Skip to main content
Log in

Boundary Element Simulation of Thermal Waves

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper we survey computational techniques based on boundary integral formulations for the simulation of thermal waves. Time-harmonic solutions to diffusion problems appear in many physical situations of interest and give rise to many interesting problems related to material characterization, parameter assessment or detection of defects. We review the main direct, indirect and mixed integral numerical methods for a model of scattering of thermal waves by many obstacles and discuss how multiple scattering techniques and other physical tools can be understood as iterative methods or used as preconditioners. We also deal with some transient problems that can be solved with boundary element methods using the Laplace transform and with coupled finite and boundary element schemes for non-homogeneous obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M, Stegun IA (1992) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover, New York

    Google Scholar 

  2. Almond DP, Patel PM (1996) Photothermal science and techniques. Chapman and Hall, London

    Google Scholar 

  3. Ångström AJ (1861) Ann Physik Lpz 114

  4. Angell TS, Kleinman RE, Hettlich F (1990) The resistive and conductive problem for the exterior Helmholtz equation. SIAM J Appl Math 50:1607–1622

    Article  MATH  MathSciNet  Google Scholar 

  5. Antoine X, Barucq H (2001) Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation conditions in electromagnetism. SIAM J Appl Math 61:1877–1905

    Article  MATH  MathSciNet  Google Scholar 

  6. Atkinson KE (1997) The numerical solution of boundary integral equations of the second kind. Cambridge University Press, Cambridge

    Google Scholar 

  7. Atkinson KE, Han W (2001) Theoretical numerical analysis:a functional analysis framework. Springer, New York

    MATH  Google Scholar 

  8. Babuška I, Aziz AK (1972) The mathematical foundations of the finite element method with applications to partial differential equations. Academic Press, New York

    Google Scholar 

  9. Bakushinskii A (1992) On a convergence problem of the iterative-regularized Gauss–Newton method. Comput Math Math Phys 32:1353–1359

    MathSciNet  Google Scholar 

  10. Bakushinskii A, Goncharky A (1995) Ill-posed problems: theory and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  11. Banks HT, Kojima F (1989) Boundary shape identification problems in two-dimensional domains related to thermal testing of materials. Quart Appl Math 47:273–293

    MATH  MathSciNet  Google Scholar 

  12. Banks HT, Kojima F, Winfree WP (1990) Boundary estimation problems arising in thermal tomography. Inverse Probl 6:897–921

    Article  MATH  MathSciNet  Google Scholar 

  13. Beer G (2001) Programming the boundary element method. Wiley, Chichester

    Google Scholar 

  14. Bernardi C, Canuto C, Maday Y (1988) Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J Numer Anal 25:1237–1271

    Article  MATH  MathSciNet  Google Scholar 

  15. Bialkowski SE (1996) Photothermal spectroscopy methods for chemical analysis. Wiley, New York

    Google Scholar 

  16. Brakhage H, Werner P (1965) Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch Math 16:325–329

    Article  MATH  MathSciNet  Google Scholar 

  17. Bramble JH, Pasciak JE, Steinbach O (2001) On the stability of the L 2 projection in H 1(Ω). Math Comp 72:147–156

    MathSciNet  Google Scholar 

  18. Brezzi F (1974) On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO 8:129–151

    MathSciNet  Google Scholar 

  19. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York

    MATH  Google Scholar 

  20. Brezzi F, Johnson C (1979) On the coupling of boundary integral and finite element methods. Calcolo 16:189–201

    MATH  MathSciNet  Google Scholar 

  21. Cakoni F, Colton D, Monk P (2001) The direct and inverse scattering problems for partially coated obstacles. Inverse Probl 17:1997–2015

    Article  MATH  MathSciNet  Google Scholar 

  22. Celorrio R, Domínguez V, Sayas F-J (2002) Periodic Dirac delta distributions in the boundary element method. Adv Comput Math 17:211–236

