Skip to main content
Log in

Recirculating Flows Involving Short Fiber Suspensions: Numerical Difficulties and Efficient Advanced Micro-Macro Solvers

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Numerical modelling of non-Newtonian flows usually involves the coupling between equations of motion characterized by an elliptic character, and the fluid constitutive equation, which defines an advection problem linked to the fluid history. There are different numerical techniques to treat the hyperbolic advection equations. In non-recirculating flows, Eulerian discretizations can give a convergent solution within a short computing time. However, the existence of steady recirculating flow areas induces additional difficulties. Actually, in these flows neither boundary conditions nor initial conditions are known. In this paper we compares different advanced strategies (some of them recently proposed and extended here for addressing complex flows) when they are applied to the solution of the kinetic theory description of a short fiber suspension fluid flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou Y, Pironneau O (2005) Computational methods for option pricing. SIAM, Philadelphia

    MATH  Google Scholar 

  2. Advani SG, Tucker III ChL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367–386

    Google Scholar 

  3. Ammar A, Chinesta F (2005) A particle strategy for solving the Fokker-Planck equation governing the fiber orientation distribution in steady recirculating flows involving short fiber suspensions. Lect Notes Comput Sci Eng 43:1–16

    Article  MathSciNet  Google Scholar 

  4. Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147

    Article  MATH  Google Scholar 

  5. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  Google Scholar 

  6. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation. J Non-Newton Fluid Mech 144:98–121

    Article  Google Scholar 

  7. Azaiez J, Chiba K, Chinesta F, Poitou A (2002) State-of-the-Art on numerical simulation of fiber-reinforced thermoplastic forming processes. Arch Comput Methods Eng 9(2):141–198

    Article  MATH  Google Scholar 

  8. Ballenger TF, White JL (1971) Flow patterns in polymer melts in the reservoir of a capillary rheometer. Chem Eng Sci 25:1191

    Article  Google Scholar 

  9. Bialecki RA, Kassab AJ, Fic A (2005) Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis. Int J Numer Meth Eng 62:774–797

    Article  MATH  Google Scholar 

  10. Binding DM (1988) An approximate analysis for contraction and converging flows. J Non-Newton Fluid Mech 27:173

    Article  MATH  Google Scholar 

  11. Boger DV (1987) Viscoelastic flows through contractions. Annu Rev Fluid Mech 19:157

    Article  Google Scholar 

  12. Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numer 13:1–123

    Article  MathSciNet  Google Scholar 

  13. Burkardt J, Gunzburger M, Lee H-Ch (2006) POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput Methods Appl Mech Eng 196:337–355

    Article  MATH  MathSciNet  Google Scholar 

  14. Chaidron G, Chinesta F (2001) On the periodicity of the extra-stress tensor in steady recirculating viscoelastic flows. In: Proceedings of the first MIT conference on computational fluid and solid mechanics. MIT Press, Cambridge

    Google Scholar 

  15. Chaubal CV, Srinivasan A, Egecioglu O, Leal LG (1997) Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems. J Non-Newton Fluid Mech 70:125–154

    Article  Google Scholar 

  16. Chauviere C, Lozinski A (2004) Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput Fluids 33:687–696

    Article  MATH  Google Scholar 

  17. Chinesta F, Chaidron G (2001) On the steady solution of linear advection problems in steady recirculating flows. J Non-Newton Fluid Mech 98:65–80

    Article  MATH  Google Scholar 

  18. Chinesta F, Chaidron G, Poitou A (2003) On the solution of the Fokker-Planck equation in steady recirculating flows involving short fiber suspensions. J Non-Newton Fluid Mech 113:97–125

    Article  MATH  Google Scholar 

  19. Cogswell FN (1973) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12:64

    Article  Google Scholar 

  20. Dennison MT (1967) Flow instability in polymer melts: a review. Plast Inst Trans 35:803

    Google Scholar 

  21. Dodson AG, Townsend P, Walters K (1974) Non-Newtonian flow in pipes of non-circular cross-section. Comput Fluids 2:317

    Article  MATH  Google Scholar 

  22. Dupret F, Verleye V (1999) Modelling the flow of fiber suspensions in narrows gaps. In: Siginer DA, De Kee D, Chabra RP (eds) Advances in the flow and rheology of non-Newtonian fluids. Rheology series. Elsevier, Amsterdam, pp 1347–1398

