numer Heat Transfer B, Fundam 50(6):499–515 CrossRefGoogle Scholar
  225. 225.
    Jiang FM, Sousa ACM (2006) SPH numerical modeling for ballistic-diffusive heat conduction. Numer Heat Transfer B, Fundam 50(6):499–515 CrossRefGoogle Scholar
  226. 226.
    Rook R, Yildiz M, Dost S (2007) Modeling transient heat transfer using SPH and implicit time integration. Numer Heat Transfer B, Fundam 51(1):1–23 CrossRefGoogle Scholar
  227. 227.
    Sousa ACM, Jiang FM (2007) SPH as an inverse numerical tool for the prediction of diffusive properties in porous media. Diffus Solids Liq Heat Transfer, Microstruct Prop 553:171–189 Google Scholar
  228. 228.
    Gutfraind R, Savage SB (1998) Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations. Mech Mater 29(1):1–17 CrossRefGoogle Scholar
  229. 229.
    Oger L, Savage SB (1999) Smoothed particle hydrodynamics for cohesive grains. Comput Methods Appl Mech Eng 180(1):169–183 CrossRefzbMATHGoogle Scholar
  230. 230.
    Ji SY, Li H, Shen HT, Wang RX, Yue QJ (2007) A hybrid Lagrangian-Eulerian numerical model for sea-ice dynamics. Acta Oceanol Sin 26:12–24 Google Scholar
  231. 231.
    Ji SY, Shen HT, Wang ZL, Shen HH, Yue QJ (2005) A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics. Acta Oceanol Sin 24(4):54–65 Google Scholar
  232. 232.
    Schafer C, Speith R, Kley W (2007) Collisions between equal-sized ice grain agglomerates. Astron Astrophys 470(2):733–739 CrossRefGoogle Scholar
  233. 233.
    Shen HT, Su JS, Liu LW (2000) SPH simulation of river ice dynamics. J Comput Phys 165(2):752–770 CrossRefzbMATHGoogle Scholar
  234. 234.
    Wang RX, Ji SY, Shen HT, Yue QJ (2005) Modified PIC method for sea ice dynamics. China Ocean Eng 19(3):457–468 Google Scholar
  235. 235.
    Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72(2):26301 CrossRefGoogle Scholar
  236. 236.
    Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968–4975 CrossRefGoogle Scholar
  237. 237.
    Apfel RE, Tian Y, Jankovsky J, Shi T, Chen X, Holt RG, Trinh E, Croonquist A, Thornton KC, Sacco JA (1997) Free oscillations and surfactant studies of superdeformed drops in microgravity. Phys Rev Lett 78(10):1912–1915 CrossRefGoogle Scholar
  238. 238.
    Fang HS, Bao K, Wei JA, Zhang H, Wu EH, Zheng LL (2009) Simulations of droplet spreading and solidification using an improved SPH model. Numer Heat Transfer A, Appl 55(2):124–143 CrossRefGoogle Scholar
  239. 239.
    Lopez H, Sigalotti L, Di G (2006) Oscillation of viscous drops with smoothed particle hydrodynamics. Phys Rev E 73(5):51201 CrossRefGoogle Scholar
  240. 240.
    Melean Y, Sigalotti LD (2005) Coalescence of colliding van der Waals liquid drops. Int J Heat Mass Transfer 48:4041–4061 CrossRefzbMATHGoogle Scholar
  241. 241.
    Melean Y, Sigalotti LDG (2005) Coalescence of colliding van der Waals liquid drops. Int J Heat Mass Transfer 48(19–20):4041–4061 CrossRefzbMATHGoogle Scholar
  242. 242.
    Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci E, Trans ASME 130(2) Google Scholar
  243. 243.
    Zhang MY, Zhang H, Zheng LL (2007) Application of smoothed particle hydrodynamics method to free surface and solidification problems. Numer Heat Transfer A, Appl 52(4):299–314 CrossRefGoogle Scholar
  244. 244.
    Zhang MY, Zhang H, Zheng LL (2008) Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. Int J Heat Mass Transfer 51(13–14):3410–3419 CrossRefzbMATHGoogle Scholar
  245. 245.
    Zhang MY, Zhang H, Zheng LL (2009) Numerical investigation of substrate melting and deformation during thermal spray coating by SPH method. Plasma Chem Plasma Process 29(1):55–68 CrossRefGoogle Scholar
  246. 246.
