Skip to main content
Log in

Bioactivity of Sphaeranthus indicus leaf extracts on the aquatic stages of Aedes aegypti and Culex quinquefasciatus mosquitoes

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The prevalence of mosquito-borne diseases is increasing due to urbanization and climate change. Synthetic insecticides have resulted in resistance, and alternative control methods are needed. This study evaluated hexane, chloroform, and methanol extracts from Sphaeranthus indicus leaves for their efficacy against the larvae, pupae and eggs of Aedes aegypti and Culex quinquefasciatus mosquitoes. The plant materials were coarsely powdered and sequentially extracted in hexane, chloroform, and methanol using a Soxhlet apparatus, followed by filtration and concentration under reduced pressure with a rotary vacuum evaporator. In the case of Ae. aegypti, the hexane extract exhibited notable toxicity against all three examined stages. The LC50 values for larval mortality, pupal lethality, and ovicidal activity were determined to be 81.83 ppm, 86.13 ppm, and 63.2 ppm, respectively. Similarly, for Cx. quinquefasciatus, the hexane extract showed efficacy with LC50 values of 81.23 ppm for larval mortality, 93.24 ppm for pupal lethality, and 75.2 ppm for ovicidal activity. Following the hexane extract, the chloroform and methanol extracts demonstrated moderate larvicidal and pupicidal activity against both mosquito species, but they exhibited limited effectiveness against ovicidal activity. These findings suggest the potential use of natural extracts as supplementary control measures against mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data and materials have been provided with the manuscript as tables and figures. The datasets are available from the corresponding author on reasonable request.

Abbreviations

Ae. aegypti :

Aedes aegypti

Cx. quinquefasciatus :

Culex quinquefasciatus

S. indicus :

Sphaeranthus indicus

LC:

Lethal concentration

LL:

Lower limit

UL:

Upper limit

PPM:

Parts per million

DMSO:

Dimethyl sulfoxide

GC-MS:

Gas chromatography mass spectrometry

References

  • Abbot WS (1925) A method for computing the effectiveness of an insecticide. Ecol Entomol 18:265–267

    Article  Google Scholar 

  • Ali MA, Doaa SM, El Sayed HS, Elsayed AM (2017) Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J Entomol Zool 5:1476–1482

    Google Scholar 

  • Alok N, Arpita S, Nitasha S, Ajit KS, Vinod Kumar D (2012) Sphaeranthus indicus induces apoptosis through mitochondrial-dependent pathway in HL-60 cells and exerts cytotoxic potential on several human cancer cell lines. Integr Cancer Ther 12(3):236–247

    Google Scholar 

  • Ambavade SD, Mhetre NA, Tate VD, Bodhankar SL (2006) Pharmacological evaluation of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in mice. Indian J Pharmacol 38:254–259

    Article  Google Scholar 

  • Arivoli S, Tennyson S, Srinivasan R, Kumar RB (2016) Larvicidal activity of Sphaeranthus indicus against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Asian Pac J Trop Dis 5:S209–S213. https://doi.org/10.1016/S2222-1808(15)61052-2

    Article  Google Scholar 

  • Attaurrahman SMS, Perveen S, Habib UR, Yasmin A, Ziaulhaque A (1989) 7-Hydroxyfrullanolide, an antimicrobial sesquiterpene lactone from Sphaeranthus indicus Linn. J Chem Res 13:68

    Google Scholar 

  • Baby JK (1994) Repellent and phlagodeterrent activity of Sphaeranthus indicus extract against Callosobruchus chinensis. In: Proceedings of the 6th international working conference on: stored-product protection, Canberra, Australia, pp 746–748

  • Benelli G (2015) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212

    Article  PubMed  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754. https://doi.org/10.1007/s00436-016-4971-z

    Article  PubMed  Google Scholar 

  • Bird BH, McElroy AK (2016) Rift Valley fever virus: unanswered questions. Antiviral Res 132:274–280. https://doi.org/10.1016/j.antiviral.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  • Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T (2022) Applications of essential oils and plant extracts in different industries. Molecules 27(24):8999. https://doi.org/10.3390/molecules27248999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6(8):e1760. https://doi.org/10.1371/journal.pntd.0001760

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnett WC, Jones SB, Mabry TJ, Padolina WG (1974) Sesquiterpene lactones: insect feeding deterrents in Vernonia. Biochem Syst Ecol 2:25–29

    Article  CAS  Google Scholar 

  • Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract 16(5):1–23

    PubMed  Google Scholar 

  • Chakraborty AK, Singh A, Mishra S, Chandekar A, Upmanyu N (2017) Sphaeranthus indicus Linn—a phytopharmacological review. AJPER 6(1):1–15