    Chapter  Google Scholar 

  23. Giesekus H (1966) Zur Stabilität von Strömungen viskoelastischer Flüssigkeiten. Rheol Acta 5:239

    Article  MATH  Google Scholar 

  24. Giesekus H (1969) Verschiedene Phänomene in Strömungen viskoelastischer Flüssigkeiten durch Düsen. Rheol Acta 8:411

    Article  Google Scholar 

  25. Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196:1030–1047

    Article  MATH  MathSciNet  Google Scholar 

  26. Jendrejack R, de Pablo J, Graham M (2002) A method for multiscale simulation of flowing complex fluids. J Non-Newton Fluid Mech 108:123–142

    Article  MATH  Google Scholar 

  27. Keunings R (2004) Micro-macro methods for the multiscale simulation viscoelastic flow using molecular models of kinetic theory. In: Binding DM, Walters K (eds) Rheology reviews. British Society of Rheology, UK, pp 67–98

    Google Scholar 

  28. Kim-E ME, Brown RA, Armstrong RC (1983) The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction. J Non-Newton Fluid Mech 13:341

    Article  Google Scholar 

  29. Lipscomb II GG, Denn MM, Hur DH, Boger DH (1988) The flow of fiber suspensions in complex geometries. J Non-Newton Fluid Mech 26:297–325

    Article  Google Scholar 

  30. Lozinski A, Chauviere C (2003) A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J Comput Phys 189:607–625

    Article  MATH  MathSciNet  Google Scholar 

  31. Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258

    Article  MATH  MathSciNet  Google Scholar 

  32. Manhart M (2003) Rheology of suspensions of rigid-rod like particles in turbulent channel flow. J Non-Newton Fluid Mech 12:269–293

    Article  Google Scholar 

  33. Muller SJ, Larson RG, Shaqfeh ESG (1999) A purely elastic transition in Taylor-Couette flow. Rheol Acta 28:499

    Article  Google Scholar 

  34. Oldroyd JG (1965) Some steady flows of the general elastic-viscous liquid. Proc R Soc Lond A 283:115

    Article  MATH  MathSciNet  Google Scholar 

  35. Öttinger HC, Laso M (1992) Smart polymers in finite element calculation. In: int Congr on rheology. Brussels, Belgium

  36. Park HM, Cho DH (1996) The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems. Chem Eng Sci 51:81–98

    Article  Google Scholar 

  37. Petrie CJS, Denn MM (1976) Instabilities in polymer processing. AIChE J 22(2):209

    Article  Google Scholar 

  38. Pruliere E, Ammar A, Chinesta F (2007) Empirical natural closure relation for short fiber suspension models. Int J Form Process 10(3):361–385

    Article  Google Scholar 

  39. Ryckelynck D (2005) A priori hyper-reduction method: an adaptive approach. J Comput Phys 202:346–366

    Article  MATH  Google Scholar 

  40. Ryckelynck D, Hermanns L, Chinesta F, Alarcón E (2005) An efficient “a priori” model reduction for boundary element models. Eng Anal Bound Elem 29:796–801

    Article  Google Scholar 

  41. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng 13(1):91–128

    Article  MATH  MathSciNet  Google Scholar 

  42. Somasi M, Khomami B, Woo NJ, Hur JS, Shaqfeh ESG (2002) Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues. J Non-Newton Fluid Mech 108(1–3):227–255

    Article  MATH  Google Scholar 

  43. Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond A 223:289

    Article  Google Scholar 

  44. Venkiteswaran G, Junk M (2005) A QMC approach for high dimensional Fokker-Planck equations modelling polymeric liquids. Math Comput Simul 68:43–56

    Article  MATH  MathSciNet  Google Scholar 

  45. Xue SC, Phan-Thien N, Tanner RI (1885) Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method. J Non-Newton Fluid Mech 59:191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruliere, E., Ammar, A., El Kissi, N. et al. Recirculating Flows Involving Short Fiber Suspensions: Numerical Difficulties and Efficient Advanced Micro-Macro Solvers. Arch Computat Methods Eng 16, 1–30 (2009). https://doi.org/10.1007/s11831-008-9027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-008-9027-9

Keywords

Navigation