    Zhou GZ, Ge W, Li JH (2008) A revised surface tension model for macro-scale particle methods. Powder Technol 183(1):21–26 CrossRefGoogle Scholar
  247. 247.
    Liu MB, Liu GR, Lam KY, Zong Z (2003) Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations. Shock Waves 12(6):509–520 CrossRefGoogle Scholar
  248. 248.
    Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32(3):305–322 CrossRefzbMATHGoogle Scholar
  249. 249.
    Liu MB, Liu GR, Lam KY (2002) Investigations into water mitigation using a meshless particle method. Shock Waves 12(3):181–195 CrossRefGoogle Scholar
  250. 250.
    Liu MB, Liu GR (2004) Smoothed particle hydrodynamics: some recent developments in theory and applications. J Beijing Polytech Univ 30:61–71 Google Scholar
  251. 251.
    Liu MB, Liu GR, Lam KY, Zong Z (2003) Computer simulation of shaped charge detonation using meshless particle method. Fragblast 7(3):181–202 CrossRefGoogle Scholar
  252. 252.
    Alia A, Souli M (2006) High explosive simulation using multi-material formulations. Appl Therm Eng 26(10):1032–1042 CrossRefGoogle Scholar
  253. 253.
    Bromm V, Yoshida N, Hernquist L (2003) The first supernova explosions in the universe. Astrophys J 596(2):L135–L138 CrossRefGoogle Scholar
  254. 254.
    Busegnies Y, Francois J, Paulus G (2007) Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective. Shock Waves 16(4–5):359–389 CrossRefGoogle Scholar
  255. 255.
    Liu MB, Liu GR, Lam KY (2003) Comparative study of the real and artificial detonation models in underwater explosions. Electron Model 25(2):113–124 MathSciNetGoogle Scholar
  256. 256.
    Mair HU (1999) Review: hydrocodes for structural response to underwater explosions. Shock Vib 6(2):81–96 Google Scholar
  257. 257.
    Swegle JW (1992) Report at Sandia National Laboratories Google Scholar
  258. 258.
    Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. In: Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, proceedings of the next free-Lagrange conference, Jackson Lake Lodge, Moran, WY, USA Google Scholar
  259. 259.
    Zhou CE, Liu GR, Ky Lou (2007) Three-dimensional penetration simulation using smoothed particle hydrodynamics. Int J Comput Methods 4(4):671–691 MathSciNetCrossRefGoogle Scholar
  260. 260.
    Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87(1):253–265 CrossRefzbMATHGoogle Scholar
  261. 261.
    Cleary P, Ha J, Alguine V, Nguyen T (2002) Flow modelling in casting processes. Appl Math Model 26(2):171–190 CrossRefzbMATHGoogle Scholar
  262. 262.
    Cleary PW, Ha J, Ahuja V (2000) High pressure die casting simulation using smoothed particle hydrodynamics. Int J Cast Met Res 12(6):335–355 Google Scholar
  263. 263.
    Chen JS, Pan C, Roque C, Wang HP (1998) A Lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307 CrossRefzbMATHGoogle Scholar
  264. 264.
    Cleary PW, Ha J (2000) Three dimensional modelling of high pressure die casting. Int J Cast Met Res 12(6):357–365 Google Scholar
  265. 265.
    Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177(1–3):41–48 CrossRefGoogle Scholar
  266. 266.
    Cleary PW, Prakash M, Ha J, Stokes N, Scott C (2007) Smooth particle hydrodynamics: status and future potential. Prog Comput Fluid Dyn 7(2–4):70–90 MathSciNetCrossRefzbMATHGoogle Scholar
  267. 267.
    Ha J, Cleary PW (2000) Comparison of SPH simulations of high pressure die casting with the experiments and VOF simulations of Schmid and Klein. Int J Cast Met Res 12(6):409–418 Google Scholar
  268. 268.
    Ha J, Cleary PW (2005) Simulation of high pressure die filling of a moderately complex industrial object using smoothed particle hydrodynamics. Int J Cast Met Res 18(2):81–92 CrossRefGoogle Scholar
  269. 269.
    Hu W, Yao LG, Hua ZZ (2007) Parallel point interpolation method for three-dimensional metal forming simulations. Eng Anal Bound Elem 31(4):326–342 CrossRefGoogle Scholar
  270. 270.
