Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts


Depth averaged models are widely used in engineering practice in order to model environmental flows in river and coastal regions, as well as shallow flows in hydraulic structures. This paper deals with depth averaged turbulence modelling. The most important and widely used depth averaged turbulence models are reviewed and discussed, and a depth averaged algebraic stress model is presented. A finite volume model for solving the depth averaged shallow water equations coupled with several turbulence models is described with special attention to the modelling of wet-dry fronts. In order to asses the performance of the model, several flows are modelled and the numerical results are compared with experimental data.

This is a preview of subscription content, log in to check access.


  1. 1.

    Akanbi AA, Katopodes ND (1988) Model for flood propagation on initially dry land. J Hydraul Eng 114(7):689–706

    Google Scholar 

  2. 2.

    Altai S, Zhang J, Chu VH (1999) Shallow turbulent flow simulation using two-length-scale model. J Eng Mech 125(7):780–788

    Article  Google Scholar 

  3. 3.

    Aulisa E, Manservisi S, Scardovelli R (2003) A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J Comput Phys 188:611–639

    MATH  Article  Google Scholar 

  4. 4.

    Babarutsi S, Chu VH (1991) A two-length-scale model for quasi-two-dimensional turbulent shear flows. In: Proc 24th congr of IAHR, vol C, Madrid, Spain, pp 51–60

  5. 5.

    Babarutsi S, Chu VH (1998) Modelling transverse mixing layer in shallow open-channel flows. J Hydraul Eng 124(7):718–727

    Article  Google Scholar 

  6. 6.

    Babarutsi S, Nassiri M, Chu VH (1996) Computation of shallow recirculating flow dominated by friction. J Hydraul Eng 122(7):367–372

    Article  Google Scholar 

  7. 7.

    Bellos CV, Soulis JV, Sakkas JG (1991) Computation of two-dimensional dam break induced flows. Adv Water Res 14(1):31–41

    Article  Google Scholar 

  8. 8.

    Bermúdez A, Vázquez-Cendón ME (1994) Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 23(8):1049–1071

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Bermúdez A, Dervieux A, Desideri JA, Vázquez-Cendón ME (1998) Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput Methods Appl Mech Eng 155:49–72

    MATH  Article  Google Scholar 

  10. 10.

    Bijvelds MDJP, Kranenbutg C, Stelling GS (1999) 3D numerical simulation of turbulent shallow-water flow in square harbor. J Hydraul Eng 125(1):26–31

    Article  Google Scholar 

  11. 11.

    Bonillo J (2000) Un modelo de transporte de sustancias solubles para flujos turbulentos en lámina libre. Tesis doctoral, Área de Ingeniería Hidráulica, Universidad de A Coruña

  12. 12.

    Booij R (1989) Depth-averaged kε modelling. In: Proc 23rd IAHR congr, Delft, The Netherlands, vol A. IAHR, pp 198–206

  13. 13.

    Bradford F, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitrary topography. J Hydraul Eng 128(3):289–298

    Article  Google Scholar 

  14. 14.

    Brufau P (2000) Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares. Tesis doctoral, Área de Mécanica de Fluidos, Universidad de Zaragoza

  15. 15.

    Brufau P, García-Navarro P (2000) Two-dimensional dam break flow simulation. Int J Numer Methods Fluids 33:35–57

    MATH  Article  Google Scholar 

  16. 16.

    Brufau P, Vázquez-Cendón ME, García-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. Int J Numer Methods Fluids 39(3):247–275

    MATH  Article  Google Scholar 

  17. 17.

    Brufau P, García-Navarro P, Vázquez-Cendón ME (2004) Zero mass error using unsteady wetting-drying conditions shallow flows over dry of irregular topography. Int J Numer Methods Fluids 45:1047–1082

    MATH  Article  Google Scholar 

  18. 18.

    Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124(7):678–686

    Article  Google Scholar 

  19. 19.

    Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math Comput Model 36:1131–1149

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    Cea L (2005) An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Doctoral Thesis, Departamento de Métodos Matemáticos y de Representación, Universidad de A Coruña

  21. 21.

    Cea L, Ferreiro A, Vázquez-Cendón ME, Puertas J (2004) Experimental and numerical analysis of solitary waves generated by bed and boundary movements. Int J Numer Methods Fluids 46(8):793–813

    MATH  Article  Google Scholar 

  22. 22.

    Cea L, French J, Vázquez-Cendón ME (2006) Numerical modelling of tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int J Numer Meth Eng 67(13):1909–1932

    Article  MATH  Google Scholar 

  23. 23.

    Cea L, Pena L, Puertas J, Vázquez-Cendón ME, Peña E (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J Hydraul Eng 133(2):160–172

    Article  Google Scholar 

  24. 24.

