Skip to main content
Log in

Repellence and insecticidal activity of Rhododendron anthopogonoides EO and head transcriptome analysis

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Tribolium castaneum is a significant pest in grain storage, causing considerable economic impact globally. Plant-derived insecticides are being employed as alternatives to chemical insecticides and have shown strong insecticidal activity against T. castaneum. However, the mechanism underlying the insecticidal effects of plant-derived insecticides on T. castaneum remains unclear. In this study, we investigated the repellent, fumigation, and contact activities of R. anthopogonoides essential oil (EO) and its four main chemical components against T. castaneum. The results demonstrated that both the EO and its main chemical component, benzylacetone, exhibited potent insecticidal activity against T. castaneum. Benzylacetone may be the primary active component of R. anthopogonoides EO against T. castaneum. Subsequently, transcriptome sequencing of T. castaneum treated with Benzylacetone, along with negative controls, revealed 1616 differentially expressed genes (DEGs), with 758 up-regulated and 858 down-regulated genes. GO analysis indicated that the DEGs were mainly enriched in “cellular process,” “metabolic process,” “cell,” “cell part,” “catalytic activity,” “binding,” and other categories. KEGG pathway analysis revealed that the 417 DEGs were distributed across 217 different pathways, with several pathways related to xenobiotic or drug metabolism significantly enriched. This suggests that Benzylacetone likely disrupts metabolic and detoxication processes. Additionally, qRT-PCR validation of the TcOBP-4E and TcCYP450-6BK11 genes exhibited consistent results with the transcriptome data. Homology modeling and molecular docking results indicated the presence of a binding cavity formed by numerous hydrophobic amino acid residues in TcOBPs, with possible hydrogen bonds and hydrophobic interaction forces between the protein and ligand. These findings suggest that OBP and CYP450 play crucial roles in the resistance to foreign substances and provide a theoretical basis for understanding the insecticidal mechanisms of plant-derived insecticides at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Akash S, Sivaprakash B, Rajamohan N, Pandiyan CM, Vo DN (2022) Pesticide pollutants in the environment—a critical review on remediation techniques, mechanism and toxicological impact. Chemosphere 301:134754

    Article  CAS  PubMed  Google Scholar 

  • Archunan G (2018) Odorant binding proteins: a key player in the sense of smell. Bioinformation 14(1):36–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai PH, Bai CQ, Liu QZ, Du SS, Liu ZL (2013) Nematicidal activity of the essential oil of Rhododendron anthopogonoides aerial parts and its constituent compounds against Meloidogyne incognita. Z Naturforsch C J Biosci 68(7–8):307–312

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Jiao ML, Zang HY et al (2019) Chemical composition of essential oils from four Rhododendron species and their repellent activity against three stored-product insects. Environ Sci Pollut Res Int 26(22):23198–23205

    Article  CAS  PubMed  Google Scholar 

  • Barry KH, Koutros S, Lubin JH et al (2012) Methyl bromide exposure and cancer risk in the Agricultural Health Study. Cancer Causes Control 23(6):807–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Bautista MA, Bhandary B, Wijeratne AJ, Michel AP, Hoy CW, Mittapalli O (2015) Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag Sci 71(3):423–432

    Article  CAS  PubMed  Google Scholar 

  • Brito NF, Moreira MF, Melo AC (2016) A look inside odorant-binding proteins in insect chemoreception. J Insect Physiol 95:51–65

    Article  CAS  PubMed  Google Scholar 

  • Cai LJ, Zheng LS, Huang YP, Xu W, You MS (2021) Identification and characterization of odorant binding proteins in the diamondback moth. Plutella Xylostella Insect Sci 28(4):987–1004

    Article  CAS  PubMed  Google Scholar 

  • Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY (2022) Tribolium castaneum: a model insect for fundamental and applied research. Annu Rev Entomol 67:347–365

    Article  CAS  PubMed  Google Scholar 

  • Cao JQ, Guo SS, Wang Y, Pang X, Geng ZF, Du SS (2018) Toxicity and repellency of essential oil from Evodia lenticellata Huang fruits and its major monoterpenes against three stored-product insects. Ecotoxicol Environ Saf 160:342–348

    Article  CAS  PubMed  Google Scholar 

  • Chaieb I, Ben Hamouda A, Tayeb W, Zarrad K, Bouslema T, Laarif A (2018) The Tunisian Artemisia essential oil for reducing contamination of stored cereals by Tribolium castaneum. Food Technol Biotechnol 56(2):247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhari AK, Singh VK, Kedia A, Das S, Dubey NK (2021) Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects. Environ Sci Pollut Res Int 28(15):18918–18940

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Hou J, Liu C (2022) A scientometric review of grain storage technology in the past 15 years (2007–2022) based on knowledge graph and visualization. Foods 11(23):3836

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui K, He L, Cui G et al (2021) Biological activity of trans-2-hexenal against the storage insect pest Tribolium castaneum (Coleoptera: Tenebrionidae) and mycotoxigenic storage fungi. J Econ Entomol 114(2):979–987

    Article  CAS  PubMed  Google Scholar 

  • Devi TB, Raina V, Rajashekar Y (2022) A novel biofumigant from Tithonia diversifolia (Hemsl.) A. Gray for control of stored grain insect pests. Pestic Biochem Physiol 184:105116

    Article  CAS  PubMed  Google Scholar 

  • Dippel S, Oberhofer G, Kahnt J et al (2014) Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics 15:1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosoky NS, Setzer WN (2018) Chemical composition and biological activities of essential oils of Curcuma Species. Nutrients 10(9):1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Elnabawy M, Hassan S, Taha A (2021) Repellent and toxicant effects of eight essential oils against the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Biology 11(1):3529

    Article  Google Scholar 

  • Gao S, Lu R, Zhang Y et al (2021) Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. Pestic Biochem Physiol 179:104968

    Article  CAS  PubMed  Google Scholar 

  • He J, Shang X, Dai L et al (2022) Chemical constituents, antibacterial, acaricidal and anti-inflammatory activities of the essential oils from four Rhododendron species. Front Vet Sci 9:882060

    Article  PubMed  PubMed Central  Google Scholar 

  • Homma Y, Inui T, Kayukawa T, Toga K, Shinoda T, Togawa T (2022) The mitochondrial phosphatase PTPMT1 is required for the proper growth rate in the red flour beetle. Tribolium Castaneum Zoolog Sci 39(3):236–241

    PubMed  Google Scholar 

  • Jiang Q, Wang W, Zhang Z et al (2009) Binding specificity of locust odorant binding protein and its key binding site for initial recognition of alcohols. Insect Biochem Mol Biol 39(7):440–447

    Article  CAS  PubMed  Google Scholar 

  • Komarnytsky S, Retchin S, Vong CI, Lila MA (2022) Gains and losses of agricultural food production: implications for the twenty-first century. Annu Rev Food Sci Technol 13:239–261

    Article  PubMed  Google Scholar 

  • Li J, Wang X, Zhang L (2020) Sex pheromones and olfactory proteins in Antheraea moths: A. pernyi and A. polyphemus (Lepidoptera: Saturniidae). Arch Insect Biochem Physiol 105(2):e21729

    Article  CAS  PubMed  Google Scholar 

  • Li YJ, Chen HC, Hong TL et al (2021) Identification of chemosensory genes by antennal transcriptome analysis and expression profiles of odorant-binding proteins in parasitoid wasp Aulacocentrum confusum. Comp Biochem Physiol Part D Genomics Proteomics 40:100881

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Ho SH (1999) Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus oryzae Motsch. and Tribolium castaneum (Herbst). J Stored Prod Res 35:317–328

    Article  Google Scholar 

  • Liu S, Rao XJ, Li MY, Feng MF, He MZ, Li S (2015) Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). Comp Biochem Physiol Part D Genomics Proteomics 13:44–51

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Ma H, Xie H et al (2016) Biotype Characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11(5):e0154706

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu XX, Hu NN, Du YS, Almaz I, Zhang X, Du SS (2021) Chemical compositions and repellent activity of Clerodendrum bungei Steud. essential oil against three stored product insects. DARU J Pharma Sci 29(2):469–475

    Article  CAS  Google Scholar 

  • Machado TQ, Fonseca ACC, Duarte ABS, Robbs BK, Sousa DP (2022) A narrative review of the antitumor activity of monoterpenes from essential oils: an update. Biomed Res Int 2022:6317201

    Article  PubMed  PubMed Central  Google Scholar 

  • Montino A, Balakrishnan K, Dippel S, Trebels B, Neumann P, Wimmer EA (2021) Mutually exclusive expression of closely related odorant-binding proteins 9A and 9B in the antenna of the red flour beetle Tribolium castaneum. Biomolecules 11(10):1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauen R, Zimmer CT, Vontas J (2021) Heterologous expression of insect P450 enzymes that metabolize xenobiotics. Curr Opin Insect Sci 43:78–84

    Article  PubMed  Google Scholar 

  • Pang X, Feng YX, Qi XJ, Wang Y, Almaz B, Xi C, Du SS (2020) Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environ Sci Pollut Res 27(7):7618–7627

    Article  CAS  Google Scholar 

  • Pengsook A, Puangsomchit A, Yooboon T, Bullangpoti V, Pluempanupat W (2021) Insecticidal activity of isolated phenylpropanoids from Alpinia galanga rhizomes against Spodoptera litura. Nat Prod Res 35(23):5261–5265

    Article  CAS  PubMed  Google Scholar 

  • Pestana JL, Novais SC, Lemos MF, Soares AM (2014) Cholinesterase activity in the caddisfly Sericostoma vittatum: biochemical enzyme characterization and in vitro effects of insecticides and psychiatric drugs. Ecotoxicol Environ Saf 104:263–268

    Article  CAS  PubMed  Google Scholar 

  • Pottier MA, Bozzolan F, Chertemps T, Jacquin-Joly E, Lalouette L, Siaussat D, Maïbèche-Coisne M (2012) Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. Insect Mol Biol 21(6):568–580

    Article  CAS  PubMed  Google Scholar 

  • Pureswaran DS, Gries R, Borden JH (2004) Antennal responses of four species of tree-killing bark beetles (Coleoptera: Scolytidae) to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology 14:59e66

    Article  Google Scholar 

  • Rajagopalan A, Assisi C (2020) Effect of circuit structure on odor representation in the insect olfactory system. Eneuro 7(3):13–19

    Article  Google Scholar 

  • Ray S, Aldworth ZN, Stopfer MA (2020) Feedback inhibition and its control in an insect olfactory circuit. Elife 9:e53281

    Article  PubMed  PubMed Central  Google Scholar 

  • Renou M, Anton S (2020) Insect olfactory communication in a complex and changing world. Curr Opin Insect Sci 42:1–7

    Article  PubMed  Google Scholar 

  • Rihani K, Ferveur JF, Briand L (2021) The 40-year mystery of insect odorant-binding proteins. Biomolecules 11(4):509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort G, Lapointe A, Mercier AP, Parent G, Provencher V, Lamarche B (2021) A rapid review of territorialized food systems and their impacts on human health, food security, and the environment. Nutrients 13(10):3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rösner J, Wellmeyer B, Merzendorfer H (2020) Tribolium castaneum: a model for investigating the mode of action of insecticides and mechanisms of resistance. Curr Pharm Des 26(29):3554–3568

    Article  PubMed  Google Scholar 

  • Sang YL, Wang P, Liu JY, Hao YJ, Wang XL (2022) Chemical composition of essential oils from three Rhododendron species and their repellent. Insectic Fumigant Act Chem Biodivers 19(12):e202200740

    Article  CAS  Google Scholar 

  • Shakeel M, Farooq M, Nasim W et al (2017) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environ Sci Pollut Res Int 24(17):14537–14550

    Article  CAS  PubMed  Google Scholar 

  • Studer G, Rempfer C, Waterhouse AM, Gumienny R, Haas J, Schwede T (2020) QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 36(6):1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Tai S, Dai W, Zhang C (2019) Expression and functional analysis of two odorant-binding proteins from Bradysia odoriphaga (Diptera: Sciaridae). J Agric Food Chem 67(13):3565–3574

    Article  CAS  PubMed  Google Scholar 

  • Van Vugt-Lussenburg BMA, Capinha L, Reinen J et al (2022) “Commandeuring” xenobiotic Metabolism: advances in understanding xenobiotic metabolism. Chem Res Toxicol 35(7):1184–1201

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K, Cheng H, Chen J, Zhu G, Tang P, Han Z (2021) Chimeric double-stranded rnas could act as tailor-made pesticides for controlling storage insects. J Agric Food Chem 69(22):6166–6171

    Article  CAS  PubMed  Google Scholar 

  • Wani AR, Yadav K, Khursheed A, Rather MA (2021) An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog 152:104620

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Gao S, Mao J et al (2019a) CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. Pest Manag Sci 75(10):2744–2755

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Gao S, Lu Y et al (2019b) Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pestic Biochem Physiol 159:107–117

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Chen H, Li Z et al (2018) Phosphine analysis in postmortem specimens following inhalation of phosphine: fatal aluminum phosphide poisoning in children. J Anal Toxicol 42(5):330–336

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Yu Y, Ma F, Cao Y et al (2012) Structural and functional difference of pheromone binding proteins in discriminating chemicals in the gypsy moth, Lymantria dispar. Int J Biol Sci 8(7):979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Chen JL, Lin JH, Lin JT, Wu ZZ (2020) Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid. Diaphorina Citri Pest Manag Sci 76(8):2609–2618

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ren H, Sun F et al (2022a) Evaluation of the toxicity of chemical and biogenic insecticides to three outbreaking insects in desert steppes of Northern China. Toxins (basel) 14(8):546

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao S, Zhang P et al (2022b) Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Mol Genet Genomics 297(3):801–815

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu D, Zhang Y et al (2022c) Frequencies and mechanisms of pesticide resistance in Tetranychus urticae field populations in China. Insect Sci 29(3):827–839

    Article  CAS  PubMed  Google Scholar 

  • Zhong XB, Lai Y (2022) Special section on drug metabolism and regulation-editorial. Drug Metab Dispos 50(7):998–999

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Local Service Project of Liaoning Provincial Department of Education in 2022.

Funding

Liaoning Provincial Education Department Local Service Project in 2022 "Target Screening and Emulsion Development of Storage Pest Repellent".

Author information

Authors and Affiliations

Authors

Contributions

XiangJun Tu conceived and designed the experiment. Pei Wang and Lu Dai performed the experiments, analyzed the data and wrote the article. YueQiang Xin, Xiang Ji and Lei Shi revised the article. Yanjun Hao and Yuli Sang contributed to the samples, materials and analyzed the data.

Corresponding authors

Correspondence to YanJun Hao or PeiQi Chen.

Ethics declarations

Competing interests

The authors report there are no competing interests to declare.

Additional information

Communicated by Merid Getahun.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, Y., Wang, P., Pan, Z. et al. Repellence and insecticidal activity of Rhododendron anthopogonoides EO and head transcriptome analysis. Arthropod-Plant Interactions (2024). https://doi.org/10.1007/s11829-024-10043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-024-10043-y

Keywords

Navigation