    Prakash M, Cleary PW, Grandfield J, Rohan P, Nguyen V (2007) Optimisation of ingot casting wheel design using SPH simulations. Prog Comput Fluid Dyn 7(2–4):101–110 CrossRefzbMATHGoogle Scholar
  271. 271.
    Ala G, Francomano E, Tortofici A, Toscano E, Viola F (2007) Corrective meshless particle formulations for time domain Maxwell’s equations. J Comput Appl Math 210(1–2):34–46 MathSciNetCrossRefzbMATHGoogle Scholar
  272. 272.
    Ala G, Francomano E, Tortorici A, Toscano E, Viola F (2006) Smoothed particle electromagnetics: a mesh-free solver for transients. J Comput Appl Math 191(2):194–205 MathSciNetCrossRefzbMATHGoogle Scholar
  273. 273.
    Ala G, Francomano E, Tortorici A, Toscano E, Viola F, di Ingegneria Elettrica D, e delle Telecomunicazioni E (2007) A mesh-free particle method for transient full-wave simulation. IEEE Trans Magn 43(4):1333–1336 CrossRefGoogle Scholar
  274. 274.
    Borve S, Omang M, Trulsen J (2001) Regularized smoothed particle hydrodynamics: a new approach to simulating magnetohydrodynamic shocks. Astrophys J 561(1):82–93 CrossRefGoogle Scholar
  275. 275.
    Dolag K, Bartelmann M, Lesch H (1999) SPH simulations of magnetic fields in galaxy clusters. Astron Astrophys 348(2):351–363 Google Scholar
  276. 276.
    Francomano E, Tortorici A, Toscano E, Ala G, Viola F (2009) On the use of a meshless solver for PDEs governing electromagnetic transients. Appl Math Comput 209(1):42–51 MathSciNetCrossRefzbMATHGoogle Scholar
  277. 277.
    Jiang FM, Oliveira MSA, Sousa ACM (2006) SPH simulation of transition to turbulence for planar shear flow subjected to a streamwise magnetic field. J Comput Phys 217(2):485–501 MathSciNetCrossRefzbMATHGoogle Scholar
  278. 278.
    Meglicki Z (1994) Verification and accuracy of smoothed particle magnetohydrodynamics. Comput Phys Commun 81(1–2):91–104 CrossRefGoogle Scholar
  279. 279.
    Pimenta LCA, Mendes ML, Mesquita RC, Pereira GAS (2007) Fluids in electrostatic fields: an analogy for multirobot control. IEEE Trans Magn 43(4):1765–1768 CrossRefGoogle Scholar
  280. 280.
    Price DJ, Monaghan JJ (2004) Smoothed particle magnetohydrodynamics, I: algorithm and tests in one dimension. Mon Not R Astron Soc 348(1):123–138 CrossRefGoogle Scholar
  281. 281.
    Price DJ, Monaghan JJ (2004) Smoothed particle magnetohydrodynamics, II: variational principles and variable smoothing-length terms. Mon Not R Astron Soc 348(1):139–152 CrossRefGoogle Scholar
  282. 282.
    Price DJ, Monaghan JJ (2004) Smoothed particle magnetohydrodynamics: some shocking results. Astrophys Space Sci 292(1):279–283 CrossRefGoogle Scholar
  283. 283.
    Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by SPH. Comput Struct 85(11–14):879–890 CrossRefGoogle Scholar
  284. 284.
    Prakash M, Cleary PW, Ha J, Noui-Mehidi MN, Blackburn H, Brooks G (2007) Simulation of suspension of solids in a liquid in a mixing tank using SPH and comparison with physical modelling experiments. Prog Comput Fluid Dyn 7(2):91–100 CrossRefzbMATHGoogle Scholar
  285. 285.
    Anghileri M, Castelletti LML, Tirelli M (2005) Fluid structure interaction of water filled tanks during the impact with the ground. Int J Impact Eng 31(3):235–254 CrossRefGoogle Scholar
  286. 286.
    Chikazawa Y, Koshizuka S, Oka Y (2001) A particle method for elastic and visco-plastic structures and fluid-structure interactions. Comput Mech 27(2):97–106 CrossRefzbMATHGoogle Scholar
  287. 287.