    Chen D, Jirka GH (1995) Experimental study of plane turbulent wakes in a shallow water layer. Fluid Dyn Res 16:11–41

    MATH  Article  Google Scholar 

  25. 25.

    Chen D, Jirka GH (1997) Absolute and convective instabilities of plane turbulent wakes in a shallow water layer. J Fluid Mech 338:157–172

    MATH  Article  MathSciNet  Google Scholar 

  26. 26.

    Chen D, Jirka GH (1998) Linear instability analysis of turbulent mixing layers and jets in shallow water layers. J Hydraul Res 36(5)

  27. 27.

    Chu VH, Babarutsi S (1988) Confinement and bed-friction effects in shallow turbulent mixing layers. J Hydraul Eng 114(10):1257–1274

    Google Scholar 

  28. 28.

    Chu VH, Wu JH, Khayat RE (1991) Stability of transverse shear flows in shallow open channels. J Hydraul Eng 117(10):1370–1388

    Google Scholar 

  29. 29.

    Davidson L (1993) Implementation of a kε model and a Reynolds stress model into a multiblock code. Tech Rep CRS4-APPMATH-93-21, Applied Mathematics and Simulation Group CRS4, Cagliary, Italy

  30. 30.

    Davidson L (1997) An introduction to turbulence models. Tech Rep 97/2, Dept of Thermo and Fluid Dynamics, Chalmers University of Technology

  31. 31.

    Davies AM, Jones JE, Xing J (1997) Review of recent developments in tidal hydrodynamic modeling. II: Turbulence energy models. J Hydraul Eng 123(4):278–292

    Article  Google Scholar 

  32. 32.

    Dervieux A, Desideri JA (1992) Compressible flow solvers using unstructured grids. Rapports de Recherche 1732, INRIA

  33. 33.

    Ding Y, Jia Y, Wang SSY (2004) Identification of Manning’s roughness coefficients in shallow water flows. J Hydraul Eng 130(6):501–510

    Article  Google Scholar 

  34. 34.

    Dodd N (1998) Numerical model of wave run-up, overtopping, and regeneration. J Waterw, Port, Coastal, Ocean Eng 124(2):73–81

    Article  Google Scholar 

  35. 35.

    Dracos T, Giger M, Jirka GH (1992) Plane turbulent jets in a bounded fluid layer. J Fluid Mech 241:587–614

    Article  Google Scholar 

  36. 36.

    Duan JG (2004) Simulation of flow and mass dispersion in meandering channels. J Hydraul Eng 130(10):964–976

    Article  Google Scholar 

  37. 37.

    Durbin P (1996) On the kε stagnation point anomaly. Int J Heat Fluid Flow 17:89–90

    Article  Google Scholar 

  38. 38.

    Fernández-Nieto ED (2003) Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Tesis doctoral, Universidad de Sevilla

  39. 39.

    García-Navarro P, Vázquez-Cendón ME (2000) On numerical treatment of the source terms in the shallow water equations. Comput Fluids 29:951–979

    MATH  Article  Google Scholar 

  40. 40.

    Gatski T, Speziale C (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 154:59–78

    Article  MathSciNet  Google Scholar 

  41. 41.

    Gerrits J (2001) Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen, The Netherlands

  42. 42.

    Giger M, Dracos T, Jirka GH (1991) Entrainment and mixing in plane turbulent jets in shallow water. J Hydraul Res 29(4):615–643

    Article  Google Scholar 

  43. 43.

    Harten A, Lax P, van Leer A (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61

    MATH  Article  MathSciNet  Google Scholar 

  44. 44.

    Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    MATH  Article  Google Scholar 

  45. 45.

    Hsieh TY, Yang JC (2003) Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation. J Hydraul Eng 129(8):597–612

    Article  Google Scholar 

  46. 46.

    Hubbard ME, Dodd N (2002) A 2D numerical model of wave runup and overtopping. Coast Eng 47:1–26

    Article  Google Scholar 

  47. 47.

    Hubbard ME, García-Navarro P (2000) Flux difference splitting and the balancing of source terms and flux gradients. J Comput Phys 165:89–125

    MATH  Article  MathSciNet  Google Scholar 

  48. 48.

    Idelsohn SR, Storti MA, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191:583–593

    MATH  Article  Google Scholar 

  49. 49.

    Ingram RG, Chu VH (1987) Flow around islands in Rupert Bay: an investigation of the bottom friction effect. J Geophys Res 92(C13):14521–14533

    Google Scholar 

  50. 50.

    Jia Y, Wang SSY (1999) Numerical model for channel flow and morphological change studies. J Hydraul Eng 125(9):924–933

    Article  Google Scholar 

  51. 51.

    Jirka GH (2001) Large scale flow structures and mixing processes in shallow flows. J Hydraul Res 39(6):567–573

    Article  Google Scholar 

  52. 52.

