Skip to main content
Log in

Assessing important floral resources supporting two species of Exomalopsis (Apidae) in agricultural cultivation areas: insights from pollen load analysis

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Pollination plays a vital role in maintaining ecological functioning of ecosystems, and bees are the main pollinating insects in natural and agricultural areas. Identification of bee food sources can be carried out directly by observing their visits to flowers, or indirectly by analyzing the pollen they carry. Pollen analysis is employed to determine the breadth of the bees’ dietary niche and understand the relationship between flower traits, pollen grains, and floral resources. While Exomalopsis females were previously recorded as pollinators of Solanaceae species, information regarding their trophic niche in agricultural areas remains limited but is essential for the management of these wild pollinators. In this study we accessed the floral resources used by two Exomalopsis species (E. analis and E. auropilosa) through pollen analysis in their scopae, using cultivated Capsicum cultivars (Solanaceae) as target plants. Pollen samples from 56 Exomalopsis females (21 from E. analis and 35 from E. auropilosa) revealed 58 pollen types belonging to 24 botanical families, with the highest values found for Fabaceae, Asteraceae, Euphorbiaceae, and Rubiaceae. E. auropilosa showed greater pollen type richness (46) with 3–10 types per bee, while E. analis had 43 types with 3–13 types per individual. Capsicum, a pollen, and nectar source constituted approximately 77% of the pollen loads. Most of other plant species identified were arboreal and provided nectar to these pollinators. Trophic niche overlap between Exomalopsis species was low. The conservation of wildflowers surrounding pepper cultivations is essential for maintaining these two important pollinators in agricultural areas. Additionally, areas with bare soil can contribute to the persistence of Exomalopsis populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aguiar CML (2003) The use of floral resources by bees (Hymenoptera, Apoidea) in an area of Caatinga (Itatim, Bahia, Brazil). Revista Brasileira de Zoologia. https://doi.org/10.1590/S0101-81752003000300015

    Article  Google Scholar 

  • Aguiar CML, Santos GMM (2007) Floral resource partitioning by social wasps (Hymenoptera: Vespidae) and bees (Hymenoptera: Apoidea) in an area of caatinga in Brazil. Neotrop Entomol 36:836–842. https://doi.org/10.1590/S1519-566X2007000600003

    Article  PubMed  Google Scholar 

  • Albuquerque PMC, Camargo JMF, Mendonça JAC (2007) Bee community of a beach dune ecosystem on Maranhão Island, Brazil. Braz Arch Biol Technol 50:1005–1018. https://doi.org/10.1590/S1516-89132007000700012

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Ascher JS, Pickering J (2020) Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Online version http://www.discoverlife.org/mp/20q?guide=Apoidea_species. Accessed 22 May 2023

  • Avila MD, Marchini LC (2008) Faunistic analysis of flower-visiting hymenoptera in Cerradão fragment in Itirapina, Sp Ciência. Florestal 18:271–279. https://doi.org/10.5902/19805098465

    Article  Google Scholar 

  • Barboza GE, de Bem BL, Stehmann JR (2020a) Capsicum carassense (Solanaceae), a new species from the Brazilian Atlantic Forest. PhytoKeys 140:125–138. https://doi.org/10.3897/phytokeys.140.47071

    Article  PubMed  PubMed Central  Google Scholar 

  • Barboza GE, García CC, Scaldaferro M, Bohs L (2020b) An amazing new capsicum (Solanaceae) species from the Andean-Amazonian piedmont. PhytoKeys 167:13. https://doi.org/10.3897/phytokeys.167.57751

    Article  PubMed  PubMed Central  Google Scholar 

  • Benevides CR, Evans DM, Gaglianone MC (2013) Comparação da Estrutura e Robustez de Passifloraceae—Redes de Visitantes Florais e Verdadeiros Polinizadores em uma Mata Atlântica de Várzea. Sociobiologia 60(3):295–305. https://doi.org/10.13102/sociobiology.v60i3.295-305

    Article  Google Scholar 

  • Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51:890–898. https://doi.org/10.1111/1365-2664.12257

    Article  Google Scholar 

  • Bosch J, Martín-González AM, Rodrigo A, Navarro D (2009) Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 12:409–419. https://doi.org/10.1111/j.1461-0248.2009.01296.x

    Article  PubMed  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in Angiosperms. Handbook of experimental pollination biology, 73–113. Online version https://www.cabidigitallibrary.org/doi/full/10.5555/19840215543. Accessed 20 Jan 2024

  • Buchmann SL, Hurley JP (1978) A biophysical model for buzz pollination in angiosperms. Jornal de Biologia Teórica 72(4):639–657. https://doi.org/10.1016/0022-5193(78)90277-1

    Article  CAS  Google Scholar 

  • Cauich O, Quezada Euan JJG, Ramírez VM, Valdovinos-Nuñez GR, Moo-Valle H (2006) Pollination of habanero pepper (Capsicum chinense) and production in enclosures using the stingless bee Nannotrigona perilampoides. J Apic Res 45(3):125–130

    Article  Google Scholar 

  • Deprá MS, Delaqua GCG, Freitas L, Gaglianone MC (2014) Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae) in Rio de Janeiro state, Southeast Brazil. J Pollinat Ecol 12:1–8. https://doi.org/10.26786/1920-7603(2014)7

    Article  Google Scholar 

  • do Rêgo ER, Nascimento M, do Nascimento NFF, dos Santos RMC, Fortunato FLG, do Rêgo MM (2012) Testing methods for producing self-pollinated fruits in ornamental peppers. Horticultura Brasileira 30(4):669–672

    Google Scholar 

  • Dormann C, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8(2):8–11

    Google Scholar 

  • Duffus NE, Echeverri A, Dempewolf L, Noriega JA, Furumo PR, Morimoto J (2023) The present and future of insect biodiversity conservation in the Neotropics: policy gaps and recommendations. Neotrop Entomol 52(3):407–421. https://doi.org/10.1007/s13744-023-01031-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias MAS, Borges FJA, Bergamini LL, Franceschinelli EV (2017) Climate change threatens pollination services in tomato crops in Brazil. Agric Ecosyst Environ 239:257–264. https://doi.org/10.1016/j.agee.2017.01.026

    Article  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy—Angiosperms. Almqvist & Wicksell, Stockholm

    Google Scholar 

  • Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskr 54:561–564

    Google Scholar 

  • Faria-Júnior RR, Bendini JN, Barreto LMRC (2008) Pollination efficiency of honeybees and entomophilous pollination in sweet pepper 'Cascadura Ikeda'. Bragantia 67:261–266. https://doi.org/10.1590/S0006-87052008000200001

    Article  Google Scholar 

  • Fontes FM, Alves TIP, Oliveira FF, Texeira FM, Gramacho KP (2018) Taxocenosis of bees and wasps in crops of Capsicum annuum var.annuum in Parque Nacional Serra de Itabaiana and its surroundings, Sergipe, Brasil. Acta Biológica Catarinense 5:47–56

    Article  Google Scholar 

  • Gaglianone MC, Franceschinelli EV, Campos MJO, Freitas L, Silva-Neto CM, Deprá MS, Elias MAS, Bergamini L, Netto P, Meyrelles BG, Montagnana PC, Patricio GP, Campos LAO (2018) Chapter: 9.3.3—tomato pollination in Brazil. In: Roubik DW (ed) The pollination of cultivated plants—a compendium for practitioners, vol 1, 2nd edn. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71(5):757–764

    Article  Google Scholar 

  • Gay C, Gaba S, Bretagnolle V (2024) The structure of plant–pollinator networks is affected by crop type in a highly intensive agricultural landscape. Agric Ecosyst Environ 359:108759

    Article  Google Scholar 

  • Halinski R, Dorneles AL, Blochtein B (2015) Bee assemblage in habitats associated with Brassica napus L. Revista Brasileira de Entomologia 59:222–228. https://doi.org/10.1016/j.rbe.2015.07.001

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Eletronica, vol 4. Online version https://palaeo-electronica.org/2001_1/past/past.pdf. Accessed 10 Jan 2024

  • Hautequestt AP (2023) Diversidade de abelhas em cafeeiros (Coffea arabica e Coffea canephora, Rubiaceae) e relação com a produção de frutos em áreas de cultivo inseridas no bioma Mata Atlântica no sudeste do Brasil. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes (Rio de Janeiro), Tese de doutorado

    Google Scholar 

  • Hautequestt AP, Deprá MS, Gonçalves-Esteves V, Mendonça CBF, Gaglianone MC (2020) Pollen load spectrum of tomato pollinators. Neotrop Entomol 49:491–500. https://doi.org/10.1007/s13744-020-00786-7

    Article  CAS  PubMed  Google Scholar 

  • Holzschuh A, Steffan-Dewenter I, Kleijn D, Tscharntke T (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J Appl Ecol 44(1):41–49

    Article  Google Scholar 

  • INMET (2023) Instituto Nacional de Meteorologia. Normais Climatológicas do Brasil. Online version https://portal.inmet.gov.br/normais. Accessed 10 July 2023

  • Jones GD, Bryant VM Jr (1996) Melissopalynology. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. AASP Foundation, Dallas, pp 933–938

    Google Scholar 

  • Kuppler J, Neumüller U, Mayr AV, Hopfenmüller S, Weiss K, Prosi R, Schanowski A, Schwenninger HR, Ayasse M, Burger H (2023) Favourite plants of wild bees. Agric Ecosyst Environ 342:108266

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Malerbo-Souza DT, Halak AL (2011) Frequência e comportamento de abelhas e outros insetos nas flores do algodoeiro (Gossypium hirsutum L.). Zootec Trop 29:475–484

    Google Scholar 

  • Malerbo-Souza DT, Andrade MOD, Siqueira RAD, Medeiros NMGD, Farias LRD, Silva TGD, Nascimento LDS, Pimentel ACS (2020) Bees biodiversity, forage behavior and fruit production in gherkin crop (Cucumis anguria L.). Acta Sci Anim Sci 42–47. https://doi.org/10.4025/actascianimsci.v42i1.47421

  • Martins KC, Souza SAM, Pereira TNS, Rodrigues R, Pereira MG, Da CM (2013) Palynological characterization and genetic divergence between accessions of chilli and sweet peppers. Hortic Bras 31(4):568–573. https://doi.org/10.1590/S0102-05362013000400010

    Article  Google Scholar 

  • Matos VR, Santos FAR (2016) Pollen in honey of Melipona scutellaris L. (Hymenoptera: Apidae) in an Atlanti rainforest area in Bahia, Brazil. Palynology 41:144–156. https://doi.org/10.1080/01916122.2015.1115434

    Article  Google Scholar 

  • Matos VR, Alencar SM, Santos FAR (2014) Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae) in an area of the Semiarid Region of Bahia, Brazil. Ann Braz Acad Sci 86:407–418. https://doi.org/10.1590/0001-376520142013-0109

    Article  CAS  Google Scholar 

  • Melhem TS, Barros MAV, Corrêa MAS, Watanabe HM, Capelato MSFS, Esteves VLG (1993) Variabilidade polínica em plantas de Campo de Jordão (São Paulo, Brasil). Boletim do Instituto de Botânica, São Paulo

    Google Scholar 

  • Nunes-Silva P, Hrncir M, Imperatriz-Fonseca VL (2010) A Polinização por Vibração. Oecologia Australis 14:140–151

    Article  Google Scholar 

  • Pacheco-Filho AJS, Westerkamp C, Freitas BM (2011) Ipomoea bahiensis pollinators: bees or butterflies? Flora 206:662–667

    Article  Google Scholar 

  • Patricio GB, Grisolia BB, Desuó IC, Montagnana C, Brocanelli FG, Gomig EG, Campos MJO (2012) The importance of bees for eggplant cultivations (Hymenoptera: Apidae, Andrenidae, Halictidae). Sociobiology 59:1037–1052. https://doi.org/10.13102/sociobiology.v59i3.565

    Article  Google Scholar 

  • Pielou EC (1966) Species diversity and pattern diversity in the study of ecological succession. J Theor Biol 10(2):370–383

    Article  CAS  PubMed  Google Scholar 

  • QGIS Development Team (2023) QGIS Geographic Information System. Open Source Geospatial Foundation Project. Online version http://qgis.osgeo.org/. Accessed 10 Apr 2023

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online version https://www.R-project.org/. Accessed 06 July 2023

  • Rabelo LS, Vilhena AMGF, Bastos EMAF, Augusto SC (2014) Differentiated use of pollen sources by two sympatric species of oil-collecting bees (Hymenoptera: Apidae). J Nat Hist 48(25–26):1595–1609

    Article  Google Scholar 

  • Rabelo LS, Basto EMAF, Augusto SC (2016) Food niche of Exomalopsis (Exomalopsis) fulvofasciata Smith (Hymenoptera: Apidae) in Brazilian savannah: the importance of oil-producing plant species as pollen sources. J Nat Hist 50:1859–1873. https://doi.org/10.1080/00222933.2016.1169328

    Article  Google Scholar 

  • Raw A (1977) The biology of two Exomalopsis species (Hymenoptera: Anthophoridae) with remarks on sociality in bees. Rev Biol Trop 25(1):1–11

    Google Scholar 

  • Raw A (2000) Foraging behaviour of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Ann Bot 85:487–492. https://doi.org/10.1006/anbo.1999.1090

    Article  Google Scholar 

  • RCPol - Rede de Catálogos Polínicos (2023) Online. Online version http://chave.rcpol.org.br/. Accessed 25 Jan 2023

  • REFLORA (2023) Plantas do Brasil: Regaste Histórico e Herbário Virtual para o conhecimento e conservação da flora brasileira. Online version https://floradobrasil.jbrj.gov.br/reflora/. Accessed 13 Aug 2023

  • Reis LK, Fonseca DR, Roghanian S, Barros BC, Sigrist MR (2021) Reproductive strategies of the Macroptilium lathyroides (Papilionoideae: Phaseoleae) explain the success of ruderal species in anthropized environments. Rodriguésia 72:e01782020. https://doi.org/10.1590/2175-7860202172135

    Article  Google Scholar 

  • Rijo G, Alameda D, Barro A (2022) Tomato (Solanum lycopersicum) specialized pollination is isolated from neighboring plants and pollinators. J Pollinat Ecol 31:29–38. https://doi.org/10.26786/1920-7603(2022)656

    Article  Google Scholar 

  • Roubik DW (1989) Ecology and natural history of the tropical bees. Cambridge University, Cambridge

    Book  Google Scholar 

  • Roubik DW, Moreno JE (1991) Pollen and spores of Barro Colorado Island. Monographs in systematic. Missouri Botanical Garden, St Louis

    Google Scholar 

  • Rozen JG (1984) Comparative nesting biology of the bee tribe Exomalopsini (Apoidea, Anthophoridae). American Museum of Natural History. Number 2798, pp 1–37

  • Ruiz-Toledo J, Vandame R, Penilla-Navarro P, Gómez J (2020) Seasonal abundance and diversity of native bees in a patchy agricultural landscape in Southern Mexico. Agric Ecosyst Environ 292:106807. https://doi.org/10.1016/j.agee.2019.106807

    Article  Google Scholar 

  • Salgado-Labouriau ML (2007) Critérios e técnicas para o quaternário. Editora Blücher, São Paulo

    Google Scholar 

  • Sampaio DS, Mendes-Rodrigues C, Engel TBJ, Rezende TM, Bittencourt-Jr N, Oliveira PE (2016) Pollination biology and breeding system of syntopic Adenocalymm anodosum and A. peregrinum (Bignonieae, Bignoniaceae) in the Brazilian savanna. Flora 223:19–29. https://doi.org/10.1016/j.flora.2016.04.009

    Article  Google Scholar 

  • Santos FAR (2011) Identificação botânica do pólen apícola. Magistra 23:4–9

    Google Scholar 

  • Santos AOR, Bartelli BF, Nogueira-Ferreira FH (2014) Potential pollinators of tomato, Lycopersicon esculentum (Solanaceae), in open crops and the effect of a solitary bee in fruit set and quality. J Econ Entomol 107:987–994. https://doi.org/10.1603/EC13378

    Article  CAS  PubMed  Google Scholar 

  • Schlindwein C (2004) Are oligolectic bees always the most effective pollinators. In: Solitary bees: conservation, rearing and management for pollination. Imprensa Universitária, Fortaleza, pp 231–240

  • Silva CI (2014) Catálogo polínico das plantas usadas por abelhas no campus da USP de Ribeirão Preto (Org) Cláudia Inês da Silva, 1 ed. Ribeirão Preto

  • Silva EMS, Freitas BM, Silva LA, Cruz DO, Bomfim IGA (2005) Biologia floral do pimentão (Capsicum annuum) e a utilização da abelha jandaíra (Melipona subnitida Ducke) como polinizador em Cultivo protegido. Revista Ciência Agronômica 36:386–390

    Google Scholar 

  • Silveira FA, Melo GAR (2023) Exomalopsini Michener, 1944. In: Moure JS, Urban D, Melo GAR (Orgs) Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region—online version. http://www.moure.cria.org.br/catalogue. Accessed 23 Jan 2024

  • SOS MATA ATLÂNTICA. (2023) A Fundação SOS Mata Atlântica. Online version https://www.sosma.org.br/. Accessed 23 Aug 2023

  • Stevens PF (2017) Angiosperm phylogeny website version 14. Online version http://www.mobot.org/MOBOT/research/APweb/. Accessed 25 Jan 2023

  • Triquet C, Wezel A, Tolon V, Ferrer A (2023) Undestroyed winter cover crop strips support wild bee abundance and diversity in intensive cropping systems. Biodivers Conserv 33:179–204. https://doi.org/10.1007/s10531-023-02741-5

    Article  Google Scholar 

  • Vargas G, Rivera-Pedroza LF, García LF, Jahnke SM (2023) Conservation biological control as an important tool in the Neotropical region. Neotrop Entomol 52(2):134–151. https://doi.org/10.1007/s13744-022-01005-1

    Article  PubMed  Google Scholar 

  • Vogel AI (1998) Text book of practical organic chemistry, 4th edn. Longman Ltd., London, pp 882–889

    Google Scholar 

  • Wolowski M, Agostini K, Rech AR, Varassin IG, Maués M, Freitas L, Carneiro LT, Bueno RO, Consolaro H, Carvalheiro L, Saraiva AM, Silva CI (2019) BPBES/REBIPP: Relatório temático sobre Polinização, Polinizadores e Produção de Alimentos no Brasil, 1ª edição. Editora Cubo, São Carlos, 9. Online version. https://www.bpbes.net.br/wpcontent/uploads/2019/03/BPBES_CompletoPolinizacao-2.pdf. Accessed 22 Sep 2023

  • Ybert JP, Scheel-Ybert R, Carvlho MA (2016a) Grãos de pólen de plantas vasculares dicotiledôneas do Estado do Rio de Janeiro, Brasil: volume I. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Ybert JP, Scheel-Ybert R, Carvlho MA (2016b) Grãos de pólen de plantas vasculares dicotiledôneas do Estado do Rio de Janeiro, Brasil: volume II. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Ybert JP, Scheel-Ybert R, Carvlho MA (2016c) Grãos de pólen de plantas vasculares dicotiledôneas do Estado do Rio de Janeiro, Brasil: volume III. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Ybert JP, Scheel-Ybert R, Carvlho MA (2016d) Grãos de pólen de plantas vasculares dicotiledôneas do Estado do Rio de Janeiro, Brasil: volume IV. Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the team at the Bee Ecology and Pollination Laboratory (CBB/LCA-UENF) and Luiz Fernando Felix de Sousa for their help in the field and support.

Funding

This study was funded by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (E.26/204.489/2021). JMC received a FAPERJ Grant (E.26/204.488/2021). VRM received a scholarship from the Dean of Research and Postgraduate Studies at the Universidade Estadual do Norte Fluminense Darcy Ribeiro (Notice 04/2021). RR received financial support from FAPERJ (CNE E-26/200.919/2021) and the National Council for Scientific and Technological Development (CNPq) (311126/2021-9). LSC received a FAPERJ grant (E-26/201.358/2023; E-26/200.279/2021) and Coordination for the Improvement of Higher Education Personnel—CAPES (processes 88887.824249/2023-00; 88881.846057/2023-01) for the scholarship. LSC is funded by the Brazilian Fund for Biodiversity—FUNBIO. MCG received financial support from FAPERJ (CNE E-26/201.149/2021 and E-26/210.167/2023) and CNPq (311577/2021-0).

Author information

Authors and Affiliations

Authors

Contributions

Cunha JM., Sudré CP, Rodrigues R and Gaglianone MC performed the study conception and design. Cunha JM, Matos VR and Carneiro LS contributed the material preparation, data collection, identifying the pollen grains, the network and statistical analysis. The first draft of the manuscript was written by Cunha JM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jéssica Morais Cunha.

Additional information

Handling Editor: Severin Hatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, J.M., Matos, V.R., Rodrigues, R. et al. Assessing important floral resources supporting two species of Exomalopsis (Apidae) in agricultural cultivation areas: insights from pollen load analysis. Arthropod-Plant Interactions (2024). https://doi.org/10.1007/s11829-024-10054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-024-10054-9

Keywords

Navigation