    Guilcher PM, Ducrozet G, Doring M, Alessandrini B, Ferrant P (2006) Numerical simulation of wave-body interactions using a modified SPH solver. In: Proceedings of the sixteenth international offshore and polar engineering conference, San Francisco, CA Google Scholar
  288. 288.
    Hosseini SM, Amanifard N (2007) Presenting a modified SPH algorithm for numerical studies of fluid-structure interaction problems. IJE Trans B, Appl 20:167–178 Google Scholar
  289. 289.
    Muller M (2004) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12(1):25–31 Google Scholar
  290. 290.
    Hieber SE (2004) Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs. Technol Health Care 12(4):305–314 MathSciNetGoogle Scholar
  291. 291.
    Tanaka N, Takano T (2005) Microscopic-scale simulation of blood flow using SPH method. Int J Comput Methods 2(4):555–568 CrossRefzbMATHGoogle Scholar
  292. 292.
    Tsubota K, Wada S, Yamaguchi T (2006) Simulation study on effects of hematocrit on blood flow properties using particle method. J Biomech Sci Eng 1(1):159–170 CrossRefGoogle Scholar
  293. 293.
    Rosswog S, Wagner P (2002) Towards a macroscopic modeling of the complexity in traffic flow. Phys Rev E 65(3):36106 CrossRefGoogle Scholar
  294. 294.
    Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394 MathSciNetCrossRefzbMATHGoogle Scholar
  295. 295.
    Walters WP, Zukas JA (1989) Fundamentals of shaped charges. Wiley, New York Google Scholar
  296. 296.
    Anderson CE (1987) An overview of the theory of hydrocodes. Int J Impact Eng 5(1–4):33–59 CrossRefGoogle Scholar
  297. 297.
    Anghileri M, Castelletti LML, Invernizzi F, Mascheroni M (2005) A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng 31(8):929–944 CrossRefGoogle Scholar
  298. 298.
    Attaway SW, Heinstein MW, Swegle JW (1993) Coupling of smooth particle hydrodynamics with the finite element method. In: IMPACT-4: structural mechanics in reactor technology conference, Berlin, Germany Google Scholar
  299. 299.
    Batra RC, Zhang GM (2008) Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test. J Comput Phys 227(3):1962–1981 MathSciNetCrossRefzbMATHGoogle Scholar
  300. 300.
    Brown K, Attaway S, Plimpton S, Hendrickson B (2000) Parallel strategies for crash and impact simulations. Comput Methods Appl Mech Eng 184:375–390 CrossRefzbMATHGoogle Scholar
  301. 301.
    De Vuyst T, Vignjevic R, Campbell JC (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31(8):1054–1064 CrossRefGoogle Scholar
  302. 302.
    Fahrenthold EP, Koo JC (1997) Energy based particle hydrodynamics for hypervelocity impact simulation. Int J Impact Eng 20(1–5):253–264 CrossRefGoogle Scholar
  303. 303.
    Fawaz Z, Zheng W, Behdinan K (2004) Numerical simulation of normal and oblique ballistic impact on ceramic composite armours. Compos Struct 63(3–4):387–395 CrossRefGoogle Scholar
  304. 304.
    Fountzoulas CG, Gazonas GA, Cheeseman BA (2007) Computational modeling of tungsten carbide sphere impact and penetration into high-strength-low-alloy (HSLA)-100 steel targets. J Mech Mater Struct 2(10):1965–1979 CrossRefGoogle Scholar
  305. 305.
    Groenenboom PHL (1997) Numerical simulation of 2D and 3D hypervelocity impact using the SPH option in PAM-SHOCK(TM). Int J Impact Eng 20(1–5):309–323 CrossRefGoogle Scholar
  306. 306.
    Hayhurst CJ, Clegg RA (1997) Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. Int J Impact Eng 20(1–5):337–348 Google Scholar
  307. 307.
    Hayhurst CJ, Clegg RA Livingstone IA, Francis NJ (1996) The application of SPH techniques in Autodyn-2D to ballistic impact problems. In: 16th international symposium on ballistics, San Francisco, USA Google Scholar
  308. 308.
    Hiermaier S, Schafer F (1999) Hypervelocity impact fragment clouds in high pressure gas numerical and experimental investigations. Int J Impact Eng 23(1):391–400 CrossRefGoogle Scholar
  309. 309.