    Jones WP, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Article  Google Scholar 

  53. 53.

    LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics, vol 31. Cambridge University Press, Cambridge

    Google Scholar 

  54. 54.

    Lien HC, Hsieh TY, Yang JC, Yeh KC (1999) Bend-flow simulation using 2D depth-averaged model. J Hydraul Eng 125(10):1097–1108

    Article  Google Scholar 

  55. 55.

    Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 1: Surface piercing. J Hydraul Eng 123:1057–1067

    Article  Google Scholar 

  56. 56.

    Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 2: Submerged. J Hydraul Eng 123:1068–1077

    Article  Google Scholar 

  57. 57.

    Lloyd PM, Stansby PK, Chen D (2001) Wake formation around islands in oscillatory laminar shallow water flows. Part 1. Experimental investigation. J Fluid Mech 429:217–238

    MATH  Article  Google Scholar 

  58. 58.

    Maronnier V, Picasso M, Rappaz J (1999) Numerical simulation of free surface flows. J Comput Phys 155:439–455

    MATH  Article  MathSciNet  Google Scholar 

  59. 59.

    Menter FR (1993) Zonal two-equation kω turbulence models for aerodynamic flows. AIAA paper 93-2906. In 24th fluid dynamics conference, 6–9 July 1993, Orlando, FL

  60. 60.

    Miglio E, Quarteroni A, Saleri F (1999) Finite element approximation of quasi-3D shallow water equations. Comput Methods Appl Mech Eng 174:355–369

    MATH  Article  MathSciNet  Google Scholar 

  61. 61.

    Minh-Duc B, Wenka T, Rodi W (2004) Numerical modeling of bed deformation in laboratory channels. J Hydraul Eng 130(9):894–904

    Article  Google Scholar 

  62. 62.

    Molls T, Chaudhry MH (1995) Depth-averaged open-channel flow model. J Hydraul Eng 121(6):453–465

    Article  Google Scholar 

  63. 63.

    Nichols BD, Hirt CW (1973) Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures. J Comput Phys 12:234–246

    Article  Google Scholar 

  64. 64.

    Nichols BD, Hirt CW (1975) Methods for calculating multidimensional, transient free surface flows past bodies. In: Proc 1st int conf on numer ship hydrodyn, Gaithersburg, MD

  65. 65.

    Olsen NRB (1999) Two-dimensional numerical modelling of flushing processes in water reservoirs. J Hydraul Res 37(1):3–16

    Article  Google Scholar 

  66. 66.

    Olsen NRB, Kjellesvig HM (1998) Three-dimensional numerical flow modelling for estimation of spillway capacity. J Hydraul Res 36(5):775–784

    Article  Google Scholar 

  67. 67.

    Olsen NRB, Melaaen MC (1998) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1049–1054

    Google Scholar 

  68. 68.

    Peltier E, Duplex J, Latteux B, Pechon P, Chausson P (1991) Finite element model for bed-load transport and morphological evolution. Comput Model Ocean Eng 91

  69. 69.

    Pena L, Cea L, Puertas J (2004) Turbulent flow: an experimental analysis in vertical slot fishways. In: Fifth international symposium on ecohydraulics, Madrid, Spain, IAHR, pp 881–888

  70. 70.

    Playán E, Walker WR, Merkley GP (1994) Two-dimensional simulation of basin irrigation I: theory. J Irrig Drain Eng 120(5):837–856

    Article  Google Scholar 

  71. 71.

    Pope (1975) A more general effective-viscosity hypothesis. J Fluid Mech 472:331–340

    Article  Google Scholar 

  72. 72.

    Puertas J, Pena L, Teijeiro T (2004) An experimental approach to the hydraulics of vertical slot fishways. J Hydraul Eng 130(1):10–23

    Article  Google Scholar 

  73. 73.

    Rajaratnam N, Katopodis C, Solanski S (1992) New designs for vertical slot fishways. Can J Civ Eng 19(3):402–414

    Article  Google Scholar 

  74. 74.

    Rajaratnam N, van der Vinne G, Katopodis C (1986) Hydraulics of vertical slot fishways. J Hydraul Eng 112(10):909–927

    Article  Google Scholar 

  75. 75.

    Rameshwaran P, Shiono K (2003) Computer modelling of two-stage meandering channel flows. Water Marit Eng 156(4):325–339

    Article  Google Scholar 

  76. 76.

    Rastogi AK, Rodi W (1978) Predictions of heat and mass transfer in open channels. J Hydraul Div HY 3:397–420

    Google Scholar 

  77. 77.

    Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540

    Article  Google Scholar 

  78. 78.

    Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141:112–152

    MATH  Article  MathSciNet  Google Scholar 

  79. 79.