    Article  MATH  MathSciNet  Google Scholar 

  23. Celorrio R, Domínguez V, Sayas F-J (2002) An interior-exterior Schwarz algorithm and its convergence. Comptes Rendus Math 334:923–926

    Article  MATH  Google Scholar 

  24. Celorrio R, Rapún ML, Sayas F-J (2002). A boundary element model with nearby neighbours for the study of the scattering of thermal waves. In: V Congreso de métodos numéricos en Ingeniería, SEMNI 2002 (electronic) (in Spanish)

  25. Chandler GA, Sloan IH (1990) Spline qualocation methods for boundary integral equations. Numer Math 58:537–567

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen G, Zhou J (1992) Boundary element methods. Academic Press, London

    MATH  Google Scholar 

  27. Ciarlet PG (2002) The finite element method for elliptic problems. SIAM, Philadelphia

    Google Scholar 

  28. Colton DL, Kress R (1983) Integral equation methods in scattering theory. Wiley, New York

    MATH  Google Scholar 

  29. Colton DL, Kress R (1998) Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  30. Costabel M (1987) Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary elements IX, comput mech, Southampton, 1987, pp 411–420.

  31. Costabel M (1988) Boundary integral operators on Lipschitz domains: elementary results. SIAM J Math Anal 19:613–626

    Article  MATH  MathSciNet  Google Scholar 

  32. Costabel M, Stephan E (1985) A direct boundary integral equation method for transmission problems. J Math Anal Appl 106:367–413

    Article  MATH  MathSciNet  Google Scholar 

  33. Crouzeix M, Féat P, Sayas F-J (2001) Theoretical and numerical study of a free boundary problem by boundary integral methods. M2AN Math Model Numer Anal 25:1137–1158

    Article  Google Scholar 

  34. Crouzeix M, Sayas F-J (1998) Asymptotic expansions of the error of spline Galerkin boundary element methods. Numer Math 78:523–547

    Article  MATH  MathSciNet  Google Scholar 

  35. Domínguez V, Graham IG, Smyshlyaev VP (2007) A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer Math (to appear)

  36. Domínguez V, Rapún ML, Sayas F-J (2007) Dirac delta methods for Helmholtz transmission problems. Adv Comput Math (to appear)

  37. Domínguez V, Sayas F-J (2003) An asymptotic series approach to qualocation methods. J Integral Equ Appl 15:113–151

    MATH  Google Scholar 

  38. Domínguez V, Sayas F-J (2007) Overlapped BEM-FEM for some Helmholtz transmission problems. Appl Numer Math 57:131–146

    Article  MATH  MathSciNet  Google Scholar 

  39. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  40. Èskin GI (1981) Boundary value problems for elliptic pseudodifferential equations. American Mathematical Society, Providence

    MATH  Google Scholar 

  41. Garrido F, Salazar A (2004) Thermal wave scattering by spheres. J Appl Phys 95:140–149

    Google Scholar 

  42. Gatica GN, Hsiao GC (1992) On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in ℝ2. Numer Math 61:171–214

    Article  MATH  MathSciNet  Google Scholar 

  43. Gatica GN, Meddahi S (2005) On the coupling of MIXED–FEM and BEM for an exterior Helmholtz problem in the plane. Numer Math 100:663–695

    Article  MathSciNet  Google Scholar 

  44. Gatica GN, Sayas F-J (2006) An a-priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods. Math Comp 75:1675–1696

    Article  MATH  MathSciNet  Google Scholar 

  45. Gaul L, Kögl M, Wagner M (2003) Boundary Element methods for engineers and scientists. Springer, Berlin

    MATH  Google Scholar 

  46. Gaunaurd GC, Huang H (1994) Acoustic scattering by a spherical body near a plane boundary. J Acoustic Soc Am 96:2526–2536

    Article  Google Scholar 

  47. Girault V, Raviart P-A (1986) Finite element methods for Navier–Stokes equations, Theory and algorithms. Springer, Berlin

    MATH  Google Scholar 

  48. Han H (1990) A new class of variational formulations for the coupling of finite and boundary element methods. J Comput Math 8:223–232

    MATH  MathSciNet  Google Scholar 

  49. Heath DM, Welch CS, Winfree WP (1986) Quantitative thermal diffusivity measurements of composites. In: Review of progress in quantitative non-destructive evaluation, vol 5B. Plenum, New York, pp 1125–1132

    Google Scholar 

  50. Hohage T, Rapún M-L, Sayas F-J (2007) Detecting corrosion using thermal measurements. Inverse Probl 23:53–72

    Article  MATH  Google Scholar 

  51. Hohage T, Sayas F-J (2005) Numerical solution of a heat diffusion problem by boundary integral equation methods using the Laplace transform. Numer Math 102:67–92

    Article  MATH  MathSciNet  Google Scholar 

  52. Hsiao GC (1988) The coupling of BEM and FEM—a brief review. In: Boundary elements X, comput. mech., Southampton, 1988, pp 431–445

  53. Hsiao GC, Kopp P, Wendland WL (1980) A Galerkin collocation method for some integral equations of the first kind. Comput 25:89–130

    Article  MATH  MathSciNet  Google Scholar 

  54. Hsiao GC, Wendland WL (1977) A finite element method for some integral equations of the first kind. J Math Anal Appl 58:449–481

    Article  MATH  MathSciNet  Google Scholar 

  55. Hsiao GC, Wendland WL (1981) The Aubin–Nitsche lemma for integral equations. J Integral Equ 3:299–315

    MATH  MathSciNet  Google Scholar 

  56. Isakov V (1990) Inverse source problems. American Mathematical Society, Providence

    MATH  Google Scholar 

  57. Isakov V (1998) Inverse problems for partial differential equations. Springer, New York

    MATH  Google Scholar 

  58. Johnson C, Nédélec JC (1980) On the coupling of boundary integral and finite element methods. Math Comp 35:1063–1079

    Article  MATH  MathSciNet  Google Scholar 

  59. Kakogiannos NB, Roumeliotis JA (1995) Acoustic scattering from a sphere of small radius coated by a penetrable one. J Acoust Soc Am 98:3508–3515

    Article  Google Scholar 

  60. Kirsch A (1996) An introduction to the mathematical theory of inverse problems. Springer, New York

    MATH  Google Scholar 

  61. Kleinman RE, Martin PA (1988) On single integral equations for the transmission problem of acoustics. SIAM J Appl Math 48:307–325

    Article  MathSciNet  Google Scholar 

  62. Kompiš V (ed) (2002) Selected topics in boundary integral formulations for solids and fluids. Springer, Vienna

    MATH  Google Scholar 

  63. Kress R (1999) Linear integral equations, 2nd edn. Springer, New York

    MATH  Google Scholar 

  64. Kress R, Roach GF (1978) Transmission problems for the Helmholtz equation. J Math Phys 19:1433–1437

    Article  MATH  MathSciNet  Google Scholar 

  65. Laliena A, Sayas F-J (2005) LDBEM in diffusion problems. In: Proceedings of CEDYA/ IX CMA (electronic)

  66. Leis R (1965) Zur Dirichletschen Randwertaufgabe des Aussenraumes der Schwingungsgleichung. Math Z 90:205–211

    Article  MATH  MathSciNet  Google Scholar 

  67. Le Tallec P (1994) Domain decomposition methods in computational mechanics. Comput Mech Adv 1:121–220

    MATH  MathSciNet  Google Scholar 

  68. López-Fernández M, Palencia C (2004) On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl Numer Math 51:289–303

    Article  MATH  MathSciNet  Google Scholar 

  69. Mandelis A (1987) Photoacoustic and thermal wave phenomena in semiconductors. North-Holland, New York

    Google Scholar 

  70. Mandelis A (2000) Diffusion waves and their uses. Phys Today 53:29–34

    Article  Google Scholar 

  71. Mandelis A (2001) Diffusion–wave fields. Mathematical methods and Green functions. Springer, New York

    MATH  Google Scholar 

  72. McLean W (2000) Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  73. Márquez A, Meddahi S, Selgas V (2004) A new BEM–FEM coupling strategy for two-dimensional fluid–solid interaction problems. J Comput Phys 199:205–220

    Article  MATH  MathSciNet  Google Scholar 

  74. Meddahi S, Márquez A, Selgas V (2003) Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J Numer Anal 41:1729–1750

    Article  MATH  MathSciNet  Google Scholar 

  75. Meddahi S, Sayas F-J (2000) A fully discrete BEM–FEM for the exterior Stokes problem in the plane. SIAM J Numer Anal 37:2082–2102

    Article  MATH  MathSciNet  Google Scholar 

  76. Meddahi S, Sayas F-J (2005) Analysis of a new BEM–FEM coupling for two-dimensional fluid–solid iteraction. Numer Meth Partial Differ Equ 21:1017–1142

    Article  MATH  MathSciNet  Google Scholar 

  77. Meddahi S, Valdés J, Menéndez O, Pérez P (1996) On the coupling of boundary integral and mixed finite element methods. J Comput Appl Math 69:113–124

    Article  MATH  MathSciNet  Google Scholar 

  78. Mikhlin SG (1970) Mathematical physics, an advanced course. North-Holland, Amsterdam

    MATH  Google Scholar 

  79. Nicaise S, Sändig AM (1999) Transmission problems for the Laplace and elasticity operators: regularity and boundary integral formulation. Math Model Meth Appl Sci 9:855–898

    Article  MATH  Google Scholar 

  80. Nicolaides L, Mandelis A (1997) Image-enhaced thermal-wave slice diffraction tomography with numerically simulated reconstructions. Inverse Probl 13:1393–1412

    Article  MATH  Google Scholar 

  81. Ocáriz A, Sánchez-Lavega A, Salazar A (1997) Photothermal study of subsurface cylindrical structures II. Experimental results. J Appl Phys 81:7561–7566

    Article  Google Scholar 

  82. O’Leary MA, Boas DA, Chance B, Yodh AG (1992) Refraction of diffuse photon density waves. Phys Rev Lett 69:2658–2662

    Article  Google Scholar 

  83. Panich OI (1965) On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell’s equations. Russ Math Surveys 20:221–226

    MATH  Google Scholar 

  84. von Petersdorff T (1989) Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math Meth Appl Sci 11:185–213

    Article  MATH  MathSciNet  Google Scholar 

  85. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford University Press, New York

    MATH  Google Scholar 

  86. Rapún ML (2004) Numerical methods for the study of the scattering of thermal waves. PhD Thesis, University of Zaragoza (in Spanish).

  87. Rapún ML, Sayas F-J (2006) Boundary integral approximation of a heat diffusion problem in time-harmonic regime. Numer Algorithm 41:127–160

    Article  MATH  Google Scholar 

  88. Rapún ML, Sayas F-J (2005) A direct boundary integral formulation and its discretization for Helmholtz transmission problems. In: Proceedings of XIX CEDYA/ IX CMA (electronic)

  89. Rapún ML, Sayas F-J (2006) A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media. ESAIM: M2AN Math Model Numer Anal 40:871–896

    Article  MATH  Google Scholar 

  90. Rapún ML, Sayas F-J (2007) Mixed boundary integral methods for Helmholtz transmission problems. J Comput App Math (to appear)

  91. Rapún ML, Sayas F-J (2005) Indirect methods with Brakhage–Werner potentials for Helmholtz transmission problems. In: Proceedings of ENUMATH, 2005 (to appear)

  92. Salazar A, Sánchez-Lavega A, Celorrio R (2003) Scattering of cylindrical thermal waves in fiber composites: In-plane thermal diffusivity. J Appl Phys 93:4536–4542

    Article  Google Scholar 

  93. Salazar A, Terrón JM, Sánchez-Lavega A, Celorrio R (2002) On the effective thermal diffusivity of fiber-reinforced composites. Appl Phys Lett 80:1903–1905

    Article  Google Scholar 

  94. Saranen J, Schroderus L (1993) Quadrature methods for strongly elliptic equations of negative order on smooth closed curves. SIAM J Numer Anal 30:1769–1795

    Article  MATH  MathSciNet  Google Scholar 

  95. Saranen J, Vainikko G (2002) Periodic integral and pseudodifferential equations with numerical approximation. Springer, Berlin

    MATH  Google Scholar 

  96. Sayas F-J (2003) A nodal coupling of finite and boundary elements. Numer Meth Partial Differ Equ 19:555–570

    Article  MATH  MathSciNet  Google Scholar 

  97. Sheen D, Sloan IH, Thomée V (1999) A parallel method for time-discretization of parabolic equations based on contour integral representation and quadrature. Math Comp 38:177–195

    Google Scholar 

  98. Sheen D, Sloan IH, Thomée V (2003) A parallel method for time discretization of parabolic equations based on Laplace transform and quadrature. IMA J Numer Anal 23:1–31

    Article  MathSciNet  Google Scholar 

  99. Sloan IH (2000) Qualocation. J Comput Appl Math 125:461–478

    Article  MATH  MathSciNet  Google Scholar 

  100. Steinbach O (2001) On the stability of the L 2 projection in fractional spaces. Numer Math 88:367–379

    Article  MATH  MathSciNet  Google Scholar 

  101. Steinbach O (2002) On a generalized L 2 projection and some related stability estimates in Sobolev spaces. Numer Math 90:775–786

    Article  MATH  MathSciNet  Google Scholar 

  102. Steinbach O, Wendland WL (2001) On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J Math Anal Appl 262:733–748

    Article  MATH  MathSciNet  Google Scholar 

  103. Talbot A (1979) The accurate numerical inversion of the Laplace transform. J Inst Maths Appl 23:97–120

    Article  MATH  MathSciNet  Google Scholar 

  104. Taylor ME (1996) Partial differential equations II. Qualitative studies of linear equations. Springer, New York

    Google Scholar 

  105. Terrón JM (2001) Application of photothermal techniques to non-destructive control in inhomogeneous media. PhD Thesis, Universidad del País Vasco (in Spanish)

  106. Terrón JM, Salazar A, Sánchez-Lavega A (2002) General solution for the thermal wave scattering in fiber composites. J Appl Phys 91:1087–1098

    Google Scholar 

  107. Terrón JM, Sánchez-Lavega A, Salazar A (2001) Multiple scattering of thermal waves by a coated subsurface cylindrical inclusion. J Appl Phys 89:5696–5702

    Google Scholar 

  108. Torres RH, Welland GV (1993) The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana Univ Math J 42:1457–1485

    Article  MATH  MathSciNet  Google Scholar 

  109. van der Vorst HA, Melissen JBM (1990) A Petrov–Galerkin type method for solving Ax=b, where A is symmetric complex. IEEE Trans Magn 26:706–708

    Article  Google Scholar 

  110. Yan Y, Sloan IH (1988) On integral equations of the first kind with logarithmic kernels. J Integral Equ Appl 1:549–579

    Article  MATH  MathSciNet  Google Scholar 

  111. Yodh A, Chance B (1995) Spectroscopy and imaging with diffusing light. Phys Today 3:34–40

    Google Scholar 

  112. Ženišek A (1990) Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London

    MATH  Google Scholar 

  113. Zienkiewicz OC, Kelly DW, Bettess P (1979) Marriage a la mode—the best of both worlds (finite element and boundary integrals). In: Energy methods in finite element analysis. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Luisa Rapún.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapún, ML., Sayas, FJ. Boundary Element Simulation of Thermal Waves. Arch Computat Methods Eng 14, 3–46 (2007). https://doi.org/10.1007/s11831-006-9000-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-006-9000-4

Keywords

Navigation