    Ioan A, Brizzolara S, Viviani M, Couty N, Donner R, Hermundstad O, Kukkanen T, Malenica S, Temarel P (2007) Comparison of experimental and numerical impact loads on ship-like sections. In: Advancements in marine structures. Taylor & Francis, London Google Scholar
  310. 310.
    Ji XY, Li YC, Huang XC, Chen G (2007) Coupled FE-SPH simulation of truncated-conical projectiles penetrating steel sheets. In: 7th international conference on shock & impact loads on structures, Beijing, China Google Scholar
  311. 311.
    Johnson AF, Holzapfel M (2003) Modelling soft body impact on composite structures. Compos Struct 61(1–2):103–113 CrossRefGoogle Scholar
  312. 312.
    Johnson GR (1994) Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl Eng Des 150(2–3):265–274 CrossRefGoogle Scholar
  313. 313.
    Johnson GR, Beissel SR, Stryk RA (2000) A generalized particle algorithm for high velocity impact computations. Comput Mech 25(2):245–256 CrossRefzbMATHGoogle Scholar
  314. 314.
    Johnson GR, Peterson EH, Stryrk RA (1993) Incorporation of an sph option into the epic code for a wide range of high velocity impact computations. Int J Impact Eng 14:385–394 CrossRefGoogle Scholar
  315. 315.
    Johnson GR, Stryk RA, Beissel SR, Holmquist TJ (2002) An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation. Int J Impact Eng 27(10):997–1013 CrossRefGoogle Scholar
  316. 316.
    Kikuchi M, Miyamoto B (2006) Numerical simulation of impact crush/buckling of circular tube using SPH method. Key Eng Mater 306–308:697–702 CrossRefGoogle Scholar
  317. 317.
    Kitsionas S, Whitworth AP (2007) High-resolution simulations of clump-clump collisions using SPH with particle splitting. Mon Not R Astron Soc 378(2):507–524 CrossRefGoogle Scholar
  318. 318.
    Lam KY, Shen YG, Gong SW (2001) A study of axial impact of composite rods using SPH approach. Shock Vib 8(5):303–312 Google Scholar
  319. 319.
    Lee M, Yoo YH (2001) Analysis of ceramic/metal armour systems. Int J Impact Eng 25(9):819–829 CrossRefGoogle Scholar
  320. 320.
    Libersky LD, Randles PW, Carney TC, Dickinson DL (1997) Recent improvements in SPH modeling of hypervelocity impact. Int J Impact Eng 20(6):525–532 CrossRefGoogle Scholar
  321. 321.
    Lukyanov AA, Reveles JR, Vignjevic R, Campbell J (2005) Simulation of hypervelocity debris impact and spacecraft shielding performance. In: Proceedings of the 4th European conference on space debris Google Scholar
  322. 322.
    Ma S, Zhang X, Qiu XM (2009) Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int J Impact Eng 36(2):272–282 CrossRefGoogle Scholar
  323. 323.
    Michel Y, Chevalier JM, Durin C, Espinosa C, Malaise F, Barrau JJ (2006) Hypervelocity impacts on thin brittle targets: experimental data and SPH simulations. Int J Impact Eng 33(1–12):441–451 CrossRefGoogle Scholar
  324. 324.
    Nizampatnam LS, Horn WJ (2008) Investigation of multi-material bird models for predicting impact loads. In: Proceedings of the Asme turbo expo, Berlin, Germany Google Scholar
  325. 325.
    Park YK, Fahrenthold EP (2005) A kernel free particle-finite element method for hypervelocity impact simulation. Int J Numer Methods Eng 63(5):737–759 CrossRefzbMATHGoogle Scholar
  326. 326.
    Rabczuk T, Eibl J (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32(11):1878–1897 CrossRefGoogle Scholar
  327. 327.
    Randles PW, Carney TC, Libersky LD, Renick JD, Petschek AG (1994) Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. Int J Impact Eng 17(4):661–672 CrossRefGoogle Scholar
  328. 328.
    Rosen P, Popescu V, Hoffmann C, Irfanoglu A (2008) A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center. IEEE Trans Vis Comput Graph 14(4):937–947 CrossRefGoogle Scholar
  329. 329.