    Rodi W (1976) A new algebraic relation for calculating the Reynolds stresses. Z Angew Math Mech 56:219–221

    Article  MathSciNet  Google Scholar 

  80. 80.

    Roe PL (1986) Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J Comput Phys 63:458–476

    MATH  Article  MathSciNet  Google Scholar 

  81. 81.

    Sauvaget P, David E, Soares CG (2000) Modelling tidal currents on the coast of Portugal. Coast Eng 40:393–409

    Article  Google Scholar 

  82. 82.

    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flows. Annu Rev Fluid Mech 31:567–603

    Article  MathSciNet  Google Scholar 

  83. 83.

    Sleigh PA, Gaskell PH, Berzins M, Wright NG (1998) An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Comput Fluids 27(4):479–508

    MATH  Article  Google Scholar 

  84. 84.

    Stansby PK (1997) Semi-implicit finite volume shallow-water flow and solute transport solver with kε turbulence model. Int J Numer Methods Fluids 25:285–313

    MATH  Article  MathSciNet  Google Scholar 

  85. 85.

    Stansby PK, Lloyd PM (2001) Wake formation around islands in oscillatory laminar shallow-water flows. Part 2. Three-dimensional boundary-layer modelling. J Fluid Mech 429:239–254

    MATH  Article  Google Scholar 

  86. 86.

    Thomas FO, Goldschmidt VW (1986) Structural characteristics of developing turbulent planar jet. J Fluid Mech 63:227–256

    Article  Google Scholar 

  87. 87.

    Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, New York

    Google Scholar 

  88. 88.

    Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, Chichester

    Google Scholar 

  89. 89.

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Nas JHS, Yan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169:708–759

    MATH  Article  Google Scholar 

  90. 90.

    Uijttewaal WSJ, Booij R (2000) Effects of shallowness on the development of free-surface mixing layers. Phys Fluids 12(2):392–402

    Article  MATH  Google Scholar 

  91. 91.

    Uijttewaal WSJ, Girka GH (2003) Grid turbulence in shallow flows. J Fluid Mech 489:325–344

    MATH  Article  Google Scholar 

  92. 92.

    Uijttewaal WSJ, Tukker J (1998) Development of quasi two-dimensional structures in a shallow free-surface mixing layer. Exp Fluids 24:192–200

    Article  Google Scholar 

  93. 93.

    Uittenbogaard R, van Vossen B (2001) 2D-DNS of quasi-2D turbulence in shallow water. In: 3rd AFOSR international conference on direct numerical simulation and large eddy simulation (TAICDL), University of Texas at Arlington

  94. 94.

    van Prooijen BC, Booij R, Uijttewaal WSJ (2000) Measurement and analysis methods of large scale horizontal coherent structures in a wide shallow channel. In: 10th international symposium on applications of laser techniques to fluid mechanics. Calouste Gulbenkian Foundation, Lisbon

    Google Scholar 

  95. 95.

    Vázquez-Cendón ME (1996) An efficient upwind scheme with finite volumes of the edge-type for the bidimensional shallow water equations. In: Benkhanldoun F, Vilsmeier R (eds) Finite volumes for complex applications. Problems and perspectives. Hermes, Paris, pp 605–612

    Google Scholar 

  96. 96.

    Vázquez-Cendón ME (1999) Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J Comput Phys 148:497–526

    MATH  Article  MathSciNet  Google Scholar 

  97. 97.

    Wilson CAME, Bates PD, Hervouet JM (2002) Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods. J Hydrol 257:42–58

    Article  Google Scholar 

  98. 98.

    Winterwerp JC, Wang ZB, van Kester ATM, Verweij JF (2002) Far-field impact of water injection dredging in the Crouch River. Water Marit Eng 154(4):285–296

    Article  Google Scholar 

  99. 99.

    Wolanski E, Imberger J, Heron ML (1984) Island wakes in shallow coastal waters. J Geophys Res 89:10553–10569

    Article  Google Scholar 

  100. 100.

    Wu W (2004) Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng 130(10):1013–1024

    Article  Google Scholar 

  101. 101.

    Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng 126(1):4–15

    Article  Google Scholar 

  102. 102.

    Ye J, McCorquodale JA (1997) Depth-averaged hydrodynamic model in curvilinear collocated grid. J Hydraul Eng 123(5):380–388

    Article  Google Scholar 

  103. 103.

    Yoon TH (2004) Finite volume model for two-dimensional shallow water flows on unstructured grids. J Hydraul Eng 130(7):678–688

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Luis Cea.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cea, L., Puertas, J. & Vázquez-Cendón, M. Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts. Arch Computat Methods Eng 14, 303–341 (2007).

Download citation


  • Turbulent Kinetic Energy
  • Turbulence Model
  • Reynolds Stress
  • Eddy Viscosity
  • Shallow Water Equation