Skip to main content
Log in

The role of natural enemies in regulating the population of the outbreak species Orgyia trigotephras (Lepidoptera: Erebidae) in North Africa

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The outbreak species, Orgyia trigotephras caused significant defoliation in northeastern Tunisia in 2005. This work aims to elucidate the population cycle of this pest by testing a wide range of variation of fecundity and population growth. The recorded fecundity was at its highest peak with an average of 153 eggs/egg batch during outbreaks. The action of the complex of egg parasitoid/predator associated with O. trigotephras varies over time. The action of Aprostocetus sp. and Coccidiphila rungsella was at its utmost during the collapse phase of the insect in 2007 and 2014. Only these two species were recorded over our 17-year study. A low proportion of dried eggs versus a high proportion of unfertilized eggs were observed due to the poor quality of foliage consumed by the mother larva during its development. The correlation between fecundity and unfertilized eggs was highly significant. Fecundity change indicators of O. trigotephras are indirect, namely defoliation by high densities of larvae reducing leaf quality for the next generation. The abundance of the host species makes it easily found by parasitoids or vulnerable to parasitism. This strategy is used by O. trigotephras since the action of natural enemies is very low. Yet, the insect was not observed since 2018. It will be important to conduct large research in the region to see whether the insect is still present in the localities or relocate to other ones near the studied site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

We admit that the results in the paper will be archived in an appropriate public repository.

References

  • Bella S, Longo S, Sidoti A (2011) Indagini su Teia trigotephras defogliatore del lentisco nella Sicilia sud-orientale. Atti XXIII Congresso Nazionale Italiano di Entomologia Genova, 13–16-giugno: 107.

  • Ben Jamâa ML, M’nara S, Villemant C, Khaldi A, (2002) Lymantria dispar L. (Lepidoptera, Lymantriidae) en Tunisie: état actuel des connaissances et perspectives de recherche. IOBC-WPRS Bulletin 25:101–108

    Google Scholar 

  • Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32. https://doi.org/10.1016/0169-5347(96)81066-4

    Article  CAS  PubMed  Google Scholar 

  • Campbell RW, Sloan RJ, Biazak CE (1977) Sources of mortality among late instar gypsy moth larvae in sparse populations. Environ Entomol 6:865–871

    Article  Google Scholar 

  • Cappuccino N, Lavertu D, Bergeron Y, Regniere R (1998) Spruce budworm impact, abundance and parasitism rate in a patchy landscape. Oecologia 114:236–242

    Article  Google Scholar 

  • Direction Générale des Forêts (1995) Forêt domaniale De Béni Oulid: Plan d’aménagement 1996–2015. SOGET Maghreb, Tunisia

    Google Scholar 

  • Duan JJ, Bauer LS, Abell KJ, Lelito JP, Van Driesche R (2013) Establishment and abundance of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Michigan: Potential for success in classical biocontrol of the invasive emerald ash borer (Coleoptera: Buprestidae). J Eco Entomol 106:1145–1154. https://doi.org/10.1603/EC13047

    Article  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Ezzine O, Ben Jamâa ML, M’nara S, Nouira S (2010) Bioécologie d’Orgyia trigotephras (Boisduval, 1829), (Lepidoptera, Lymantriidae) à Jebel Abderrahmane (Nord Est, Tunisie). IOBC/WPRS Bull 57:123–127

    Google Scholar 

  • Ezzine O, Branco M, Villemant C, Schmidt S, Nouira S, BenJamâa ML (2015) Host use in Orgyia trigotephras (Erebidae, Lymantriinae) during the outbreak: effects on larval performance and egg mortality. Anna Forest Sci AFS72:561–568. https://doi.org/10.1007/s13595-015-0484-7

    Article  Google Scholar 

  • Ezzine O, Dhahri S, Hammami S, LaajimiO MS, Ben Jamâa ML (2020) Pupa parasitoids of Casama innotata (Lepidoptera, Erebidae), defoliator of Acacia horrida in Tunisia. IOBC-WPRS Bull 151:83–88

    Google Scholar 

  • Ezzine O, Dhahri S, Hammami S, Bourouguaoui A, Ben Jamâa ML (2021) Occurrence of a new pest Casama innotata (Walker 1855) (Lepidoptera, Erebidae) on a nonnative host plant in an arid environment. J Arid Environ 188:104450. https://doi.org/10.1016/j.jaridenv.2021.104450

    Article  Google Scholar 

  • Ezzine O (2016) Interactions insectes/plantes-hôtes: cas d’Orgyia trigotephras Boisduval (1829) (Lepidoptera, Erebidae) en Tunisie. PhD thesis, Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis.

  • Hammami S, Ezzine O, Dhahri S, Villemant C, Schmidt S, Ben Jamâa ML (2019) Pupae mortality of Orgyia trigotephras Boisduval 1829 (Erebidae, Lymantriinae) in Tunisia. Redia 102:107–111. https://doi.org/10.19263/REDIA-102.19.16

    Article  Google Scholar 

  • Harrison S (1997) Persistent, localized outbreaks in the western tussock moth Orgyia vetusta: the roles of resource quality, predation, and poor dispersal. Ecol Entomol 22:158–16. https://doi.org/10.1046/j.1365-2311.1997.00053.x

    Article  Google Scholar 

  • Hoch G, Zubrik M, Novotny J, Schopf A (2001) The natural enemy complex of the gypsy moth, Lymantria dispar (Lep., Lymantriidae) in different phases of its population dynamics in eastern Austria and Slovakia- a comparative study. J Appl Entomol 125:217–227. https://doi.org/10.1046/j.1439-0418.2001.00540.x