    Shintate K, Sekine H (2004) Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method. Compos Part A, Appl Sci 35(6):683–692 CrossRefGoogle Scholar
  330. 330.
    Stellingwerf RF, Wingate CA (1993) Impact modeling with smooth particle hydrodynamics. In: Conference: smooth particle hydrodynamics in astrophysics OAT workshop, Trieste, Italy Google Scholar
  331. 331.
    Taylor EA (2001) Simulation of hollow shaped charge jet impacts onto aluminium whipple bumpers at 11 km/s. Int J Impact Eng 26(1–10):773–784 CrossRefGoogle Scholar
  332. 332.
    Vignjevic R, Lepage S, De Vuyst T (2005) Simulation of high velocity impacts on thin metallic targets II (discrete elements). WIT Trans Eng Sci 49:575–582 Google Scholar
  333. 333.
    Wang P, Shao JL, Qin CS (2009) Effect of loading-wave-front width on micro-jet from aluminum surface. Acta Phys Sin 58(2):1064–1070 Google Scholar
  334. 334.
    Zhang QM, Long RR, Liu ZF, Huang FL (2008) SPH simulations of hypervelocity impact of al spheres on multi-plate structures. Int J Mod Phys B 22(9–11):1604–1611 CrossRefGoogle Scholar
  335. 335.
    McCarthy MA, Xiao JR, Petrinic N, Kamoulakos A, Melito V (2004) Modelling of bird strike on an aircraft wing leading edge eade from fibre metal laminates, part 1: material modelling. Appl Compos Mater 11(5):295–315 CrossRefGoogle Scholar
  336. 336.
    Brown K, Attaway S, Plimpton S, Hendrickson B (2000) Parallel strategies for crash and impact simulations. Comput Methods Appl Mech Eng 184(2):375–390 CrossRefzbMATHGoogle Scholar
  337. 337.
    Bicknell GV, Gingold RA (1983) On tidal detonation of stars by massive black holes. Astrophys J 273:749–760 CrossRefGoogle Scholar
  338. 338.
    Fulbright MS, Benz W, Davies MB (1995) A method of smoothed particle hydrodynamics using spheroidal kernels. Astrophys J 440:254 CrossRefGoogle Scholar
  339. 339.
    Chin GL (2001) Smoothed particle hydrodynamics and adaptive smoothed particle hydrodynamics with strength of materials. National University of Singapore, Singapore Google Scholar
  340. 340.
    Hiermaier S, Konke D, Stilp AJ, Thoma K (1997) Computational simulation of the hypervelocity impact of Al-spheres on thin plates of different materials. Int J Impact Eng 20(1–5):363–374 CrossRefGoogle Scholar
  341. 341.
    Bangash MYH (1993) Impact and explosion. Blackwell Scientific, Oxford Google Scholar
  342. 342.
    Cole RH (1948) Underwater explosions. Princeton University Press, Princeton Google Scholar
  343. 343.
    Fickett WW (1966) Flow calculations for pulsating one-dimensional detonations. Phys Fluids 9:903–916 CrossRefGoogle Scholar
  344. 344.
    Mader CL (1998) Numerical modeling of explosives and propellants. CRC Press, New York Google Scholar
  345. 345.
    Libersky LD, Randles PW (2006) Shocks and discontinuities in particle methods. Shock Compress Condens Matter 845:1089–1092 Google Scholar
  346. 346.
    Ma S, Zhang X, Lian YP, Zhou X (2009) Simulation of high explosive explosion using adaptive material point method. Comput Model Eng 39(2):101–123 MathSciNetGoogle Scholar
  347. 347.
    Miyoshi H (2008) Numerical simulation of shaped charges using the SPH solver: jet formation and target penetration. Explos Shock Wave Hypervelocity Phenom Mater II Google Scholar
  348. 348.
    Tanaka K (2008) Numerical studies of explosive welding by SPH. Explos Shock Wave Hypervelocity Phenom Mater II 566:61–64 Google Scholar
  349. 349.
    Wataru K, Akiko M (2006) Explosion simulation by smoothed particle hydrodynamics. Comput Methods 2:1397–1403 CrossRefGoogle Scholar
  350. 350.
    Xu JX, Liu XL (2008) Analysis of structural response under blast loads using the coupled SPH-FEM approach. J Zhejiang Univ Sci A 9(9):1184–1192 CrossRefzbMATHGoogle Scholar
  351. 351.