    Google Scholar 

  • Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G (2018) Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn, and impacts on a beneficial mosquito predator. Environ Sci Pollut Res Int 25(11):10294–10306. https://doi.org/10.1007/s11356-017-8952-2

    Article  CAS  PubMed  Google Scholar 

  • Ciniviz G, Mutlu Ç (2020) Effectiveness of some native diatomaceous earth against maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae), under controlled conditions. Agric Forest 66(4):151–162

    Google Scholar 

  • Dara SK (2021) Insect resistance to biopesticides. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=25819

  • Dhivya R (2022) Screening of phytochemical composition, Ovicidal and repellent activity of leaf extracts of Sphaeranthus indicus and Caesalpinia pulcherrima against the mosquito Culex quinquefasciatus (Diptera: Culicidae). Int J Mosquito Res 9(5):01–06. https://doi.org/10.22271/23487941.2022.v9.i5a.624

    Article  Google Scholar 

  • Divya T, Soorya V, Amithamol K, Udayan D, Sreelekha K, Nair S, Ajith Kumar KG, Juliet S, Ravindran R, Ghosh S (2019) Acaricidal activity of crude ethanolic extract of Sphaeranthus indicus, its fractions and subfractions against Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae). Int J Curr Microbiol Appl Sci. https://doi.org/10.20546/ijcmas.2019.808.089

    Article  Google Scholar 

  • Edwin ES, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA (2016) Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 163:167–178. https://doi.org/10.1016/j.actatropica.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit Analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Galani VJ, Patel BG (2009) Psychotropic activity of Sphaeranthus indicus Linn. in experimental animals. Pharmacogn Res 1:307–313

    Google Scholar 

  • George M, Joseph L, Sujith K, Paul NM (2017) Sphaeranthus indicus Linn: a pharmacological update. Pharma Innov J 6(2):77–84

    CAS  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135(5):581–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2016) Chemical composition and larvicidal activity of essential oil from Sphaeranthus indicus against three mosquito species. Parasitol Res 115(3):997–1006. https://doi.org/10.1007/s00436-015-4825-y

    Article  Google Scholar 

  • Halder J, Rai AB, Kodandaram MH (2012) Compatibility of neem oil and different entomopathogens for the management of major vegetable sucking pests. Natl Acad Sci Lett 36(1):19–25. https://doi.org/10.1007/s40009-012-0091-1

    Article  CAS  Google Scholar 

  • Jayaraman M, Senthilkumar A, Venkatesalu V, Venkateswaran R (2013) Larvicidal efficacy of Sphaeranthus indicus, Annona squamosa and the microbial insecticide spinosad against the urban mosquito vectors. J Am Mosquito Control Assoc 29(4):326–330. https://doi.org/10.2987/13-6347R.1

    Article  Google Scholar 

  • Joshi S, Bhide BV, Ghildyal S, Nesari TM (2023) Physico-chemical and phytochemical analysis of Sphaeranthus indicus Linn (Whole plant). Pharmacogn Res 15(3):492–496. https://doi.org/10.5530/pres.15.3.051

    Article  CAS  Google Scholar 

  • Kalaivani K, Senthil-Nathan S, Murugesan AG (2012) Biological activity of selected Lamiaceae and Zingiberaceae plant extracts against the dengue mosquito Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110(6):2105–2115

    Google Scholar 

  • Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajakumar G (2013) Larvicidal efficacy of Sphaeranthus indicus and Gymnema sylvestre against the filarial vector Culex quinquefasciatus Say. Parasitol Res 112(3):1033–1041. https://doi.org/10.1007/s00436-012-3212-5

    Article  Google Scholar 

  • Kindhauser MK, Allen T, Frank V, Santhana RS, Dye C (2016) Zika: the origin and spread of a mosquito-borne virus. Bull World Health Org 94(9):675–686. https://doi.org/10.2471/BLT.16.171082

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R, Martins AJ, Powell JR (2017) Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Negl Trop Dis 11(7):e0005653. https://doi.org/10.1371/journal.pntd.0005653

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovendan K, Murugan K, Naresh Kumar A et al (2012) Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110:669–678. https://doi.org/10.1007/s00436-011-2540-z

    Article  PubMed  Google Scholar 

  • Lahlali R, El Hamss H, Mediouni-Ben Jemma J, Barka EA (2022) Editorial: the use of plant extracts and essential oils as biopesticides. Front Agron 4:921965. https://doi.org/10.3389/fagro.2022.921965

    Article  Google Scholar 

  • Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, Edwin ES, Selin-Rani S, Abdel-Megeed A (2015) Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res 114(11):4239–4249. https://doi.org/10.1007/s00436-015-4662-1

    Article  PubMed  Google Scholar 

  • Liu JK, Jia ZJ, Wu DG, Zhou J, Wang QG (1990) Insect antifeeding agents: sesquiterpene alkaloids from Celastrus angulatus. Phytochemistry 29:2503–2506

    Article  CAS  Google Scholar 

  • Magierowicz K, Górska-Drabik E, Golan K (2020) Effects of plant extracts and essential oils on the behaviour of Acrobasis advenella (Zinck.) caterpillars and females. J Plant Dis Prot 127:63–71. https://doi.org/10.1007/s41348-019-00275-z

    Article  Google Scholar 

  • Mahajan NG, Chopda MZ, Mahajan RT (2015) A review on Sphaeranthus Indicus Linn: multipotential medicinal plant. IJPRAS 4(3):48–74

    CAS  Google Scholar 

  • Makhija IK, Richard L, Kirti SP, Saleemullah K, Jessy M, Annie S (2011) Sphaeranthus indicus: a review of its chemical, pharmacological and ethnomedicinal properties. Int J Pharmacol 7(2):171–179. https://doi.org/10.3923/ijp.2011.171.179

    Article  CAS  Google Scholar 

  • Mallik B, Talukdar P, Sen S (2012) Mosquito larvicidal activity of methanolic leaf extract of Sphaeranthus indicus Linn. against Culex quinquefasciatus Say (Diptera: Culicidae). J Parasitol Appl Biol 1(1):18–21

    Google Scholar 

  • Mayer SV, Tesh RB, Vasilakis N (2017) The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and Zika fevers. Acta Trop 166:155–163. https://doi.org/10.1016/j.actatropica.2016.11.020

    Article  PubMed  Google Scholar 

  • Mbatchou VC, Tchouassi DP, Dickson RA, Annan K, Mensah AY, Amponsah IK, Jacob JW, Cheseto X, Habtemariam S, Torto B (2017) Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasit Vectors 10(1):562. https://doi.org/10.1186/s13071-017-2512-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra BB, Yadav SB, Singh RK, Tripathi V (2007) A novel flavonoid C-glycoside from Sphaeranthus indicus L (Family Compositae). Molecules 12:2288–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni KM (1976) Indian materia medica. Popular Prakashan, Bombay, p 1142

    Google Scholar 

  • Nemade NV, Chopoda MZ, Mahajan RT (2012) No evidence of antiprotozoal property of asteracid weed Sphaeranthus indicus Linn. J Pharm Negative Res 3(1):46–48

    Article  Google Scholar 

  • Ohia CMD, Ana GREE (2015) Bio-insecticides: the one-health response to mosquito-borne diseases of public health importance. J Biol Agric Healthc 5(13):22–26

    Google Scholar 

  • Paily KP, Kumar NS, Aneesh EM, Sujitha VP (2016) Mosquitocidal activity of Sphaeranthus indicus against Aedes aegypti. J Parasit Dis 40(2):403–407. https://doi.org/10.1007/s12639-014-0517-6

    Article  Google Scholar 

  • Palaiogiannis D, Chatzimitakos T, Athanasiadis V, Bozinou E, Makris DP, Lalas SI (2023) Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen 3(3):274–286. https://doi.org/10.3390/oxygen3030018

    Article  CAS  Google Scholar 

  • Pande VV, Dubey S (2009) Antihyperlipidemic activity of Sphaeranthus indicus on atherogenic diet-induced hyperlipidemia in rats. Int J Green Pharm 3:159–161

    Article  Google Scholar 

  • Patel MB, Amin D (2012) Sphaeranthus indicus flower derived constituents exhibits synergistic effect against acetylcholinesterase and possess potential antiamnestic activity. J Complem Integ Med. https://doi.org/10.1515/1553-3840.1618

    Article  Google Scholar 

  • Pradeepa V, Senthil-Nathan S, Sathish-Narayanan S, Selin-Rani S, Vasantha-Srinivasan P, Thanigaivel A, Ponsankar A, Ai-Dhabi NA (2016) Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi (Culicidae: Diptera). Pesticide Biochem Physiol 134:84–93

    Article  CAS  Google Scholar 

  • Ramachandran S (2013) Review on Sphaeranthus indicus Linn (Koṭṭaikkarantai). Pharmacogn Rev 7(14):157–169. https://doi.org/10.4103/0973-7847.120517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reegan AD, Gandhi MR, Paulraj MG, Ignacimuthu S (2015) Ovicidal and oviposition deterrent activities of medicinal plant extracts against Aedes aegypti L. and Culex quinquefasciatus say mosquitoes (Diptera: Culicidae). Osong Public Health Res Perspect 6(1):64–69. https://doi.org/10.1016/j.phrp.2014.08.009

    Article  PubMed  Google Scholar 

  • Sadaf F, Saleem R, Ahmed M, Ahmad SI, Zafar NU (2006) Healing potential of cream containing extract of Sphaeranthus indicus on dermal wounds in Guinea pigs. J Ethnopharmacol 107:161–163

    Article  PubMed  Google Scholar 

  • Saxena A, Saxena G, Arnold R, Anand P, Tiwari S (2013) Evaluation of larvicidal potential of flavonoid extracted from Sphaeranthus indicus Linn (Asteraceae) for controlling mosquito Culex quinquefaciatus (Culicidae) Diptera. Int J Pharm Life Sci 4(11):3109–3115

    Google Scholar 

  • Shekhani MS, Shah PM, Yasmin A, Siddiqui R, Perveen S, Khan KM et al (1990) An immunostimulant sesquiterpene glycoside from Sphaeranthus indicus. Phytochemistry 29:2573–2576

    Article  CAS  Google Scholar 

  • Singh S, Semwal BC, Upadhaya PK (2019) Pharmacognostic study of Sphaeranthus indicus Linn: a review. Pharmacogn J 11(6):1376–1385. https://doi.org/10.5530/pj.2019.11.213

    Article  CAS  Google Scholar 

  • Srinivasan D, Nadarajan L (2006) Wetland weed Sphaeranthus indicus Asteraceae (Linn.) a potential green pesticide for managing angoumois grain moth Sitotroga cerealella (Oliv.). Resist Pest Manag Newslett 16:21–25

    Google Scholar 

  • Subramaniam J, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Nataraj T, Amerasan D, Kalimuthu (2011) Bio–efficacy of plant–extracts against the malarial vector, anopheles stephensi (diptera: culicidae). Indian J Appl Entomol 25(2):131–135

    Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR (2016) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 115(2):807–815. https://doi.org/10.1007/s00436-015-4788-3

    Article  Google Scholar 

  • Teke MA, Mutlu Ç (2021) Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). J Plant Dis Prot 128(1):109–119

    Article  CAS  Google Scholar 

  • Tennyson S, John Ravindran K, Arivoli S (2012) Bioefficacy of botanical insecticides against the dengue and chikungunya vector Aedes aegypti (L.) (Diptera: Culicidae). Asian Pacific J Trop Biomed 2(3):S1842–S1844. https://doi.org/10.1016/S2221-1691(12)60505-X

    Article  Google Scholar 

  • Tiwari A, Saxena RC (2003) Repellent and feeding deterrent activity of Sphaeranthus indicus against Tribolium castaneum. Bio-Sci Res Bull 1:179–284

    Google Scholar 

  • Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacogn Phytother 1(5):52–63

    CAS  Google Scholar 

  • Vidhya PT, Mathew N (2014) Bioassay guided fractionation of Sphaeranthus indicus extract against mosquito vectors. IJPSR 5(9):3965–3971

    Google Scholar 

  • Vilvest J, John Milton MC, Yagoo A (2023) Andrographis paniculata leaf extracts: a natural mosquito, control agent against Aedes aegypti and Culex quinquefasciatus. Int J Mosquito Res 10(5):01–06. https://doi.org/10.22271/23487941.2023.v10.i5a.689

    Article  Google Scholar 

  • Wachira SW, Omar S, Jacob JW, Wahome M, Alborn HT, Spring DR, Masiga DK, Torto B (2014) Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae. Parasit Vectors 7:312. https://doi.org/10.1186/1756-3305-7-312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO, Geneva

    Google Scholar 

  • Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the Flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29-45. https://doi.org/10.1080/10408398.2015.1067595

    Article  CAS  PubMed  Google Scholar 

  • Yagoo A, John Milton MC, Vilvest J (2023) Mosquito larvicidal, pupicidal and ovicidal effects of the extracts of Peltophorum pterocarpum flowers on Aedes aegypti and Culex quinquefasciatus. Vet Parasitol Regional Stud Rep 46:100929. https://doi.org/10.1016/j.vprsr.2023.100929

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the college’s principal and secretary for their motivating encouragement. They also extend their thanks to the Director and scientists at the Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, for their valuable support and the provision of experimental facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The idea for this article was conceived by AY, JM, and JV, who also wrote the manuscript. The data analysis was carried out by AY and JV. The final manuscript was read and approved by all writers.

Corresponding author

Correspondence to Alex Yagoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All authors have approved the publication of this study.

Research involving in human and animal participants

No human participants were involved in this study.

Additional information

Handling Editor: Merid Getahun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagoo, A., Milton, M.C.J. & Vilvest, J. Bioactivity of Sphaeranthus indicus leaf extracts on the aquatic stages of Aedes aegypti and Culex quinquefasciatus mosquitoes. Arthropod-Plant Interactions (2024). https://doi.org/10.1007/s11829-024-10060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-024-10060-x

Keywords

Navigation