    Article  Google Scholar 

  • Krugner R (2014) Suitability of non-fertilized eggs of Homalodisca vitripennis for the egg parasitoid Gonatocerus morrilli. BioControl 59:167–174. https://doi.org/10.1007/s10526-014-9562-2

    Article  Google Scholar 

  • Maron JL, Harrison S (1997) Spatial pattern formation in an insect host-parasitoid system. Science 278:1619–1621. https://doi.org/10.1126/science.278.5343.1619

    Article  CAS  PubMed  Google Scholar 

  • Maron JL, Harrison S, Greaves M (2001) Origin of an insect outbreak: escape in space or time from natural enemies? Oecologia 126:595–602. https://doi.org/10.1007/S004420000558

    Article  PubMed  Google Scholar 

  • May RM, Hassell MP (1988) Population dynamics and biological control. R Soc 318:129–169

    Google Scholar 

  • Montgomery ME, Wallner WE (1988) The gypsy moth: a westward migrant. In: Berryman AA (ed) Dynamics of forest insect populations: patterns, causes, implications. Plenum Press, New York, pp 353–376

    Chapter  Google Scholar 

  • Münster-Swendsen M (1985) A simulation study of primary-, clepto and hyper-parasitism in Epinotia tedella (Lepidoptera: Tortricidae). J Anim Ecol 54:683–695

    Article  Google Scholar 

  • Myers JH, Cory JS (2013) Population cycles in forest lepidoptera revisited. Annu Rev Ecol Evol Syst 44:565–592. https://doi.org/10.1146/annurev-ecolsys-110512-135858

    Article  Google Scholar 

  • Rossiter MC (1994) Maternal effects hypothesis of herbivore outbreak. BioScience 44:752–63. https://doi.org/10.2307/1312584

    Article  Google Scholar 

  • Sampson BJ, Roubos CR, Stringer SJ, Marshall D, Liburd OE (2013) Biology and efficacy of Aprostocetus (Eulophidae: Hymenoptera) as a parasitoid of the blueberry gall midge complex: Dasineura oxycoccana and Prodiplosis vaccinii (Diptera: Cecidomyiidae). J Econ Entomol 106:73–79. https://doi.org/10.1603/ec12404

    Article  PubMed  Google Scholar 

  • Tanhuanpää M, Ruohomäki K, Turchin P, Ayres MP, Bylund H, Kaitaniemi P, Tammaru T, Haukioja E (2002) Population cycles of the autumnal moth in Fennoscandia. In: Berryman AA (ed) Population cycles: the case for trophic interactions. Oxford University Press, New York, pp 142–164

    Google Scholar 

  • Ticehurst M, Fusco RA, Kling RP, Unger J (1978) Observations on parasites of gypsy moth in first cycle infestations in Pennsylvania from 1974–1977. Environ Entomol 7:355–358

    Article  Google Scholar 

  • Viggiani G (2021) Biological notes on some egg parasitoids of Phaneroptera nana Fieber, 1853 (Orthoptera, Tettigoniidae) with a description of a new species of Aprostocetus Westwood, 1833 (Hymenoptera, Eulophidae) from Italy. Biodivers J 12:289–295. https://doi.org/10.31396/Biodiv.Jour.2021.12.2.289.295

    Article  Google Scholar 

  • Villemant C, Fraval A (1992) Les ennemis des œufs de Porthetria dispar (L.) (Lép.: Lymantriidae) au Maroc: inventaire et problèmes relatifs à l’évaluation de leur impact. Bulletin De L’institut Scientifique Rabat 16:160–172

    Google Scholar 

  • Voegele JM (1989) Biological control of Brontispa longissima in Western Samoa: an ecological and economic evaluation. Agric Ecosyst Environ 27:315–329

    Article  Google Scholar 

  • Wang Y, Zou ZP, Hou YY, Yang XB, Wang S, Dai HJ, Xu YY, Zang LS (2020) Manually-extracted unfertilized eggs of Chinese oak silkworm, Antheraea pernyi, enhance mass production of Trichogramma parasitoids. Entomol Gen 40:397–406. https://doi.org/10.1127/entomologia/2020/1060

    Article  Google Scholar 

  • Wang J, Chen YM, Yang XB, Lv RE, Desneux N, Zang LS (2021) Parasitism and suitability of Aprostocetus brevipedicellus on Chinese Oak silkworm, Antheraea pernyi, a dominant factitious host. Insects 12:694. https://doi.org/10.3390/insects12080694

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyckhuys KAG, O’Neil RJ (2006) Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Prot 25:1180–1190. https://doi.org/10.1016/j.cropro.2006.03.003

    Article  Google Scholar 

  • Yang ZQ, Yao YX, Cao LM (2015) Chalcidoidea parasitizing forest defoliators (Hymenoptera). Science Press, Beijing, China

    Google Scholar 

Download references

Acknowledgements

Thanks to our forest technicians for their valuable help in the field. We wish to thank Emna DARGHOUTHI (mannouta@msn.com) for her assistance with the language editing.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Ezzine.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzine, O., Hammami, S. & Ben Jamâa, M.L. The role of natural enemies in regulating the population of the outbreak species Orgyia trigotephras (Lepidoptera: Erebidae) in North Africa. Arthropod-Plant Interactions 16, 469–475 (2022). https://doi.org/10.1007/s11829-022-09915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-022-09915-y

Keywords

Navigation