    Liu MB, Liu GR, Lam KY (2001) Simulation of the explosive detonation process by using SPH methodology. In: Computational fluids and solid mechanics. Elsevier Science, Amsterdam Google Scholar
  352. 352.
    Dobratz BM (1981) LLNL explosive handbook. Lawrence Livermore National Laboratory, Livermore Google Scholar
  353. 353.
    Chiesum JE, Shin YS (1997) Explosion gas bubbles near simple boundaries. Shock Vib 4(11):11–25 Google Scholar
  354. 354.
    Karniadakis GE, Beskok A, Aluru A (2005) Microflows and nanoflows: fundamentals and simulation. Springer, Berlin zbMATHGoogle Scholar
  355. 355.
    Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, Oxford Google Scholar
  356. 356.
    Beskok A, Karniadakis GE (2001) Microflows: fundamentals and simulation. Springer, Berlin Google Scholar
  357. 357.
    Pan L, Ng TY, Xu D, Liu GR, Lam KY (2002) Determination of temperature jump coefficient using the direct simulation Monte Carlo method. J Micromech Microeng 12(1):41–52 CrossRefGoogle Scholar
  358. 358.
    Pan LS, Liu GR, Khoo BC, Song B (2000) A modified direct simulation Monte Carlo method for low-speed microflows. J Micromech Microeng 10:21–27 CrossRefGoogle Scholar
  359. 359.
    Pan LS, Liu GR, Lam KY (1999) Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo. J Micromech Microeng 9(1):89–96 CrossRefGoogle Scholar
  360. 360.
    Duong-Hong D, Wang JS, Liu GR, Chen YZ, Han J, Hadjiconstantinou NG (2007) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 3:1–7 Google Scholar
  361. 361.
    Hoover WG, Hoover CG, Kum O, Castillo VM, Posch HA, Hess S (1996) Smooth particle applied mechanics. Comput Methods Sci Eng 2:6572 Google Scholar
  362. 362.
    Hoover WG, Pierce TG, Hoover CG, Shugart JO, Stein CM, Edwards AL (1994) Molecular dynamics, smoothed-particle applied mechanics, and irreversibility. Comput Math Appl 28(10–12):155–174 CrossRefzbMATHGoogle Scholar
  363. 363.
    Hoover WG, Hoover CG (2003) Links between microscopic and macroscopic fluid mechanics. Mol Phys 101(11):1559–1573 CrossRefGoogle Scholar
  364. 364.
    Espanol P (1997) Fluid particle dynamics: a synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhys Lett 39(6):605–610 CrossRefGoogle Scholar
  365. 365.
    Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026705 CrossRefGoogle Scholar
  366. 366.
    Liu MB, Liu GR, Lam KY (2003) Computer simulation of flip-chip underfill encapsulation process using meshfree particle method. Int J Comput Eng Sci 4(2):405–408 MathSciNetCrossRefGoogle Scholar
  367. 367.
    Li Q, Cai TM, He GQ, Hu CB (2006) Droplet collision and coalescence model. Appl Math Mech 27(1):67–73 MathSciNetCrossRefzbMATHGoogle Scholar
  368. 368.
    Tartakovsky AM, Meakin P (2005) A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh Taylor instability. J Comput Phys 207(2):610–624 MathSciNetCrossRefzbMATHGoogle Scholar
  369. 369.
    Tartakovsky AM, Meakin P, Scheibe TD, Eichler West RM (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222(2):654–672 MathSciNetCrossRefzbMATHGoogle Scholar
  370. 370.
    Tartakovsky AM, Redden G, Lichtner PC, Scheibe TD, Meakin P (2008) Mixing-induced precipitation: experimental study and multiscale numerical analysis. Water Resour Res 44(6) Google Scholar
  371. 371.
    Tartakovsky AM, Meakin P, Ward AL (2009) Smoothed particle hydrodynamics model of non-Aqueous phase liquid flow and dissolution. Transp Porous Media 76(1):11–34 CrossRefGoogle Scholar
  372. 372.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354 MathSciNetCrossRefzbMATHGoogle Scholar
  373. 373.
    Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353 CrossRefzbMATHGoogle Scholar
  374. 374.
    Lo YME, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24(5):275–286 CrossRefGoogle Scholar
  375. 375.
    Shao S (2006) Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int J Numer Methods Fluids 50(5) Google Scholar
  376. 376.
    Shao S, Ji C (2006) SPH computation of plunging waves using a 2-D sub-particle scale (SPS) turbulence model. Int J Numer Methods Fluids 51(8) Google Scholar
  377. 377.
    Shao SD (2005) SPH simulation of solitary wave interaction with a curtain-type breakwater. J Hydraul Res 43(4):366–375 CrossRefGoogle Scholar
  378. 378.
    Frank J, Reich S (2003) Conservation properties of smoothed particle hydrodynamics applied to the shallow water equation. BIT 43(1):41–55 MathSciNetCrossRefzbMATHGoogle Scholar
  379. 379.
    Ata R, Soulaimani A (2005) A stabilized SPH method for inviscid shallow water flows. Int J Numer Methods Fluids 47(2):139–159 MathSciNetCrossRefzbMATHGoogle Scholar
  380. 380.
    Rodriguez-Paz M, Bonet J (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput Struct 83(17–18):1396–1410 MathSciNetCrossRefGoogle Scholar
  381. 381.
    Idelsohn SR, Onate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989 CrossRefzbMATHGoogle Scholar
  382. 382.
    Oger G, Alessandrini B, Ferrant P (2005) Capture of air cushion effects in a wedge water entry SPH simulation. In: Proceedings of the fifteenth international offshore and polar engineering conference Google Scholar
  383. 383.
    Callati M, Braschi G, Falappi S (2005) SPH simulations of the waves produced by a falling mass into a reservoir. Nuovo Cimento C 28(2):129–140 Google Scholar
  384. 384.
    Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional SPH simulations of wedge water entries. J Comput Phys 213(2):803–822 MathSciNetCrossRefzbMATHGoogle Scholar
  385. 385.
    Delorme L, Iglesias AS, Perez SA (2005) Sloshing loads simulation in LNG tankers with SPH. In: International conference on computational methods in marine engineering, Barcelona Google Scholar
  386. 386.
    Greco M, Landrini M, Faltinsen OM (2004) Impact flows and loads on ship-deck structures. J Fluids Struct 19(3):251–275 CrossRefGoogle Scholar
  387. 387.
    Liu MB, Liu GR, Zong Z (2008) An overview on smoothed particle hydrodynamics. Int J Comput Methods 5(1):135–188 MathSciNetCrossRefGoogle Scholar
  388. 388.
    Xu QX, Shen RY (2008) Fluid-structure interaction of hydrodynamic damper during the rush into the water channel. J Hydrodyn 20(5):583–590 MathSciNetCrossRefGoogle Scholar
  389. 389.
    Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Methods Fluids 56(2):209–232 MathSciNetCrossRefzbMATHGoogle Scholar
  390. 390.
    Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35(4):461–490 CrossRefGoogle Scholar
  391. 391.
    Nativ R, Adar E, Dahan O, Geyh M (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31(2):253–261 CrossRefGoogle Scholar
  392. 392.
    Schwartz LM, Martys N, Bentz DP, Garboczi EJ, Torquato S (1993) Cross-property relations and permeability estimation in model porous media. Phys Rev E 48(6):4584–4591 CrossRefGoogle Scholar
  393. 393.
    Huang H, Meakin P, Liu MB (2005) Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour Res. doi: 10.1029/2005WR004204 Google Scholar
  394. 394.
    Huang H, Meakin P, Liu MB, McCreery GE (2005) Modeling of multiphase fluid motion in fracture intersections and fracture networks. Geophys Res Lett 32:L19402. doi: 10.1029/2005GL023899 CrossRefGoogle Scholar
  395. 395.
    Snyder LJ, Stewart WE (1966) Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres. AIChE J 12(1):167–173 CrossRefGoogle Scholar
  396. 396.
    Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159 CrossRefzbMATHGoogle Scholar
  397. 397.
    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225 CrossRefzbMATHGoogle Scholar
  398. 398.
    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37 CrossRefzbMATHGoogle Scholar
  399. 399.
    Zhu Y, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43(3):441–471 CrossRefGoogle Scholar

Copyright information

© CIMNE, Barcelona, Spain 2010

Authors and Affiliations

  1. 1.Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.Centre for Advanced Computations in Engineering Science (ACES), Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations